Features of adsorbed chemical elements and their isotopes distribution in iodine air filters FU-1500 of nuclear power plant
The main aim of research is to investigate the physical features of spatial distribution of the adsorbed chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU-1500 in the forced-exhaust ventilation at the nuclear power plant. The γ-activati...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2013 |
| Main Authors: | , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/111848 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Features of adsorbed chemical elements and their isotopes distribution in iodine air filters FU-1500 of nuclear power plant / I.M. Neklyudov, A.N. Dovbnya, N.P. Dikiy, O.P. Ledenyov, Yu.V. Lyashko // Вопросы атомной науки и техники. — 2013. — № 3. — С. 192-200. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-111848 |
|---|---|
| record_format |
dspace |
| spelling |
Neklyudov, I.M. Dovbnya, A.N. Dikiy, N.P. Ledenyov, O.P. Lyashko, Yu.V. 2017-01-15T11:28:45Z 2017-01-15T11:28:45Z 2013 Features of adsorbed chemical elements and their isotopes distribution in iodine air filters FU-1500 of nuclear power plant / I.M. Neklyudov, A.N. Dovbnya, N.P. Dikiy, O.P. Ledenyov, Yu.V. Lyashko // Вопросы атомной науки и техники. — 2013. — № 3. — С. 192-200. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 28.41.Te; 43.20.Ks; 43.25.Uv; 43.28.+h; 45.70.-n; 45.70.Mg; 87.16.dp; 83.80.Fg https://nasplib.isofts.kiev.ua/handle/123456789/111848 The main aim of research is to investigate the physical features of spatial distribution of the adsorbed chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU-1500 in the forced-exhaust ventilation at the nuclear power plant. The γ-activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU-1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU-1500 iodine air filter, which was exposed by the irradiation of bremsstrahlung γ-quantum producing by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element ¹²⁷I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granules of the type of SKT-3, in the AU-1500 iodine air filter are also researched. The possible influences by the standing wave of air pressure in the iodine air filter on the spatial distribution of the chemical elements and their isotopes in the iodine air filter are discussed. The comprehensive analysis of obtained research results on the distribution of the adsorbed chemical elements and their isotopes in the absorber of iodine air filter is performed. Головною метою було дослiдження особливостей розподiлення поглинених хiмiчних елементiв та їхнiх iзотопiв у гранульованому середовищi у йодному повiтряному фiльтрi типу AУ-1500 у притоковитягових системах на атомнiй електростанцiї. Метод γ-активацiйного аналiзу застосовано щоб охарактеризувати розподiлення поглинених хiмiчних елементiв та їхнiх iзотопiв у гранульованому фiльтовальному середовищi йодних повiтряних фiльтрiв типу AУ-1500 пiсля їх довгоготермiну роботи на атомнiй електростанцiї. Отриманi типовi спектри виявлених хiмiчних елементiв та їхнiх iзотопiв у повiтряному фiльтрi AУ-1500, зразки з якого опромiнювалися гальмовими γ-квантами, якi виникали при проходженнi прискорених електронiв через танталову мiшень. Просторове розподiлення йоду та деяких iнших хiмiчних елементiв та їхнiх iзотопiв у абсорберi, котрий був заповнений цилiндричними гранулами вугiлля типу СKT-3, у повiтряному фiльтрi AU-1500 було дослiджено. Можливий вплив стоячих коливань повiтряного тиску в йодному повiтряному фiльтру на просторове розпредiлення радiоактивних хiмiчних елементiв та їхнiх iзотопiв у йодному повiтряному фiльтрi було обговорено авторами. Зроблено всебiчний аналiз отриманих результатiв дослiдження просторового розподiлення хiмiчних елементiв та їхнiх iзотопiв у повiтряному фiльтрi. Главной целью работы было исследование особенностей, распределения адсорбированных химических элементов и их изотопов в гранулированной фильтрующей среде в йодных воздушных фильтрах типа АУ-1500 в системах приточно-вытяжной вентиляции на атомной электростанции. Использован метод γ-активационного анализа для точного изучения распределения адсорбированных химических элементов и их изотопов в гранулированной адсорбирующей среде в йодных воздушных фильтрах АУ-1500 после их долгосрочной работы на атомной электростанции. Получены типичные спектры обнаруженных химических элементов и их изотопов в йодном воздушном фильтре АУ-1500, образцы из которого облучались тормозными γ-квантами, возникавшими при прохождении ускоренных электронов через танталовую мишень. Найдено пространственное распределение йода и ряда других химических элементов и их изотопов в слое адсорбента, который состоял из цилиндрических угольных гранул СKT-3. Детально обсужден возможный механизм влияния стоячих колебаний давления воздуха в йодном воздушном фильтре на пространственное распределение поглощенных химических элементов и их изотопов. Выполнен всесторонний анализ полученных результатов исследования пространственного распределения адсорбированных радиоактивных химических элементов и их изотопов в адсорбенте йодного воздушного фильтра. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Ядернo-физические методы и обработка данных Features of adsorbed chemical elements and their isotopes distribution in iodine air filters FU-1500 of nuclear power plant Особливостi розподiлення радiоактивних хiмiчних елементiв та їх iзотопiв у йодних повiтряних фiльтрах АУ-1500 атомної електростанцiї Особенности распределения радиоактивных химических элементов и их изотопов в йодных воздушных фильтрах АУ-1500 атомной электростанции Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Features of adsorbed chemical elements and their isotopes distribution in iodine air filters FU-1500 of nuclear power plant |
| spellingShingle |
Features of adsorbed chemical elements and their isotopes distribution in iodine air filters FU-1500 of nuclear power plant Neklyudov, I.M. Dovbnya, A.N. Dikiy, N.P. Ledenyov, O.P. Lyashko, Yu.V. Ядернo-физические методы и обработка данных |
| title_short |
Features of adsorbed chemical elements and their isotopes distribution in iodine air filters FU-1500 of nuclear power plant |
| title_full |
Features of adsorbed chemical elements and their isotopes distribution in iodine air filters FU-1500 of nuclear power plant |
| title_fullStr |
Features of adsorbed chemical elements and their isotopes distribution in iodine air filters FU-1500 of nuclear power plant |
| title_full_unstemmed |
Features of adsorbed chemical elements and their isotopes distribution in iodine air filters FU-1500 of nuclear power plant |
| title_sort |
features of adsorbed chemical elements and their isotopes distribution in iodine air filters fu-1500 of nuclear power plant |
| author |
Neklyudov, I.M. Dovbnya, A.N. Dikiy, N.P. Ledenyov, O.P. Lyashko, Yu.V. |
| author_facet |
Neklyudov, I.M. Dovbnya, A.N. Dikiy, N.P. Ledenyov, O.P. Lyashko, Yu.V. |
| topic |
Ядернo-физические методы и обработка данных |
| topic_facet |
Ядернo-физические методы и обработка данных |
| publishDate |
2013 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Особливостi розподiлення радiоактивних хiмiчних елементiв та їх iзотопiв у йодних повiтряних фiльтрах АУ-1500 атомної електростанцiї Особенности распределения радиоактивных химических элементов и их изотопов в йодных воздушных фильтрах АУ-1500 атомной электростанции |
| description |
The main aim of research is to investigate the physical features of spatial distribution of the adsorbed chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU-1500 in the forced-exhaust ventilation at the nuclear power plant. The γ-activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU-1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU-1500 iodine air filter, which was exposed by the irradiation of bremsstrahlung γ-quantum producing by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element ¹²⁷I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granules of the type of SKT-3, in the AU-1500 iodine air filter are also researched. The possible influences by the standing wave of air pressure in the iodine air filter on the spatial distribution of the chemical elements and their isotopes in the iodine air filter are discussed. The comprehensive analysis of obtained research results on the distribution of the adsorbed chemical elements and their isotopes in the absorber of iodine air filter is performed.
Головною метою було дослiдження особливостей розподiлення поглинених хiмiчних елементiв та їхнiх iзотопiв у гранульованому середовищi у йодному повiтряному фiльтрi типу AУ-1500 у притоковитягових системах на атомнiй електростанцiї. Метод γ-активацiйного аналiзу застосовано щоб охарактеризувати розподiлення поглинених хiмiчних елементiв та їхнiх iзотопiв у гранульованому фiльтовальному середовищi йодних повiтряних фiльтрiв типу AУ-1500 пiсля їх довгоготермiну роботи на атомнiй електростанцiї. Отриманi типовi спектри виявлених хiмiчних елементiв та їхнiх iзотопiв у повiтряному фiльтрi AУ-1500, зразки з якого опромiнювалися гальмовими γ-квантами, якi виникали при проходженнi прискорених електронiв через танталову мiшень. Просторове розподiлення йоду та деяких iнших хiмiчних елементiв та їхнiх iзотопiв у абсорберi, котрий був заповнений цилiндричними гранулами вугiлля типу СKT-3, у повiтряному фiльтрi AU-1500 було дослiджено. Можливий вплив стоячих коливань повiтряного тиску в йодному повiтряному фiльтру на просторове розпредiлення радiоактивних хiмiчних елементiв та їхнiх iзотопiв у йодному повiтряному фiльтрi було обговорено авторами. Зроблено всебiчний аналiз отриманих результатiв дослiдження просторового розподiлення хiмiчних елементiв та їхнiх iзотопiв у повiтряному фiльтрi.
Главной целью работы было исследование особенностей, распределения адсорбированных химических элементов и их изотопов в гранулированной фильтрующей среде в йодных воздушных фильтрах типа АУ-1500 в системах приточно-вытяжной вентиляции на атомной электростанции. Использован метод γ-активационного анализа для точного изучения распределения адсорбированных химических элементов и их изотопов в гранулированной адсорбирующей среде в йодных воздушных фильтрах АУ-1500 после их долгосрочной работы на атомной электростанции. Получены типичные спектры обнаруженных химических элементов и их изотопов в йодном воздушном фильтре АУ-1500, образцы из которого облучались тормозными γ-квантами, возникавшими при прохождении ускоренных электронов через танталовую мишень. Найдено пространственное распределение йода и ряда других химических элементов и их изотопов в слое адсорбента, который состоял из цилиндрических угольных гранул СKT-3. Детально обсужден возможный механизм влияния стоячих колебаний давления воздуха в йодном воздушном фильтре на пространственное распределение поглощенных химических элементов и их изотопов. Выполнен всесторонний анализ полученных результатов исследования пространственного распределения адсорбированных радиоактивных химических элементов и их изотопов в адсорбенте йодного воздушного фильтра.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/111848 |
| citation_txt |
Features of adsorbed chemical elements and their isotopes distribution in iodine air filters FU-1500 of nuclear power plant / I.M. Neklyudov, A.N. Dovbnya, N.P. Dikiy, O.P. Ledenyov, Yu.V. Lyashko // Вопросы атомной науки и техники. — 2013. — № 3. — С. 192-200. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT neklyudovim featuresofadsorbedchemicalelementsandtheirisotopesdistributioniniodineairfiltersfu1500ofnuclearpowerplant AT dovbnyaan featuresofadsorbedchemicalelementsandtheirisotopesdistributioniniodineairfiltersfu1500ofnuclearpowerplant AT dikiynp featuresofadsorbedchemicalelementsandtheirisotopesdistributioniniodineairfiltersfu1500ofnuclearpowerplant AT ledenyovop featuresofadsorbedchemicalelementsandtheirisotopesdistributioniniodineairfiltersfu1500ofnuclearpowerplant AT lyashkoyuv featuresofadsorbedchemicalelementsandtheirisotopesdistributioniniodineairfiltersfu1500ofnuclearpowerplant AT neklyudovim osoblivostirozpodilennâradioaktivnihhimičnihelementivtaíhizotopivuiodnihpovitrânihfilʹtrahau1500atomnoíelektrostancií AT dovbnyaan osoblivostirozpodilennâradioaktivnihhimičnihelementivtaíhizotopivuiodnihpovitrânihfilʹtrahau1500atomnoíelektrostancií AT dikiynp osoblivostirozpodilennâradioaktivnihhimičnihelementivtaíhizotopivuiodnihpovitrânihfilʹtrahau1500atomnoíelektrostancií AT ledenyovop osoblivostirozpodilennâradioaktivnihhimičnihelementivtaíhizotopivuiodnihpovitrânihfilʹtrahau1500atomnoíelektrostancií AT lyashkoyuv osoblivostirozpodilennâradioaktivnihhimičnihelementivtaíhizotopivuiodnihpovitrânihfilʹtrahau1500atomnoíelektrostancií AT neklyudovim osobennostiraspredeleniâradioaktivnyhhimičeskihélementoviihizotopovviodnyhvozdušnyhfilʹtrahau1500atomnoiélektrostancii AT dovbnyaan osobennostiraspredeleniâradioaktivnyhhimičeskihélementoviihizotopovviodnyhvozdušnyhfilʹtrahau1500atomnoiélektrostancii AT dikiynp osobennostiraspredeleniâradioaktivnyhhimičeskihélementoviihizotopovviodnyhvozdušnyhfilʹtrahau1500atomnoiélektrostancii AT ledenyovop osobennostiraspredeleniâradioaktivnyhhimičeskihélementoviihizotopovviodnyhvozdušnyhfilʹtrahau1500atomnoiélektrostancii AT lyashkoyuv osobennostiraspredeleniâradioaktivnyhhimičeskihélementoviihizotopovviodnyhvozdušnyhfilʹtrahau1500atomnoiélektrostancii |
| first_indexed |
2025-11-25T04:22:06Z |
| last_indexed |
2025-11-25T04:22:06Z |
| _version_ |
1850506136928649216 |
| fulltext |
NUCLEAR-PHYSICAL METHODS AND PROCESSING OF DATA
FEATURES OF ADSORBED CHEMICAL ELEMENTS AND
THEIR ISOTOPES DISTRIBUTION IN IODINE AIR FILTERS
AU-1500 OF NUCLEAR POWER PLANT
I.M.Neklyudov, A.N.Dovbnya, N.P.Dikiy, O.P.Ledenyov∗, Yu.V.Lyashko
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received April 11, 2013)
The main aim of research is to investigate the physical features of spatial distribution of the adsorbed chemical
elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU-1500 in the
forced-exhaust ventilation at the nuclear power plant. The γ-activation analysis method is applied to accurately
characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering
medium in the AU-1500 iodine air filter after its long term operation at the nuclear power plant. The typical
spectrum of the detected chemical elements and their isotopes in the AU-1500 iodine air filter, which was exposed
by the irradiation of bremsstrahlung γ-quantum producing by the accelerating electrons in the tantalum target, are
obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their
isotopes in the layer of absorber, which was made of the cylindrical coal granules of the type of SKT-3, in the AU-1500
iodine air filter are also researched. The possible influences by the standing wave of air pressure in the iodine air
filter on the spatial distribution of the chemical elements and their isotopes in the iodine air filter are discussed. The
comprehensive analysis of obtained research results on the distribution of the adsorbed chemical elements and their
isotopes in the absorber of iodine air filter is performed.
PACS: 28.41.Te; 43.20.Ks; 43.25.Uv; 43.28.+h; 45.70.-n; 45.70.Mg; 87.16.dp; 83.80.Fg
1. INTRODUCTION
The latest concept of the development of energy
in the world make use of as many new sources of
clean energy and the further development of already
existing technologies currently, the most important of
them for their contribution to the economy of leading
countries is the nuclear power. The new strategy of
nuclear energy industry development in Ukraine, in-
cludes a wide range of research and development pro-
grams toward the 4-th generation nuclear reactors de-
signs, including the sodium cooled fast reactor, lead
cooled fast reactor, gas cooled fast reactor, very high
temperature reactor, molten salt reactor, supercrit-
ical water-cooled reactor, which can be used in the
various technological applications [1]. In this con-
nection, the ecological aspects of the nuclear energy
industry operation will require a significant attention,
including the appearance of increasing necessity for
the improved designs of the iodine air filters (IAF)
in the air filtering applications at the nuclear power
plants [1]. The air filtering with the application of
the iodine air filter of the type of AU-1500 prevents
a possible radioactive contamination of environment
due to the introduction of the process of air filtering
from the chemical elements and their isotopes, which
are usually generated during the nuclear reactors op-
eration at the nuclear power plants. In this research
article, we report the research results on the physical
features of distribution of the adsorbed radioactive
chemical elements and their isotopes in the granular
filtering medium (GFM) in the iodine air filters (IAF)
of the type of AU-1500 in the purge ventilation and
systems at the nuclear power plant (NPP).
The research on the interaction of the aerosol
streams, which transfer the radioactive chemical ele-
ments together with the small dispersive coal dust
particles masses in the granular filtering medium,
possessing the adsorption properties, represents a
considerable interest for the branches of the physics,
studying the properties of the granular substance [2],
soft condensed matter [3, 4], transport and structur-
ing of the small dispersive coal dust particles pre-
cipitations [5], and features of the chemical elements
adsorption processes [6]. In the case of such com-
plex systems as the air filters at the nuclear power
stations, there is a big number of physical phenom-
ena, connected with the aerodynamic and diffusion
movement of the radioactive chemical elements and
their isotopes together with the small dispersive coal
dust particles masses. These effects frequently in-
clude both the self-interactions as well as the interac-
tions with the adsorbing granular filtering medium.
As it has been found in our previous research, the
distribution of chemical elements, detected by the
∗Corresponding author E-mail address: ledenyov@kipt.kharkov.ua
192 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85).
Series: Nuclear Physics Investigations (60), p.192-200.
gamma activation method [7]. The allocation of dust
masses, measured by the gamma activation method
[7] and the gravimetric method [8-13], are character-
ized by the presence of the correlated maximums in
the granular filtering medium in the adsorber in the
IAF. It is difficult to explain this fact, going only
from the diffusion representations about the physical
mechanism of the chemical elements transportation
and/or considering its similarity to the process, which
occurs in the chromatographic columns, where the
concentration maximums appearance in the distribu-
tion of the transported chemical compounds with the
various molecular masses is observed. Considering
other physical mechanisms, which can influence both
the distribution of the small dispersive coal dust par-
ticles and the adsorption process of the radioactive
chemical elements and their isotopes in the granu-
lar filtering medium with the cylindrical coal gran-
ules, we paid some attention to the fact that the air
stream can generate the forced acoustic oscillations
of the pressure P(r,t) and the air movement veloc-
ity [14]. The layer of granular adsorbent, in which
there may be such oscillatory processes, plays a role
of the acoustic resonator, whereas the propagating
acoustic wave, which is multiple to its thickness, cre-
ates the standing wave oscillations. The pressure os-
cillations in the air can have a certain influence on
the transportation of the small dispersive coal dust
particles masses, causing their accumulation in the
regions, corresponding to the anti-nodes of the stand-
ing acoustic waves [14]. On the other hand, the same
oscillations of air density in the regions of the anti-
nodes of the standing acoustic waves will lead to the
increase or decrease of the external (in relation to
the adsorbent granules) pressure of air, thereby mak-
ing possible the forced ventilation of the internal air
volumes between the cylindrical coal granules. This
process should result in the excessive accumulation of
the absorbed radioactive chemical elements and their
isotopes in these regions. The oscillatory processes
can make an influence on the diffusion flows inside
the cylindrical coal granules, resulting in an increase
of the content of the adsorbed radioactive chemi-
cal compounds in the regions of the granular filter-
ing medium in the IAF, where the acoustic oscilla-
tions reach their maximum amplitudes. The same
action by the acoustic oscillations must have place
in the adsorption processes, which originate in the
small dispersive coal dust particles masses, concen-
trated in the described parts of an absorber in the
IAF. Thus, the penetration of the radioactive chem-
ical elements and their isotopes inside the small dis-
persive coal dust particles becomes relatively easy,
because of their small sizes in comparison with the
dust particles [14]. These acoustic mechanisms could
significantly influence the processes of accumulation
of the adsorbed radioactive chemical elements and
their isotopes, leading to their re-distribution inside
the IAF’s absorber in the form of the concentration
maximums, which correlate with the anti-nodes of
the air pressure oscillations. In the previous research
[7] with the gamma activation method application,
it was found that there are the concentration max-
imums in the distribution of the adsorbed chemical
elements and their isotopes in the IAF. In the present
research, the more detailed improved research data on
the distribution of the adsorbed chemical elements
and their isotopes in the IAF at the NPP during
its long term operation are presented. The possi-
ble physical mechanisms, resulting in a non-uniform
distribution of the adsorbed chemical elements in the
IAF at the NPP, are also discussed. The presented
highly innovative researches are important, because
they can improve our understanding on the nature of
the physical-chemical processes in the granular filter-
ing mediums at the air-dust aerosol streams action,
and they help us to improve the advanced IAF’s de-
sign for the air filtering applications at the NPP.
2. MATERIALS AND METHODS
The gamma activation method was applied to re-
search the distribution of the adsorbed chemical el-
ements and their isotopes in the granular filtering
medium of an absorber in the AU-1500 IAF after
many years of the IAF’s operation at the Zaporozh-
skaya nuclear power plant (NPP) in Ukraine. The
researched IAF has the following technical character-
istics: the diameter of the IAF is about 1 m; the
thickness of layer with the cylindrical coal granules
is equal to 0.3 m. The IAF’s absorber is made of
the cylindrical coal granules of the type of SKT-3
with the granule’s diameter of 2 mm and the gran-
ule’s length of 3.2 mm. During the experimental
research, the absorbers were opened with the spe-
cial automatic experimental setup, then the probes
were taken in the three places (at the center place
and at the two places on the periphery) in the re-
searched IAF’s. The obtained probes were extracted
at the various depths in the absorber and divided on
the samples with the weights of 5, 6, 7 g with the
purpose to perform the chemical composition analy-
sis. It is necessary to point out that the macro- and
micro- element composition analysis of the adsorbent
of the type of SKT-3 together with its small disper-
sive coal dust particles fraction was performed by the
means of the gamma activation analysis at the elec-
tron accelerator of scientific research complex ”Ac-
celerator” at the NSC KIPT in Kharkov, Ukraine.
The samples were exposed to the irradiation by the
bremsstrahlung gamma quantum from the Tantalum
converter with the thickness of 2 mm. The energy of
electrons was 22 MeV. The current of electron beam
was 700 µA. The time of exposition to the irradi-
ation was 10 hours. The activity of the irradiated
samples was measured by the Germanium-Lithium
detector with the volume of 50 cm3 and the energy
resolution of 2,8 keV at the line of 1333 keV. The ab-
solute content of the adsorbed chemical elements and
their isotopes were determined in relation to the stan-
dards, which were exposed to the irradiation at the
same time. The researches on the determination of
fractional composition and the separation of the small
193
dispersive coal dust particles from the cylindrical coal
granules were also conducted. It was found that the
small dispersive coal dust particles mass share near
the input surface of the absorber in the IAF reached
12%. In the process of measurements, it was estab-
lished that the accumulated quantity of the small dis-
persive coal dust particles at the distances far away
from the absorber’s input surface decreased sharply.
The small dispersive coal dust particles mass shares
were different at the centre and on the periphery in
the absorber in the IAF. It makes sense to note that
the quantity of the small dispersive coal dust parti-
cles was slightly smaller near to the absorber’s walls,
comparing to the quantity of the small dispersive coal
dust particles at the centre of the absorber in the IAF.
Fig.1. Typical spectrum of detected radioactive chemical elements and their isotopes in iodine air filter,
obtained at gamma activation analysis
3. RESULTS
In the spectroscopy experiment, the induced
activities of a number of the isotopes in the fol-
lowing reactions: 55Mn(γ,n)55Mn, 127I(γ,n)126I,
35Cl(γ,γ)35mCl, 90Zr(γ,n)89Zr, 88Sr(γ,n)87mSr,
48Ca(γ,n)47Ca, 44Ca(γ,p)43K, 23Na(n,γ)24Na,
27Al(n, α)24Na, 140Ce(γ,n)139Ce, 204Pb(γ,n)203Pb,
135Ba(γ,γ)135mBa were measured. The typical spec-
trum of the induced activity for the probe, taken in
the core of the IAF, is presented in Fig. 1. The re-
searched IAFs are mainly intended for the chemical
adsorption of the radioactive Iodine (I) at the NPP.
Therefore, it was in the scope of our research interest
to find out the quantitative content of the Iodine per
a mass unit of the adsorbent; and its distribution,
depending on the depth of the extracted probe. The
measured distribution of 127I is shown in Fig. 2. The
probes were extracted on the periphery of the IAF,
and the direction of filtrated air flow as well as the
exact position of probe extraction are shown in Fig. 2.
The average specific content of small dispersive coal
dust particles fraction at the depth of an adsorbent
did not exceed 0,5%.
The fission of Uranium atoms in a nuclear re-
actor is accompanied by the accumulation of ra-
dioactive isotopes of the Iodine (131,132,133,134,135I).
It is a well known fact that the half-decay pe-
riod for the isotopes of Iodine is 8.1 days; in the
case of 131I; it is 20.9 hours in the case of 133I;
it is 6.7 hours in the case of 135I. Getting to the
IAF, the Iodine isotopes are captured in the IAF,
where the physical process of their decay takes place.
Fig.2. Distribution of specific content of Iodine
( 127I ) in absorber of iodine air filter at NPP
The stable isotope 127I is accumulated and pre-
served in the IAF at the moment of experimental
measurements. As it can be seen in Fig. 2, the 127I is
mainly accumulated in the frontal region of the IAF,
i.e. there is the intensive adsorption of 127I as soon as
it comes to the IAF. The specific content of Iodine in
close proximity to the input surface of absorber in the
194
IAF is 43 µg/g. Let us note that, according to our
measurements results, the initial specific content of
Iodine in the cylindrical coal granules in an absorber
doesn’t exceed 5 µg/g. Some part of decay products
of the Iodine isotopes could be detected in the re-
actions 135Ba(γ,γ)135mBa and 133Cs(γ,n)132Cs. The
Figs. 3 and 4 present a relative distribution of the
light-weight alkaline chemical elements such as the
Sodium and Potassium (the 1-st group of a periodic
table of the chemical elements), which were obtained
in our measurements.
It is visible that the chemical elements such as the
Sodium and Potassium are non-homogeneously dis-
tributed in the absorber in the IAF and their depen-
dences are well correlated along the length of the IAF.
Fig.3. Distribution of specific content of Sodium in
absorber of iodine air filter at NPP
Fig.4. Distribution of specific content of Potassium
in absorber of iodine air filter at NPP
The distributions of radioactive chemical elements
from the 2nd group from a periodic table of the
chemical elements such as the light-weight Strontium
and heavy-weight Barium are shown in Figs. 5 and 6.
These distributions have a high degree of similarity.
The easiest chemical element from the 3rd group such
as the Scandium is distributed a little differently, but
there is a main maximum in the center of absorber
in the IAF as shown in Fig. 7.
Fig.5. Distribution of specific content of Strontium
in absorber of iodine air filter at NPP
Fig.6. Distribution of specific content of Barium in
absorber of iodine air filter at NPP
Fig.7. Distribution of specific content of Scandium
in absorber of iodine air filter at NPP
The distributions of radioactive chemical elements
from the 4-th group of a periodic table of the chemi-
cal elements such as the Zirconium is given in Fig. 8.
The most light-weighted radioactive chemical el-
ement from the 7-th group of a periodic table of
195
the chemical elements such as the Manganese has
the distribution with the three maximums in Fig. 9.
Fig.8. Distribution of specific content of Zirconium
in absorber of iodine air filter at NPP
Fig.9. Distribution of specific content of radioactive
Manganese in absorber of iodine air filter at NPP
Fig.10. Distribution of specific content of Chlorine
in absorber of iodine air filter at NPP
In Fig. 10, the distribution of the Chlorine with the
smaller mass, comparing to the Iodine mass, from
the 17-th group of a periodic table of the chemical
elements is depicted. It is necessary to comment
that the distribution of the Chlorine in Fig. 10 is ab-
solutely different from the distribution of the Iodine
in Fig. 2.
We would like to show the distribution of the rel-
ative content of the Strontium at other places in the
absorber in the IAF. In fig. 11, the distribution of
the Strontium in the probe, extracted at the periph-
ery region of absorber in the IAF is shown.
In Fig. 12, the distribution of the Stron-
tium in the probe, extracted at the cen-
ter of absorber in the IAF is shown.
Fig.11. Distribution of specific content of
Strontium at periphery of absorber in IAF at NPP
Fig.12. Distribution of specific content of
Strontium at center of absorber in IAF at NPP
On the upper net of the IAF, the thick and dense
layer of the small dispersive coal dust particles layer,
which was not captured by the aerosol filters, was
registered. It was found that the direct inflow of
aerosols into the IAF from the space, which is in
close proximity to the nuclear reactor, worsens the
IAF’s aerodynamic performances. As it was shown
during the research with the application of a model
of the IAF, the presence of the small dispersive dust
particles layer on the upper grid increases the ab-
sorber’s aerodynamic resistance at the rate of 20
196
%. The typical spectrum of the detected radioactive
chemical elements and their isotopes, which were pre-
cipitated at the grid of the AU-1500 iodine air filter,
is presented in Fig. 13. As it can be seen, the presence
of 137Cs, 60Co, 110mAg, 54Mn isotopes corresponds
to a typical composition of the isotopes, which can
be normally detected in the radioactive aerosols at
the operating nuclear reactor. The small dispersive
dust particles layer on the upper grid of the IAF rep-
resents the densely packed atmospheric dust, which
is mixed with the operating nuclear reactor dust at
the NPP. The dust layer was indissoluble, because
of presence of the oils and moisture. The moisture
mass fraction was 5 %. The particles with the size of
about 1 µm represented a biggest share of particles
in the small dispersive dust particles layer, according
to the completed microscopy analysis.
Fig.13. Typical spectrum of detected radioactive chemical elements and their isotopes in the IAF on the
grid of iodine air filter
4. DISCUSSION
As we explained in the introduction, the distribu-
tion and accumulation processes of the adsorbed ra-
dioactive chemical elements and their isotopes in the
granular filtering medium of absorber in the AU-1500
IAF strongly depends on both the physical features
of the transportation processes of the small dispersive
coal dust particles of the micro- and sub micro-sizes
[8-14], as well as the action by the acoustic oscilla-
tory processes, connected with the acoustic oscilla-
tions generation and propagation in the air in the
granular filtering medium of absorber in the AU-1500
IAF [14]. The generating standing wave oscillations
of the sound frequencies of the first harmonics, which
represent the half-wave standing wave oscillations,
described by the dependence between the wavelength
and the thickness of granular filtering medium layer:
λ1 = 2L and by the next harmonic’s dependence: λ2
= 2L/3, have the biggest amplitudes. These stand-
ing wave oscillations are important for the process
of excessive accumulation of the small dispersive coal
dust particles, penetrating deeply into the adsorber,
which takes place in the anti-nodes positions along
the length of the IAF [14-16]. The pressure max-
imums in the standing wave oscillations are posi-
tioned: 1) in the case of the first harmonic, it is
positioned on the distance of 15 cm, and 2) in the
case of the second odd harmonic, they are located
on the distances of 5, 15, 25 cm from the input sur-
face of absorber in the IAF. The presence of maxi-
mums in the distribution of the small dispersive coal
dust particles masses has been detected in the exper-
iments with the vertical model of the IAF in [8] and
the horizontal model of the IAF in [12]. According
to the research in [9], the maximums of accumula-
tion of the adsorbed radioactive chemical elements
and their isotopes in the granular filtering medium
of absorber in the AU-1500 IAF must be observed in
these positions. On the one side, the alternating-sign
pressure appearing in the positions of the anti-nodes
of standing wave oscillations, results in an origina-
tion of the processes of accelerating penetration of
the radioactive chemical elements and their isotopes
together with the air into the cylindrical coal gran-
ules. From other side, it is a well known fact that
such oscillations can intensify the diffusion processes,
occurring in the cylindrical coal granules [14].
As it is shown in the experimental data in Fig. 2,
the Iodine is well adsorbed in the IAF at the initial
moment of its penetration into the IAF. The main
share of 127I is absorbed by the granular filtering layer
with the thickness of 10 cm. The spatial distribution
of Iodine has a decreasing diffusion-type dependence
[8] on the distance from the source. However, nev-
ertheless, the concentration maximum is clearly vis-
ible on the curve of characteristic dependence. This
maximum is positioned in the point, where there are
197
the anti-nodes for the two harmonics of the pressure
waves in the air in the IAF. Therefore, the additional
absorption is connected with either: the excessive ac-
cumulation of the small dispersive coal dust particles
or the influence by the acoustic waves on the adsorp-
tion of chemical elements and their isotopes in the
granular filtering medium of absorber in the AU-1500
IAF. In Fig. 2, there is also a small next maximum in
the position near to the absorber’s output, which can
be related to the action by the acoustic oscillations
of second harmonic, which is slightly shifted by the
air stream.
The Alkaline metals such as the Sodium and
Potassium have the clearly expressed distributions
with the maximums, which are located at the forward
fronts of anti-nodes, i.e. they are promptly absorbed
at the initial stage of filtering process at the moment
of entrance to the region of anti-nodes, generated by
the acoustic waves. Therefore, their maximums are
shifted to the position of source, i.e. to the absorber’s
input region in the IAF.
Moreover, it is necessary to consider the two pos-
sibilities: 1) the cross replacement by the chemical
elements and their isotopes in the course of the ab-
sorption or 2) the presence of co-operative absorp-
tion in the IAF. Thus, for example, the distributions
of the radioactive Strontium and Barium from the
2-nd group of chemical elements, are characterized
by the maximums of absorption (see Figs. 5 and 6),
which are similar to the maximum of absorption of
Iodine (see Fig. 2). Of course, we don’t take to the
consideration the giant absorption maximum of Io-
dine near to the absorber’s input surface in the IAF
in Fig. 2. Whereas, for example, the Potassium (see
Fig. 4) was forced to move deeply into the absorber
out of absorber’s sub-surface region in the IAF. It
is a well known fact that the Barium can easily cre-
ate the oxides and nitrides. Also, the Barium can
easily form the Ba(IO3)2 and the BaI2 chemical com-
pounds, which can have the influences on its distrib-
ution in the absorber in the IAF. The radiation ac-
tivity results in the creation of the Acetic acid from
the Methane, containing in the air (the oxidizing of
CH3 by the Hydroxyl OH):
→ CH4 + O2 → CH3O + OH → CH3OOH.
The acetic acid can intensively react with the
chemical elements of the 2-nd group.
The Scandium, which is a chemical element from
the 3-rd group, has a central maximum of distribu-
tion in the region of joint maximums of the both har-
monics at the distance L = 15 cm from the absorbers
input surface in the IAF. The Sc is accumulated on
the forward front of the first maximum of the second
harmonic of the standing wave oscillations at the ab-
sorber’s input surface; and it is also accumulated on
the backward front near to an absorber’s output sur-
face in the IAF.
The Zirconium distribution accompanies the Io-
dine distribution; however in the places with the
small concentration of 127I at the absorber’s output
surface, it is concentrated in the region of the third
maximum of the second harmonic of the standing
wave oscillations at the distance L ≈ 25 cm from the
absorbers input surface in the IAF.
The Manganese, which is a chemical element of
the 7-th group, is inclined to occupy the forward
fronts of maximums of acoustic oscillations, but, at
the center, it occupies the position at the distance L
= 15 cm from the absorbers input surface in the IAF
(see Fig. 9).
The Chlorine, which is a chemical element from
the 17-th group, occupies the back front of the first
maximum of the second harmonic of the acoustic os-
cillations and the back front of the second maximum
of the second harmonic of the acoustic oscillations,
i.e. there is its replacement in the region, where there
are no the concentration maximums of other chemical
elements (see Fig. 10).
In Figs. 11 and 12, the physical features of dis-
tribution of the Strontium at the different places of
probes extraction are shown. It is visible that the
air streams can flow non-uniformly, resulting in some
non-significant changes of distributions of the ad-
sorbed radioactive chemical elements in the core of
the IAF. At center of the IAF, the Sr has a max-
imum of accumulation near to the absorber’s input
surface, whereas at the periphery it accumulates in
the region at the distance L = (17...18) cm from the
absorbers input surface in the IAF.
In the cases of other chemical elements with the
distribution dependences, which are not shown in our
research paper, it is necessary to point out that the
Calcium has its accumulation maximum at the dis-
tance L = 15 cm.
Let us stress that the Ba, Sr, Sc, Zr, Ca chemical
elements can have a positive impact on the absorption
capacity of the cylindrical coal granules of the type
of SKT-3, forming the chemically stable compounds
with the Iodine.
The almost constant concentrations of the Ni, Ce,
Pb absorbed chemical elements along the length of
the IAF was observed. We would like to note that
the PbI2 compound is one of the most stable Iodine’s
compounds.
Let us note that the simultaneous consideration of
both the diffusion mechanism and the acoustic mech-
anism in our research on the processes of the accu-
mulation and distribution of the adsorbed chemical
elements and their isotopes in the granular filtering
medium of an absorber allows us to explain the ob-
tained complex dependences of the distribution of the
adsorbed chemical elements and their isotopes in the
granular filtering medium of an absorber in the AU-
1500 IAF at the NPP.
5. CONCLUSIONS
The main purpose of our research was to investi-
gate the physical features of distribution of the ad-
sorbed radioactive chemical elements and their iso-
topes in the granular filtering medium in the iodine
air filters of the type of AU-1500 in the heating purge
ventilation systems at the nuclear power plant. In
198
our research, the γ-activation analysis method was
applied to accurately characterize the distribution of
the adsorbed radioactive chemical elements and their
isotopes in the granular filtering medium in the AU-
1500 iodine air filter after its long term operation
at the nuclear power plant. We obtained the typi-
cal spectrum of the detected chemical elements and
their isotopes in the AU-1500 iodine air filter. The
spatial distributions of the detected chemical element
127I and some other chemical elements and their iso-
topes in the layer of absorber, which was made of the
cylindrical coal granules of the type of SKT-3, in the
AU-1500 iodine air filter were also comprehensively
researched. The possible influences by the changing
aerodynamic resistance of the iodine air filter on the
spatial distribution of the chemical elements and their
isotopes in the iodine air filter were discussed. In ad-
dition, the comprehensive analysis on the obtained
research results on the distribution of the adsorbed
chemical elements and their isotopes in the absorber
of iodine air filter was performed, the criteria of iodine
air filter effective operation were formulated and the
possible iodine air filter design improvements were
proposed.
Authors are very grateful to a group of scientists
from the National Academy of Sciences in Ukraine for
the numerous scientific discussions on the reported
experimental research results.
This innovative research is completed in the
frames of the nuclear science and technology fun-
damental research program, facilitating the environ-
ment protection from the radioactive contamination,
at the National Scientific Centre Kharkov Institute
of Physics and Technology in Ukraine. The research
is funded by the National Academy of Sciences in
Ukraine.
References
1. B.E. Paton, O.S. Bakai, V.G. Bar’yakhtar,
I.M. Neklyudov. On the strategy of nuclear en-
ergy industry development in Ukraine, Analytic
Research Review // NAS of Ukraine. 2008,
p. 1-61.
2. P.G. de Gennes. Granular matter: a tentative
view // Rev. Mod. Phys. 1999, v.71, N2, p. 374-
382.
3. G.H. Ristow. Pattern formation in granular ma-
terials // Springer Tracts in Mod. Phys. 2000,
v. 161, p. 1-161.
4. R.A.L. Jones. Soft Condensed Matter, Oxford,
U.K., Oxford University Press, 2002, 195 p.
5. N.B.Ur’ev. Physical-chemical dynamics of dis-
persive systems // Uspekhi Khimii. 2004, v.79,
N1, p. 39-62 (in Russian).
6. Yu.K. Tovbin. Absorption in porous systems.
Moscow: ”Nauka”, 1996, p. 128-178 (in Russian).
7. N.P. Dikiy, A.N. Dovbnya, N.A. Skakun, et al.
Use of accelerators in geology, medicine, iso-
topes production and atomic power industry
// PAST. Ser. ”Nuclear Physics Investigation”.
2001, N1(37), p. 26-35.
8. O.P. Ledenyov, I.M. Neklyudov, P.Ya. Poltinin,
et al. Physical features of small disperse coal
dust fraction transportation and structurization
processes in iodine air filters of absorption type
in ventilation systems at nuclear power plants
// PAST. Ser. ”Physics of Radiation Damages
and effects in solids”. 2005, N3(86), p. 115-121
(in Russian).
9. O.P. Ledenyov, I.M. Neklyudov, P.Ya. Poltinin,
et al. Physical features of accumulation and dis-
tribution processes of small disperse coal dust
precipitations and absorbed radioactive chemical
elements in iodine air filter at nuclear power plant
// PAST. Ser. ”Physics of Radiation Damages
and effects in solids”. 2006, N4(89), p. 164-168
(in Russian).
10. I.M. Neklyudov, L.I. Fedorova, P.Ya. Poltinin, et
al. Research on physical features of small disperse
coal dust particles movement dynamics at action
by differently directed forces in granular filter-
ing medium in iodine air filter at nuclear power
plant // PAST. Ser. ”Physics of Radiation Dam-
ages and effects in solids”. 2007, N6(91), p. 82-88
(in Russian).
11. I.M. Neklyudov, O.P. Ledenyov, L.I. Fedorova, et
al. Influence by small dispersive coal dust parti-
cles of different fractional consistence on charac-
teristics of iodine air filter at nuclear power plant
// PAST. Ser. ”Physics of Radiation Damages
and effects in solids”. 2009, N2(93), p. 104-107
(in Russian).
12. I.M. Neklyudov, O.P. Ledenyov, L.I. Fedorova,
et al. Formation of small dispersive coal dust
particles maximums by air-dust aerosol in dis-
persive granular filtering medium // PAST. Ser.
”Physics of Radiation Damages and effects in
solids”. 2010, N5(96), p. 67-72 (in Russian).
13. I.M. Neklyudov, O.P. Ledenyov, L.I. Fedorova,
et al. On the structurization of coal dust precip-
itations and their influence on aerodynamic re-
sistance by granulated mediums in air filters at
nuclear power plants // PAST. Ser. ”Physics of
Radiation Damages and effects in solids” 2012,
N2(78), p. 76-82. (in Russian).
14. O.P. Ledenyov, I.M. Neklyudov. Distribution of
small dispersive coal dust particles and adsorbed
radioactive chemical elements in granular filter-
ing medium in iodine air filter at nuclear power
plant in conditions of forced acoustic resonance
// PAST. Ser. ”Physics of Radiation Damages
and effects in solids”. 2013, N2(84), p. 94-99. (in
Russian).
199
15. D.I. Blokhintsev. Acoustics of non-homogeneous
moving medium. Moscow: ”Nauka”, 1981, 208 p.
(in Russian).
16. I.P. Golyamina. Ultrasound: Small Encyclope-
dia. Moscow: ”Soviet Encyclopedia Publishing
House”, 1979, 400 p. (in Russian).
ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ РАДИОАКТИВНЫХ ХИМИЧЕСКИХ
ЭЛЕМЕНТОВ И ИХ ИЗОТОПОВ В ЙОДНЫХ ВОЗДУШНЫХ ФИЛЬТРАХ АУ-1500
АТОМНОЙ ЭЛЕКТРОСТАНЦИИ
И.М. Неклюдов, А.Н. Довбня, Н.П. Дикий, О.П. Леденёв, Ю.В. Ляшко
Главной целью работы было исследование особенностей, распределения адсорбированных химических
элементов и их изотопов в гранулированной фильтрующей среде в йодных воздушных фильтрах
типа АУ-1500 в системах приточно-вытяжной вентиляции на атомной электростанции. Использован
метод γ-активационного анализа для точного изучения распределения адсорбированных химических
элементов и их изотопов в гранулированной адсорбирующей среде в йодных воздушных фильтрах
АУ-1500 после их долгосрочной работы на атомной электростанции. Получены типичные спектры
обнаруженных химических элементов и их изотопов в йодном воздушном фильтре АУ-1500, образцы
из которого облучались тормозными γ-квантами, возникавшими при прохождении ускоренных
электронов через танталовую мишень. Найдено пространственное распределение йода и ряда других
химических элементов и их изотопов в слое адсорбента, который состоял из цилиндрических угольных
гранул СKT-3. Детально обсужден возможный механизм влияния стоячих колебаний давления
воздуха в йодном воздушном фильтре на пространственное распределение поглощенных химических
элементов и их изотопов. Выполнен всесторонний анализ полученных результатов исследования
пространственного распределения адсорбированных радиоактивных химических элементов и их
изотопов в адсорбенте йодного воздушного фильтра.
ОСОБЛИВОСТI РОЗПОДIЛЕННЯ РАДIОАКТИВНИХ ХIМIЧНИХ ЕЛЕМЕНТIВ
ТА ЇХ IЗОТОПIВ У ЙОДНИХ ПОВIТРЯНИХ ФIЛЬТРАХ AУ-1500 АТОМНОЇ
ЕЛЕКТРОСТАНЦIЇ
I.М. Неклюдов, А.М. Довбня, М.П. Дикий, О.П. Леденьов, Ю.В. Ляшко
Головною метою було дослiдження особливостей розподiлення поглинених хiмiчних елементiв та
їхнiх iзотопiв у гранульованому середовищi у йодному повiтряному фiльтрi типу AУ-1500 у притоко-
витягових системах на атомнiй електростанцiї. Метод γ-активацiйного аналiзу застосовано щоб
охарактеризувати розподiлення поглинених хiмiчних елементiв та їхнiх iзотопiв у гранульованому
фiльтовальному середовищi йодних повiтряних фiльтрiв типу AУ-1500 пiсля їх довгого термiну роботи
на атомнiй електростанцiї. Отриманi типовi спектри виявлених хiмiчних елементiв та їхнiх iзотопiв у
повiтряному фiльтрi AУ-1500, зразки з якого опромiнювалися гальмовими γ-квантами, якi виникали
при проходженнi прискорених електронiв через танталову мiшень. Просторове розподiлення йоду та
деяких iнших хiмiчних елементiв та їхнiх iзотопiв у абсорберi, котрий був заповнений цилiндричними
гранулами вугiлля типу СKT-3, у повiтряному фiльтрi AU-1500 було дослiджено. Можливий вплив
стоячих коливань повiтряного тиску в йодному повiтряному фiльтру на просторове розпредiлення
радiоактивних хiмiчних елементiв та їхнiх iзотопiв у йодному повiтряному фiльтрi було обговорено
авторами. Зроблено всебiчний аналiз отриманих результатiв дослiдження просторового розподiлення
хiмiчних елементiв та їхнiх iзотопiв у повiтряному фiльтрi.
200
|