Quantum electrodynamics in the strong pulsed laser fields

The some results on the resonant processes of quantum electrodynamics (QED) proceeding in the strong pulsed light fields, realized in modern powerful pulsed lasers is presented. The appearance of resonances in a laser field is one of the fundamental problems of QED in electromagnetic fields. Followi...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2013
Автор: Roshchupkin, S.P.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/111866
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum electrodynamics in the strong pulsed laser fields / S.P. Roshchupkin // Вопросы атомной науки и техники. — 2013. — № 3. — С. 48-52. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111866
record_format dspace
spelling Roshchupkin, S.P.
2017-01-15T12:32:06Z
2017-01-15T12:32:06Z
2013
Quantum electrodynamics in the strong pulsed laser fields / S.P. Roshchupkin // Вопросы атомной науки и техники. — 2013. — № 3. — С. 48-52. — Бібліогр.: 5 назв. — англ.
1562-6016
PACS: 034.50.Rk, 12.20.-m
https://nasplib.isofts.kiev.ua/handle/123456789/111866
The some results on the resonant processes of quantum electrodynamics (QED) proceeding in the strong pulsed light fields, realized in modern powerful pulsed lasers is presented. The appearance of resonances in a laser field is one of the fundamental problems of QED in electromagnetic fields. Following QED processes of the second order in the fine structure constant in the pulsed laser field are considered: resonant spontaneous bremsstrahlung by an electron scattered by a nucleus, resonant photocreation of electron{positron pairs on a nucleus, and resonant scattering of a lepton by a lepton. The resonant peak's altitude and width are defined by the external pulsed wave properties. It is demonstrated that the resonant cross sections may be several orders of magnitude greater than the corresponding cross sections in the absence of an external field. Results obtained may be experimentally verified, for example, by the scientific facilities at the SLAC National Accelerator Laboratory and FAIR (Facility for Antiproton and Ion Research, Darmstadt, Germany).
Розглядаються деякi резонанснi процеси квантової електродинамiки (КЕД), що протiкають у сильних iмпульсних свiтлових полях, реалiзованих у сучасних потужних iмпульсних лазерах. Поява резонансiв у лазерному полi є однiєю з фундаментальних проблем КЕД в електромагнiтних полях. Розглядаються наступнi процеси КЕД другого порядку зi сталої тонкої структури в iмпульсному лазерному полi: резонансне спонтанне гальмове випромiнювання електрона, розсiянного на ядрi; резонансне фотона-родження електрон-позитронних пар на ядрi й резонансне розсiювання лептона на лептонi. Амплiтуда й ширина резонансних пiкiв визначаються параметрами зовнiшньої iмпульсної хвилi. Показано, що резонанснi поперечнi перерiзи можуть надекiлька порядкiв величини бути бiльше, нiж вiдповiднi поперечнi перерiзи у вiдсутностi зовнiшнього поля. Отриманi результати можуть бути експериментально перевiренi в наукових об’єднаннях, таких як SLAC (National Accelerator Laboratory) i FAIR (Facility for Antiproton and Ion Research, Darmstadt, Germany).
Рассматриваются некоторые резонансные процессы квантовой электродинамики (КЭД), протекающие в сильных импульсных световых полях, реализуемых в современных мощных импульсных лазерах. Появление резонансов в лазерном поле является одной из фундаментальных проблем КЭД в электро-магнитных полях. Рассматриваются следующие процессы КЭД второго порядка по постоянной тонкой структуры в импульсном лазерном поле: резонансное спонтанное тормозное излучение электрона, рассеянного на ядре; резонансное фоторождение электрон-позитронных пар на ядре и резонансное рассеяние лептона на лептоне. Амплитуда и ширина резонансных пиков определяются параметрами внешней импульсной волны. Показано,что резонансные поперечные сечения могут быть на несколько порядков величины больше,чем соответствующие поперечные сечения в отсутствие внешнего поля. Полученные результаты могут быть экспериментально проверены в научных коллоборациях, таких как SLAC(National Accelerator Laboratory) и FAIR (Facility for Antiproton and Ion Research, Darmstadt, Germany).
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
Quantum electrodynamics in the strong pulsed laser fields
Квантова електродинамiка в сильних iмпульсних лазерних полях
Квантовая электродинамика в сильных импульсных лазерных полях
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quantum electrodynamics in the strong pulsed laser fields
spellingShingle Quantum electrodynamics in the strong pulsed laser fields
Roshchupkin, S.P.
Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
title_short Quantum electrodynamics in the strong pulsed laser fields
title_full Quantum electrodynamics in the strong pulsed laser fields
title_fullStr Quantum electrodynamics in the strong pulsed laser fields
title_full_unstemmed Quantum electrodynamics in the strong pulsed laser fields
title_sort quantum electrodynamics in the strong pulsed laser fields
author Roshchupkin, S.P.
author_facet Roshchupkin, S.P.
topic Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
topic_facet Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
publishDate 2013
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Квантова електродинамiка в сильних iмпульсних лазерних полях
Квантовая электродинамика в сильных импульсных лазерных полях
description The some results on the resonant processes of quantum electrodynamics (QED) proceeding in the strong pulsed light fields, realized in modern powerful pulsed lasers is presented. The appearance of resonances in a laser field is one of the fundamental problems of QED in electromagnetic fields. Following QED processes of the second order in the fine structure constant in the pulsed laser field are considered: resonant spontaneous bremsstrahlung by an electron scattered by a nucleus, resonant photocreation of electron{positron pairs on a nucleus, and resonant scattering of a lepton by a lepton. The resonant peak's altitude and width are defined by the external pulsed wave properties. It is demonstrated that the resonant cross sections may be several orders of magnitude greater than the corresponding cross sections in the absence of an external field. Results obtained may be experimentally verified, for example, by the scientific facilities at the SLAC National Accelerator Laboratory and FAIR (Facility for Antiproton and Ion Research, Darmstadt, Germany). Розглядаються деякi резонанснi процеси квантової електродинамiки (КЕД), що протiкають у сильних iмпульсних свiтлових полях, реалiзованих у сучасних потужних iмпульсних лазерах. Поява резонансiв у лазерному полi є однiєю з фундаментальних проблем КЕД в електромагнiтних полях. Розглядаються наступнi процеси КЕД другого порядку зi сталої тонкої структури в iмпульсному лазерному полi: резонансне спонтанне гальмове випромiнювання електрона, розсiянного на ядрi; резонансне фотона-родження електрон-позитронних пар на ядрi й резонансне розсiювання лептона на лептонi. Амплiтуда й ширина резонансних пiкiв визначаються параметрами зовнiшньої iмпульсної хвилi. Показано, що резонанснi поперечнi перерiзи можуть надекiлька порядкiв величини бути бiльше, нiж вiдповiднi поперечнi перерiзи у вiдсутностi зовнiшнього поля. Отриманi результати можуть бути експериментально перевiренi в наукових об’єднаннях, таких як SLAC (National Accelerator Laboratory) i FAIR (Facility for Antiproton and Ion Research, Darmstadt, Germany). Рассматриваются некоторые резонансные процессы квантовой электродинамики (КЭД), протекающие в сильных импульсных световых полях, реализуемых в современных мощных импульсных лазерах. Появление резонансов в лазерном поле является одной из фундаментальных проблем КЭД в электро-магнитных полях. Рассматриваются следующие процессы КЭД второго порядка по постоянной тонкой структуры в импульсном лазерном поле: резонансное спонтанное тормозное излучение электрона, рассеянного на ядре; резонансное фоторождение электрон-позитронных пар на ядре и резонансное рассеяние лептона на лептоне. Амплитуда и ширина резонансных пиков определяются параметрами внешней импульсной волны. Показано,что резонансные поперечные сечения могут быть на несколько порядков величины больше,чем соответствующие поперечные сечения в отсутствие внешнего поля. Полученные результаты могут быть экспериментально проверены в научных коллоборациях, таких как SLAC(National Accelerator Laboratory) и FAIR (Facility for Antiproton and Ion Research, Darmstadt, Germany).
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111866
citation_txt Quantum electrodynamics in the strong pulsed laser fields / S.P. Roshchupkin // Вопросы атомной науки и техники. — 2013. — № 3. — С. 48-52. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT roshchupkinsp quantumelectrodynamicsinthestrongpulsedlaserfields
AT roshchupkinsp kvantovaelektrodinamikavsilʹnihimpulʹsnihlazernihpolâh
AT roshchupkinsp kvantovaâélektrodinamikavsilʹnyhimpulʹsnyhlazernyhpolâh
first_indexed 2025-11-25T22:43:10Z
last_indexed 2025-11-25T22:43:10Z
_version_ 1850569900950552576
fulltext QUANTUM ELECTRODYNAMICS IN THE STRONG PULSED LASER FIELDS S.P. Roshchupkin∗ Institute of Applied Physics NAS of Ukraine, 40000, Sumy, Ukraine (Received September 10, 2012) The some results on the resonant processes of quantum electrodynamics (QED) proceeding in the strong pulsed light fields, realized in modern powerful pulsed lasers is presented. The appearance of resonances in a laser field is one of the fundamental problems of QED in electromagnetic fields. Following QED processes of the second order in the fine structure constant in the pulsed laser field are considered: resonant spontaneous bremsstrahlung by an electron scattered by a nucleus, resonant photocreation of electron–positron pairs on a nucleus, and resonant scattering of a lepton by a lepton. The resonant peak’s altitude and width are defined by the external pulsed wave properties. It is demonstrated that the resonant cross sections may be several orders of magnitude greater than the corresponding cross sections in the absence of an external field. Results obtained may be experimentally verified, for example, by the scientific facilities at the SLAC National Accelerator Laboratory and FAIR (Facility for Antiproton and Ion Research, Darmstadt, Germany). PACS: 034.50.Rk, 12.20.-m 1. INTRODUCTION Use of a powerful coherent light source in modern ap- plied and fundamental research has stimulated study of the external strong field influence on quantum elec- trodynamic (QED) processes [1]. A characteristic feature of electrodynamic processes of second order in the fine-structure constant in a laser field is asso- ciated with the fact that such processes may occur under both nonresonant and resonant conditions [1]- [5]. The resonant character relates to the fact that lower-order processes, such as spontaneous emission and one-photon creation and annihilation of electron- positron pairs, may be allowed in the field of a light wave. Therefore, within a certain range of energy and momentum, a particle in an intermediate state may fall within the mass shell. Then the considered higher-order process is effectively reduced to two se- quential lower-order processes [1]-[5]. The appear- ance of resonances in a laser field is one of the funda- mental problems of QED in strong fields. As a result of laser technology development dif- ferent types of coherent light sources have become available, with intensities that have increased up to 1022W · cm−2 in recent years. The new experimental conditions have required constant improvements in calculations and model development. The amplitude of the field intensity of powerful ultrashort pulsed lasers changes greatly in space and time. In the de- scription of QED processes in the presence of a pulsed laser the external field is usually modeled as a plane nonmonochromatic wave, when a characteristic pulse width τ obeys the condition [2]-[5] ωτ À 1. (1) The four-potential of the pulsed plane wave propa- gating along the z-axis has form [2]-[5]: A (ϕ) = A0g ( ϕ ωτ ) (ex cos ϕ + δey sinϕ) , (2) ϕ = (kx) = ω (t− z) , where A0 = F0/ω, k = (ω,k) is the wave vector, F0, ω and δ are the strength, the frequency and the ellipticity parameter of the wave, ex = (0, ex), ey = (0, ey) are the four-vectors of wave polariza- tion. The function in expression (2) g (ϕ/ωτ) is the envelope function of the four-potential, which must be equal the unit in center of a pulse, g (0) = 1, and to decrease exponentially (g → 0) when ϕ À ωτ . Following QED processes of the second order in the fine structure constant in the pulsed laser field are considered: resonant spontaneous bremsstrahlung by an electron scattered by a nucleus [3], resonant pho- tocreation of electron–positron pairs on a nucleus [4], and resonant scattering of a lepton by a lepton [5]. There are two characteristic parameters in these processes of QED in the field of a pulsed electro- magnetic wave. The first is the classical relativistic- invariant parameter [1]-[5], η0 = eFoλ mc2 , (3) which in the pulse peak equals numerically the ratio of work done by the field within the distance equal to a wavelength to the electron rest energy (e and m ∗Corresponding author E-mail address: rsp@roshchupkin.sumy.ua 48 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85). Series: Nuclear Physics Investigations (60), p.48-52. are the charge and the mass of an electron, F0 and λ = c/ω are the strength and the wave-length of an electric field in the pulse peak). The Bunkin-Fedorov quantum parameter is specified [1]-[5]: γi = mυic ~ω . (4) (υi is the electron speed). We treat these problems of QED within the range of moderate-strong-field in- tensities, when η0 ¿ 1, γi & 1. (5) Consequently, the quantum Bunkin-Fedorov parame- ter is the main parameter which determines multi- photon processes. Hereafter, we use the relativistic system of units ~ = c = 1. 2. RESONANT BREMSSTRAHLUNG OF AN ELECTRON SCATTERED BY AN ION IN A PULSED LIGHT FIELD Here we describe a theory of resonant spontaneous bremsstrahlung (SB) produced by the scattering of an electron by a Coulomb center in the presence of pulsed external electromagnetic field (Fig. 1) [3]. The problem under consideration is of vast scien- tific interest with respect to the concept substan- tiation of electromagnetic interaction realization as the virtual particle exchange. In the study of reso- nant processes in the field of plane monochromatic wave the resonance infinities were phenomenologi- cally eliminated by Breit and Wigner procedure. The main point of this procedure is that radiative correc- tions in the Green function of an intermediate elec- tron were included under consideration. It is impor- tant to emphasize that the pulsed character of ex- ternal field was taken into account in the study of electron-nucleus SB. It enables to eliminate the reso- nance infinity in the process amplitude by the sequen- tial method in the frame of examined approaches [3]. Fig.1.Resonant SB related to the scattering of an electron by a nucleus in the field of a pulsed light wave. Here pi, pf are the four-momenta of initial and final electrons; k′ is the four-momentum of a spontaneous photon; qi is the four-momentum of an intermediate electron; q is the transferred momentum The electron interaction with a nucleus is consid- ered in the frame of the Born approximation, i.e. the case of rather fast electrons is studied (υi À Z/137, Z is the nucleus charge number). The process of electron-nucleus SB in the presence of pulsed light wave may occur under resonant conditions when the four-momentum of an intermediate electron lies near the mass surface q2 i −m2 . (kqi) ωτ ∼ m τ ¿ ωm. (6) Four characteristic domains of the resonant frequency can be separated: in the nonrelativistic case, ωres ≈ ω; for an ultrarelativistic electron moving within a narrow cone with the photon from the external field, ωres ¿ ω; for an ultrarelativistic electron moving within a narrow cone with the spontaneous photon, ωres À ω; otherwise, ωres ∼ ω. The process of res- onant electron–nucleus SB in the field of a pulsed light wave can be effectively reduced to two sequential processes of the first order in the fine-structure con- stant: emission of a photon with a four-momentum k′ by an electron pi in a pulsed light wave and scat- tering of an electron qi by a nucleus in the field of the pulsed wave (see Fig. 1). The resonant differen- tial cross section of electron–nucleus SB in the field of pulsed light wave for moderately strong intensities when the electron is scattered by a large angle is: dσres dΩ′ = 1 π2 Eiω ′2|qi| (kpi) (kk′)2 |pi| PresdσsdW (1). (7) Here dσs is the differential cross section of scattering of an intermediate electron with a four-momentum qi by a nucleus in the field of the wave, dW (1) is the probability that an electron with a four-momentum pi = (Ei, pi) absorbs one photon from the external field and spontaneously emits a photon with a four- momentum k′ = (ω′, k′), Pres =π(ωτ)2 exp{−β2/2} 64(kqi) 1 2ρ ∫ ρ −ρ dφ|erf(φ+ iβ 2 )+1|2, (8) β = q2 i −m2 4(kqi) ωτ. (9) The parameter β (9) specifies how close the four- momentum of an intermediate electron coincides with the value on the mass surface in the resonant condi- tions. The dependence of the function Pres on the parameter β defines a magnitude and a shape of the resonant peak in the cross section of electron-nucleus SB process in the pulsed light field. The parameter ρ is the relation between observation time and pulse- width. The function Pres can be easily written in the form Pres = a1 (q2 i −m2)2 + (2mΓτ )2 , Γτ = 2√ a2 (kqi) m(ωτ) . (10) Here coefficients a1 and a2 weakly depend on the parameter ρ. A transit resonant width Γτ arose from the finite time of particle-field interaction. 49 Fig.2. The ratio Rres as a function of the electron velocity for preset orientations of the electron momentum in the initial and final states and fixed orientation of the spontaneous photon (θ′ = 120o and ϕ′ = 10o solid line; θ′ = 120o and ϕ′ = 60o dashed line) Let’s consider the relation between resonant dif- ferential cross section of electron-nucleus SB and the cross-section of electron-nucleus SB in an absence of external field. The following parameters: the laser wave frequency ω = 2.35 eV; the laser pulse- width τ = 1.5 ps; the field strength in pulse peak F0 = 6 · 109 V · cm−1 were chosen for the calculation. Fig.2 displays ratio Rres as a function of the initial velocity of the electron. As can be seen from Fig. 2, within the range of relativistic electron energies, the resonant differential cross section of electron–nucleus SB may be five orders of magnitude higher than the corresponding cross section in the absence of the ex- ternal field. Within the range of ultrarelativistic elec- tron energies, this ratio drastically decreases. 3. RESONANT PHOTOCREATION OF ELECTRON–POSITRON PAIRS ON A NUCLEUS IN A PULSED LIGHT FIELD Here we describe a theory of resonant photocre- ation of electron–positron pairs on a nucleus in a pulsed light field (Fig. 3) [4]. The photocreation process of electron–positron pairs on a nucleus in the presence of pulsed light wave may occur under reso- nant conditions when the four-momentum of an in- termediate electron lies near the mass surface q2 − −m2 . (kq−) ωτ ¿ ωm. (11) In this case resonances are possible only for an ul- trarelativistic positron moving within a narrow cone with the initial photon and the resonant frequency of an initial photon is ωres = E+ 1−Wth/E+ , Wth = (1 + δ2 +) 4sin2(θi/2) m2 ω , (12) δ+ = θ+(E+/m), θ+ = ∠(ki,p+) ¿ 1. (13) Fig.3. Resonant photocreation of electron–positron pairs on a nucleus in a pulsed light field. Here p−, p+ are the four-momenta of electron and positron;ki is the four-momentum of an initial photon; qi is the four-momentum of an intermediate electron; q is the transferred momentum The resonant differential cross section of pho- tocreation of electron–positron pairs on a nucleus in the field of pulsed light wave for moderately strong intensities when the electron is scattered by a large angle is: dσ(±) res = √ π 2 τ 8sin2(θi/2) dσs(q−)dW (1) pair. (14) Here dσs is the differential cross section of scat- tering of an intermediate electron with a four- momentum q− by a nucleus, dW (1) pair is the creation probability of the electron-positron pair (q− and p+) by initial photon ki as a result of absorption of one photon from the laser field. Let’s consider the re- lation between resonant differential cross section of photocreation of electron–positron pairs on a nucleus in the field of pulsed light wave and the corresponding cross-section in an absence of laser field: R(±) res = π 8 √ π 2 η2 0ωτ [ ln E+ m ]−1 . (15) The following parameters: the laser wave frequency ω = 1.17 eV; the laser pulse-width τ = 25 ps; para- meter η0 ≈ 0.1; ωi = 5 ·105m = 255 GeV were chosen for the calculation. We obtain from Eq. (15) the relation R (±) res ≈ 40. 4. RESONANT SCATTERING OF A LEPTON BY A LEPTON IN A PULSED LIGHT FIELD Here we describe a theory of resonant scattering of a lepton by a lepton in a pulsed light field (Fig. 4) [5]. The scattering of a lepton by a lepton in the pres- ence of pulsed light wave may occur under resonant conditions when the four-momentum of an interme- diate photon lies near the mass surface q′21 . (kq′1) ωτ ∼ ω2 ωτ ¿ ω2. (16) 50 Fig.4. Resonant scattering of a lepton by a lepton in a pulsed light field. Here p1, p2and p′1, p′2 are the four-momenta of leptons for initial and final parti- cles states, respectively; q′1 is the four-momentum of an intermediate photon The resonance appears if leptons scatter by each other into the small angles in the frame of reference related to the center of inertia θres = 2 ω |p| sinθi ¿ 1, (17) where θi is the angle between directions of wave propagation and initial relative momentum p. Fig.5. The dependence of differential cross-section of scattering of an electron by an electron (an electron by a positron) in the pulsed light field (in units of respective cross-sections in the external field absence) on initial polar angle when azimuthal angle is fixed Let’s consider the ratio of derived resonant differ- ential cross-section of scattering of leptons by each other into elementary azimuthal angle to the differ- ential cross section of scattering of respective lep- tons in the external field absence for the most in- teresting processes of scattering of a lepton by a lepton: the scattering of an electron by an elec- tron, the scattering of an electron by a positron, the scattering of an electron by a muon. The experi- mental investigation of processes of resonant scatter- ing of a lepton by a lepton may be verified in the fields created by picosecond pulsed lasers which gen- erate radiation within the frequency optical range. Fig.6. The dependence of differential cross-section of scattering of an electron by muon in the pulsed light field (in units of respective cross-sections in the external field absence) on initial polar angle when azimuthal angle is fixed The Fig. 5-6 show the dependences of the consid- ered ratio on initial polar angle θi. The external laser wave frequency amounts to value ω = 2.35 eV, the pulse-width is equal to τ = 1.5 ps, the field strength in pulse peak is F0 = 6 · 109 V · cm−1. Hereby the most exceeding appears for the particles small rel- ative velocities case, at that the exceeding reaches into five orders of magnitude in case of scattering of an electron by an electron (positron), and two orders in case of scattering of an electron by a muon. 5. CONCLUSIONS • The QED processes of second order in the fine- structure constant in the presence of a pulsed light wave may occur under resonant conditions when the four-momentum of an intermediate particle lies near the mass surface. • The resonant behavior of these processes is specified by characteristics of the laser pulse. The resonant singularity in the processes ampli- tude is eliminated by accounting for the pulsed character of the external field rather than by the phenomenological Breit-Wigner procedure. • The resonant differential cross sections of the following processes proceeding in the strong pulsed light fields: resonant sponta- neous bremsstrahlung by an electron scattered by a nucleus, resonant photocreation of elec- tron–positron pairs on a nucleus, and resonant scattering of a lepton by a lepton may be sev- eral orders of magnitude higher than the cor- responding cross sections in the absence of the laser field. • The obtained results may be experimentally verified, for example, by the scientific facilities at the SLAC National Accelerator Laboratory and FAIR (Facility for Antiproton and Ion Re- search, Darmstadt, Germany). 51 References 1. S.P. Roshchupkin and A.I. Voroshilo. Resonant and Coherent Effects of Quantum Electrodynam- ics in the Light Field. Kiev: “Naukova Dumka”, 2008, 399 p. (in Russian). 2. S.P. Roshchupkin, A.A. Lebed’, E.A. Padusenko, and A.I. Voroshilo. Quantum Electrodynamics Resonances in a Pulsed Laser Field // Laser Physics. 2012, v. 22, p. 1113-1144. 3. A.A. Lebed’ and S.P. Roshchupkin. Resonant spontaneous bremsstrahlung by an electron scat- tered by a nucleus in the field of a pulsed light wave // Phys. Rev. A 2010, v. 81, p.033413. 4. A.A. Lebed’ and S.P. Roshchupkin. Resonant electron–positron pair photoproduction on a nu- cleus in a pulsed light field // JETP. 2011, v. 113, p. 46-54. 5. E.A. Padusenko, S.P. Roshchupkin. Resonant scattering of a lepton by a lepton in the pulsed light field // Laser Phys. 2010, v. 20, p. 2080-2091. КВАНТОВАЯ ЭЛЕКТРОДИНАМИКА В СИЛЬНЫХ ИМПУЛЬСНЫХ ЛАЗЕРНЫХ ПОЛЯХ С.П.Рощупкин Рассматриваются некоторые резонансные процессы квантовой электродинамики (КЭД), протекающие в сильных импульсных световых полях, реализуемых в современных мощных импульсных лазерах. Появление резонансов в лазерном поле является одной из фундаментальных проблем КЭД в электро- магнитных полях. Рассматриваются следующие процессы КЭД второго порядка по постоянной тонкой структуры в импульсном лазерном поле: резонансное спонтанное тормозное излучение электрона, рас- сеянного на ядре; резонансное фоторождение электрон-позитронных пар на ядре и резонансное рассея- ние лептона на лептоне. Амплитуда и ширина резонансных пиков определяются параметрами внешней импульсной волны. Показано, что резонансные поперечные сечения могут быть на несколько порядков величины больше, чем соответствующие поперечные сечения в отсутствие внешнего поля. Получен- ные результаты могут быть экспериментально проверены в научных коллоборациях, таких как SLAC (National Accelerator Laboratory) и FAIR (Facility for Antiproton and Ion Research, Darmstadt, Germany). КВАНТОВА ЕЛЕКТРОДИНАМIКА В СИЛЬНИХ IМПУЛЬСНИХ ЛАЗЕРНИХ ПОЛЯХ С.П.Рощупкiн Розглядаються деякi резонанснi процеси квантової електродинамiки (КЕД), що протiкають у сильних iмпульсних свiтлових полях, реалiзованих у сучасних потужних iмпульсних лазерах. Поява резонансiв у лазерному полi є однiєю з фундаментальних проблем КЕД в електромагнiтних полях. Розглядають- ся наступнi процеси КЕД другого порядку зi сталої тонкої структури в iмпульсному лазерному полi: резонансне спонтанне гальмове випромiнювання електрона, розсiянного на ядрi; резонансне фотона- родження електрон-позитронних пар на ядрi й резонансне розсiювання лептона на лептонi. Амплiтуда й ширина резонансних пiкiв визначаються параметрами зовнiшньої iмпульсної хвилi. Показано, що резонанснi поперечнi перерiзи можуть на декiлька порядкiв величини бути бiльше, нiж вiдповiднi по- перечнi перерiзи у вiдсутностi зовнiшнього поля. Отриманi результати можуть бути експериментально перевiренi в наукових об’єднаннях, таких як SLAC (National Accelerator Laboratory) i FAIR (Facility for Antiproton and Ion Research, Darmstadt, Germany). 52