Functional capabilities of the breadboard model of Sidra satellite-borne instrument

This paper presents the structure, principles of operation and functional capabilities of the breadboard model of SIDRA compact satellite-borne instrument. SIDRA is intended for monitoring fluxes of high-energy charged particles under outer-space conditions. We present the reasons to develop a parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2013
Hauptverfasser: Dudnik, O.V., Prieto, M., Kurbatov, E.V., Sanchez, S., Titov, K.G., Sylwester, J., Gburek, S., Podg´orski, P.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/111896
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Functional capabilities of the breadboard model of Sidra satellite-borne instrument / O.V. Dudnik, M. Prieto, E.V. Kurbatov, S. Sanchez, K.G. Titov, J. Sylwester, S. Gburek, P. Podg´orski // Вопросы атомной науки и техники. — 2013. — № 3. — С. 289-296. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111896
record_format dspace
spelling Dudnik, O.V.
Prieto, M.
Kurbatov, E.V.
Sanchez, S.
Titov, K.G.
Sylwester, J.
Gburek, S.
Podg´orski, P.
2017-01-15T14:35:42Z
2017-01-15T14:35:42Z
2013
Functional capabilities of the breadboard model of Sidra satellite-borne instrument / O.V. Dudnik, M. Prieto, E.V. Kurbatov, S. Sanchez, K.G. Titov, J. Sylwester, S. Gburek, P. Podg´orski // Вопросы атомной науки и техники. — 2013. — № 3. — С. 289-296. — Бібліогр.: 20 назв. — англ.
1562-6016
PACS: 29.30.Aj, 94.80.+g, 29.40.Wk, 29.85.Ca
https://nasplib.isofts.kiev.ua/handle/123456789/111896
This paper presents the structure, principles of operation and functional capabilities of the breadboard model of SIDRA compact satellite-borne instrument. SIDRA is intended for monitoring fluxes of high-energy charged particles under outer-space conditions. We present the reasons to develop a particle spectrometer and we list the main objectives to be achieved with the help of this instrument. The paper describes the major specifications of the analog and digital signal processing units of the breadboard model. A specially designed and developed data processing module based on the Actel ProAsic3E A3PE3000 FPGA is presented and compared with the all-in one digital processing signal board based on the Xilinx Spartan 3 XC3S1500 FPGA.
Представлено структурна схема, принципи роботи i функцiональнi можливостi лабораторного макету компактного супутникового приладу SIDRA, призначеного для монiторингу потокiв заряджених частинок високих енергiй у космiчному просторi. Обґрунтовується необхiднiсть розробки спектрометру частинок й наводиться перелiк актуальних здач, що можуть вирiшуватись за допомогою приладу. Представлено основнi характеристики вузлiв аналогової i цифрової обробки сигналiв лабораторного прототипу. Спецiально розроблений i виготовлений модуль обробки даних на основi ПЛIС Actel ProAsic3E A3PE3000 представлений у порiвняннi з унiверсальною платою цифрової обробки сигналiв на основi ПЛIС XilinX Spartan 3 XC3S1500.
Представлены структурная схема, принципы работы и функциональные возможности лабораторного макета компактного спутникового прибора SIDRA, предназначенного для мониторинга потоков заряженных частиц высоких энергий в космическом пространстве. Обосновывается необходимость разработки спектрометра частиц и приводится перечень актуальных задач, решаемых с помощью прибора. Представлены основные характеристики узлов аналоговой и цифровой обработок сигналов лабораторного прототипа. Специально разработанный и изготовленный модуль обработки данных на основе ПЛИС Actel ProA- sic3E A3PE3000 представлен в сравнении с универсальной платой цифровой обработки сигналов на основе ПЛИС XilinX Spartan 3 XC3S1500.
The work was carried out with the support of the Science-and-Technology Center in Ukraine, Grant No. 3542, University of Alcala, Grant No. CCG08-UAH/ESP-3991, and Ministry of Science and Innovations in Spain, Grant No. ESP2005-07290-C02-02.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Вычислительные и модельные системы
Functional capabilities of the breadboard model of Sidra satellite-borne instrument
Функцiональнi можливостi лабораторного макету супутникового приладу Sidra
Функциональные возможности лабораторного макета спутникового прибора Sidra
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Functional capabilities of the breadboard model of Sidra satellite-borne instrument
spellingShingle Functional capabilities of the breadboard model of Sidra satellite-borne instrument
Dudnik, O.V.
Prieto, M.
Kurbatov, E.V.
Sanchez, S.
Titov, K.G.
Sylwester, J.
Gburek, S.
Podg´orski, P.
Вычислительные и модельные системы
title_short Functional capabilities of the breadboard model of Sidra satellite-borne instrument
title_full Functional capabilities of the breadboard model of Sidra satellite-borne instrument
title_fullStr Functional capabilities of the breadboard model of Sidra satellite-borne instrument
title_full_unstemmed Functional capabilities of the breadboard model of Sidra satellite-borne instrument
title_sort functional capabilities of the breadboard model of sidra satellite-borne instrument
author Dudnik, O.V.
Prieto, M.
Kurbatov, E.V.
Sanchez, S.
Titov, K.G.
Sylwester, J.
Gburek, S.
Podg´orski, P.
author_facet Dudnik, O.V.
Prieto, M.
Kurbatov, E.V.
Sanchez, S.
Titov, K.G.
Sylwester, J.
Gburek, S.
Podg´orski, P.
topic Вычислительные и модельные системы
topic_facet Вычислительные и модельные системы
publishDate 2013
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Функцiональнi можливостi лабораторного макету супутникового приладу Sidra
Функциональные возможности лабораторного макета спутникового прибора Sidra
description This paper presents the structure, principles of operation and functional capabilities of the breadboard model of SIDRA compact satellite-borne instrument. SIDRA is intended for monitoring fluxes of high-energy charged particles under outer-space conditions. We present the reasons to develop a particle spectrometer and we list the main objectives to be achieved with the help of this instrument. The paper describes the major specifications of the analog and digital signal processing units of the breadboard model. A specially designed and developed data processing module based on the Actel ProAsic3E A3PE3000 FPGA is presented and compared with the all-in one digital processing signal board based on the Xilinx Spartan 3 XC3S1500 FPGA. Представлено структурна схема, принципи роботи i функцiональнi можливостi лабораторного макету компактного супутникового приладу SIDRA, призначеного для монiторингу потокiв заряджених частинок високих енергiй у космiчному просторi. Обґрунтовується необхiднiсть розробки спектрометру частинок й наводиться перелiк актуальних здач, що можуть вирiшуватись за допомогою приладу. Представлено основнi характеристики вузлiв аналогової i цифрової обробки сигналiв лабораторного прототипу. Спецiально розроблений i виготовлений модуль обробки даних на основi ПЛIС Actel ProAsic3E A3PE3000 представлений у порiвняннi з унiверсальною платою цифрової обробки сигналiв на основi ПЛIС XilinX Spartan 3 XC3S1500. Представлены структурная схема, принципы работы и функциональные возможности лабораторного макета компактного спутникового прибора SIDRA, предназначенного для мониторинга потоков заряженных частиц высоких энергий в космическом пространстве. Обосновывается необходимость разработки спектрометра частиц и приводится перечень актуальных задач, решаемых с помощью прибора. Представлены основные характеристики узлов аналоговой и цифровой обработок сигналов лабораторного прототипа. Специально разработанный и изготовленный модуль обработки данных на основе ПЛИС Actel ProA- sic3E A3PE3000 представлен в сравнении с универсальной платой цифровой обработки сигналов на основе ПЛИС XilinX Spartan 3 XC3S1500.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111896
citation_txt Functional capabilities of the breadboard model of Sidra satellite-borne instrument / O.V. Dudnik, M. Prieto, E.V. Kurbatov, S. Sanchez, K.G. Titov, J. Sylwester, S. Gburek, P. Podg´orski // Вопросы атомной науки и техники. — 2013. — № 3. — С. 289-296. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT dudnikov functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument
AT prietom functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument
AT kurbatovev functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument
AT sanchezs functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument
AT titovkg functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument
AT sylwesterj functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument
AT gbureks functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument
AT podgorskip functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument
AT dudnikov funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra
AT prietom funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra
AT kurbatovev funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra
AT sanchezs funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra
AT titovkg funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra
AT sylwesterj funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra
AT gbureks funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra
AT podgorskip funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra
AT dudnikov funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra
AT prietom funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra
AT kurbatovev funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra
AT sanchezs funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra
AT titovkg funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra
AT sylwesterj funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra
AT gbureks funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra
AT podgorskip funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra
first_indexed 2025-11-25T22:33:20Z
last_indexed 2025-11-25T22:33:20Z
_version_ 1850566702815772672
fulltext FUNCTIONAL CAPABILITIES OF THE BREADBOARD MODEL OF SIDRA SATELLITE-BORNE INSTRUMENT O.V. Dudnik1∗, M. Prieto2, E.V. Kurbatov1, S. Sanchez2, K.G. Titov1, J. Sylwester3, S. Gburek3, P. Podgórski3 1V.N. Karazin Kharkov National University, Svobody Square, 4, 61022 Kharkov, Ukraine, E-mail: Oleksiy.V.Dudnik@univer.kharkov.ua; 2Space Research Group, Alcala University, Alcala de Henares, Spain, E-mail: mpm@aut.uah.es, sebastian.sanchez@uah.es, pablo.parra@uah.es; 3Solar Physics Division, Space Research Center, Kopernika str., 11, 51-622, Wroclaw, Poland, E-mail: js@cbk.pan.wroc.pl, sg@cbk.pan.wroc.pl, pp@cbk.pan.wroc.pl (Received February 22, 2013) This paper presents the structure, principles of operation and functional capabilities of the breadboard model of SIDRA compact satellite-borne instrument. SIDRA is intended for monitoring fluxes of high-energy charged particles under outer-space conditions. We present the reasons to develop a particle spectrometer and we list the main objectives to be achieved with the help of this instrument. The paper describes the major specifications of the analog and digital signal processing units of the breadboard model. A specially designed and developed data processing module based on the Actel ProAsic3E A3PE3000 FPGA is presented and compared with the all-in one digital processing signal board based on the Xilinx Spartan 3 XC3S1500 FPGA. PACS: 29.30.Aj, 94.80.+g, 29.40.Wk, 29.85.Ca 1. INTRODUCTION In the process of designing vehicle-borne equipment, engineers apply different methods for protecting the electronic and optical elements against the adverse effects of charged radiation. Despite this effort, news about failures of space vehicle devices or systems is continued to be received. For example, according to the GOES-15 geostationary satellite data, star sen- sors of the “Venus-Express” space probe were subject to the impact of charged radiation enhanced fluxes as a result of a solar flare on March 7, 2012. The decision taken by the Flight Control Group of the European Space Agency was to temporarily with- draw the sensors from operation and to maintain the spacecraft orientation with the help of gyroscopes [1]. Even more hurtful conditions may be encoun- tered if the satellite is in a interplanetary mission, going into orbits close to the Sun like Solar Orbiter [2] or Interhelioprobe [3]. The mission trajectory will inevitably cross the CME (coronal mass ejections, once per 24h on average) and Solar Energetic Par- ticle (SEP) clouds (once per week or month depend- ing on the level of solar activity). During crossing, very high density of energetic particles, higher than in the magnetosphere, may cause damage to the in- struments on board. These examples prove the need to provide for continuous monitoring of radiation en- vironment in the outer near-Earth space with the aid of specialized instruments. The experimental data on solar corona X-rays, which were obtained with the use of scientific equip- ment installed on some low Earth orbit satellites, contained information concerned with energy particle fluxes below Earth radiation belts and in the region of South Atlantic Anomaly (SAA)[4-6]. This was due to the fact that X-ray sensing elements are sensitive to secondary electromagnetic radiation resulting from interaction between space-origin primary electrons and space vehicle structural materials [7]. Hence, planning further scientific experiments to study vari- ations of electromagnetic background and its sepa- rate lines in energy range 1...100 keV, not only in the solar corona, but also close to planets that have magnetic fields, calls for attendant continuous regis- tration of high-energy particle fluxes. Miniaturized SIDRA-type particle detector [8] would be very use- ful for interplanetary missions, to support the X-ray instruments like ChemiX [9]. SIDRA would allow saving resources of such instruments and help to un- derstand the particle-induced signal in the X-ray de- tectors. In recent years new detecting systems used to record charged particle fluxes have been developed at a fast rate. In particular, application of organic scin- ∗Corresponding author E-mail address: Oleksiy.V.Dudnik@univer.kharkov.ua ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85). Series: Nuclear Physics Investigations (60), p.289-296. 289 tillators based on p-terphenyl or stilbene, involving registration of light flashes, with use of silicon photo multipliers [10-12] as part of the unit of instrument detectors, will allow to reduce the number of layers in the telescopic system, when compared with the use of semiconductor detectors only. Highly integrated elec- tronic systems for digital signal processing, such as microprocessors and Field-Programmable Gate Ar- ray (FPGA) enable to engineer sufficiently simple and, at the same time, quite efficient small-size in- struments and devices intended for recording and transmitting data on fluxes of particles of different sorts and energies. This paper describes the principles of operation of the analog and digital signals processing modules of the SIDRA (Space Instrument for Determination of RAdiation environment) prototype, SIDRA’s con- ceptual design is described in [13-16]. Electrical pa- rameters of the modules, comparative characteristics of the all-in-one digital signal processing board GR- XC3S-1500, and the special-design board SRG-A3P- v2 based on the ProAsic3E A3PE3000 FPGA are pre- sented. 2. SCIENTIFIC PROBLEMS SOLVABLE WITH USE OF SIDRA INSTRUMENT Joint analysis of the data obtained with the help of solar X-ray spectrophotometer SphinX and satellite- borne telescope of electrons and protons STEP-F, which were engineered by the Space Research Cen- ter of the Polish Academy of Sciences, and V.N. Karazin Kharkiv National University, respectively, and mounted on the board of the “CORONAS- Photon” satellite, showed a material difference in the characteristics of energy electron spectra in the re- gion of the SAA, of the outer and inner radiation belts [17]. There is evidence that even in the case of weak geomagnetic storms at small altitudes there can be observed two inner electron radiation belts of the Earth [18]. In this case, the energy spectrum of the extra inner belt is considerably softer than the main spectrum. In addition, electron beams below the ra- diation belts at an altitude of ∼ 550 km bear an ex- pressed anisotropic character as compared to nearly isotropic distribution of particle fluxes in the SAA re- gions at similar altitudes. However, the above results were obtained during a quiet solar period within a short time and need to be given a more precise defin- ition and confirmation. Considering this fact, further study of dynamics of fluxes and energy electron spec- tra continues to be critical. The nature of generation of electron micro-bursts in low and subequatorial latitudes below the Earth radiation belts, at altitudes of several hundreds kilo- meters from the Earth surface, remains practically unexplored. Thus, in August, 2009, the instrument STEP-F installed on board of “CORONAS-Photon” spacecraft recorded tens- and thousand-fold intensi- fication of electrons, having energy up to ∼ 0.5 MeV in the form of short-time micro-bursts. Such micro- bursts were observed in those zones of the magne- tosphere where they were not expected to be found on the models of distribution of charged radiation, i.e. in low latitudes and close to the equator in the areas being far from SAA. Illustrated in Fig. 1 is the time dependence of density of electron fluxes, with energies Ee=0.18...0.51 MeV, at an altitude of ∼ 550 km, on August 9, 2009, during the time period from 09h:25m to 09h:58m of the Universal Time, Coor- dinated (UTC), with a time resolution of 2 s. The green line denotes geographical latitudes of the satel- liteґs position when it moves. As it can be seen in Figure 1, during the period between two pass- ing of the inner radiation belt in the Southern and Northern hemispheres, in the satellite orbit ascend- ing node, the STEP-F instrument, when passing low-latitude and subequatorial zones, recorded in- tensive bursts of fluxes of electrons, having energies Ee=0.18...0.51 MeV. The maximum amplitudes of the bursts were comparable to the particle flux den- sity in the inner belt and were mainly recorded in low latitudes of the Northern hemisphere. Fig.1. Time dependence of electron flux density on August 9, 2009 with temporal resolution of 2 s, in the orbit ascending node, based on data of STEP-F in- strument on board of “CORONAS-Photon” satellite. Right-hand scale of axis Y – geographical latitude of satellite position (green curve) With the consideration of the extremely low, con- stant level of solar X-ray emission and absence of geo- magnetic activity at the time of measurements shown in Fig. 1, we postulate that such uncommon behavior of electrons might have been caused by an increased seismic activity and, in particular, by the earthquake of 7.1 magnitude near Japan at 10h:55m UTC, hav- ing coordinates of 330 northern latitude and 1380 east longitude. To confirm this assumption and identify what are the reasons for the generation of intensive bursts of precipitating electrons in low latitudes and in the equatorial zone, there must be conducted fur- ther satellite experiments, involving a decrease in the lower energy registration threshold from Ee=180 keV to the minimum possible energy threshold. 290 3. INSTRUMENT COMPONENTS AND FUNCTIONAL UNITS The designed and implemented instrument bread- board model [19] is shown in Fig. 2. The detector head is a telescopic structure consisting of 3 high- resistance silicon PIN-detectors of different thick- nesses and an organic scintillation detector that has low values of effective charge and density. Located directly below the detector head is an analog signal processing module. The module consists of 3 single- type channels, comprising low-noise charge-sensitive preamplifiers (CSA), shaping amplifiers (ShA), scal- ing amplifiers (SCA), programmable-adjusted gain coefficients, as well as an separated ShA-based chan- nel. Additionally, the 1st, 2nd and 3rd signal process- ing channels comprise sample and hold circuits (S/H), as well fast-response analog-to-digital converters (ADCs). The principal tasks fulfilled by the sig- nal digital processing module are the collection and primary processing of digital data provided by the ADCs, the identification of particles and their en- ergies, and finally the transmission of the scientific data to the on-board computer [20]. Fig.2. General view of SIDRA instrument model The secondary power module is located in the lower part of the instrument and is designed as two identi- cal semi-sets assembled on a common printed circuit board. The module operates in a «cold redundant» configuration. That is, only the semi-set that pro- vides all secondary power supplies is connected to the on-board source of 18...36 V primary power. The other semi-set is disconnected, thus allowing the extension of the operational active time of the in- strument. Protecting circuits are provided in both primary and secondary supply modules. The con- nected semi-set is selected by sending an appropriate telecommand. The status of all secondary voltage of both semi-sets is included in the satellite’s telemetry system. 4. DETECTOR HEAD AND ANALOG SIGNAL PROCESSING MODULE The detector head PIN-detectors are made of super- purity silicon and were produced on a special or- der by Micron Semiconductor, Ltd∗. They are pro- tected against direct sun rays and low-energy mag- netospheric particles and interplanetary plasma with ∼ 20 µm-thick aluminum foil. Such level of protec- tion provides a threshold of Ee ≈40 keV for the low energy electrons. Fig. 3 shows a general view of the detector head and silicon detectors enclosed in their mechanical cases. Fig. 4 shows the energy spectra of conver- sion electrons from β-radioactive source 207Bi, which are recorded by means of detectors D2 and D3 with the use of conventional laboratory equipment under normal temperature and humidity conditions. The spectra demonstrate rather high effectiveness of data- recording for the maximum energy of Ee=1048 keV. Fig.3. General view of detector head and silicon PIN-detectors Fig.4. Energy spectra of β-radioactive source 207Bi, which were recorded by detectors D2 and D3, having thickness values of 1mm and 1.5mm respectively ∗http://www.micronsemiconductor.co.uk 291 Table 1. SCSA sensitivity and ranges of recorded energies in respect of three values of gain coefficients G of scaling amplifiers, depending on feedback capacity Cf of CSA CSA Shaper, U=25...3600 mV Cf , pF SCSA, Emax at Uout=3.6V, ∆E at G1=1, ∆E at G2=10, ∆E at G3=25, mV/MeV MeV MeV MeV MeV 1 44.2 81.3 0.56...81.3 0.06...8.1 0.02...3.25 2 22.1 163 1.13...163 0.11...16.3 0.05...6.5 3 14.8 244 1.7...244 0.17...24.4 0.07...9.8 4.3 10.3 350 2.4...350 0.24...35 0.1...14.0 5.1 8.7 414 2.9...414 0.29...41.4 0.12...16.6 6.8 6.5 553 3.8...553 0.38...55.3 0.15...22.1 10 4.4 813 5.6...813 0.56...81.3 0.23...32.5 In respect of detector D3, the data-recording ef- fectiveness is higher than in respect of D2. This is due to the larger thickness of the former and, conse- quently, a larger quantity of electrons that are com- pletely stopped. The good energy resolution rang- ing from ∆E=14 keV to ∆E=17 keV in respect of electrons, having energies Ee=0.4...1 MeV, allows to construct the SIDRA instrument as a charged parti- cle energy spectrometer providing an energy quanti- zation step of ∆E ≥ 20 keV. The charge-sensitive preamplifiers are based on broadband operational amplifiers. They include a feedback circuit where the feedback capacitance Cf determines the CSA sensitivity SCSA, which is ex- pressed in units mV/MeV. Table 1 presents the values of SCSA and maximum possible recorded energies of particles at CSA outputs, depending on value Cf in those cases where CSA maximum output voltage is equal to Uout = 3.6 V. The shaping amplifiers are based on an active band-pass filter together with baseline restoration cir- cuits that function efficiently with the pulse repeti- tion rate being up to f=250 kHz. The ShA gain coef- ficient is equal to 1. The scaling amplifiers can modify the gain coeffi- cients of the analog spectrometric channels by send- ing the appropriate commands from the on-board computer. In this case, the range of energies being recorded is changed. The ranges of recorded parti- cle energies for three arbitrary values of gain coeffi- cients of the scaling amplifier (G1, G2, G3) are pre- sented in Table 1. The range of output voltage val- ues U=25...3600 mV corresponds to the linear part of characteristic Uout=f(Uin) of the S/H circuits of the analog signal processing spectrometric channels. The shaped pulse width amounts to ∼2.1 µs at level of 0.1 Umax, where Umax is the maximum amplitude of the output signals. The sample and hold circuit has an extensive range of duration of signals for holding, low distor- tions, and allowing a maximum count rate up to f=600 kHz. The slew rate of peak detector signals is W1,2,3=8.1 V/µs. Each channel of the analog signal processing mod- ule has a test input that allows injecting test charge at the CSA input and observe the output signal of the shapers and peak detectors on the oscilloscope during the process of instrument adjustment. 5. DIGITAL SIGNAL PROCESSING MODULE The diagram of Fig. 5 shows the main components of the digital signal processing module. It includes the FPGA that contains the LEON2 soft-processor, a software test debugging port, interfaces intended for connection with analog electronic equipment and on-board data collection subsystems. For the development of the first prototype of the digital electronics module, and in order to reduce time and cost, a commercial version of the GR-XC3S- 1500 board was used. This board was engineered by «Aeroflex Gaisler† and «Pender electronic design GmbH»‡ companies. The software tools were writ- ten in C++ programming language and loaded via the RTEMS real-time operating system. The soft- ware enables to carry out routine data analysis in such a manner that a type of particle, its energy and flux density can be identified. Those requirements cause the microprocessor to perform a sequence of mathematical operations in real time. The digital electronics prototype provides the two main input/output interfaces, the interface used for connection with the personal computer for debug- ging and testing purposes, and the interface used for connection with the analog electronic module. The computer interface is a 10/100 Mbit/s Ethernet link. Using the Ethernet port, the computer receives and stores the telemetry data generated by the instrument (scientific information and status data). It also sends commands and configures the instrument according to a chosen mode of operation. For operating the in- strument, provisions are made to allow remote con- trol in those cases where the instrument is connected to the Internet network. The main functions associ- ated to the interface with the analog signal processing module are to collect data from the high-speed ADCs †http//www.gaisler.com ‡http://www.pender.ch 292 and to analyze the S/H statuses. The later signals are used in the process of assessment of particle sorts in the real-time. Finally, some parameters of the analog electronics units can be adjusted, such as gain coef- ficients of the scaling amplifiers and discrimination threshold levels. Fig.5. Block-scheme of the digital signal processing module of SIDRA instrument prototype Fig.6. General view of the SRG-A3P-v2 signal digi- tal processing board of SIDRA instrument prototype Fig.7. View of the SidraRawView.exe program interface for reception and presentation of data in digital and graphic formats 293 Table 2. Comparative characteristics of the digital signal processing boards for SIDRA breadboard models Board SRG-A3P-v2 GR-XC3S-1500 FPGA manufacturer Microsemi SoC Products Group (former Actel) Xilinx FPGA type ProAsic3E A3PE3000-FG484 Spartan 3 XC3S1500 4FG456 Main characteristics of FPGA Number of system gates 3 000 000 1 500 000 Number of logic cells 75 264 29 952 RAM, kbit 504 576 Flash ROM, bit 1 024 No Maximal number of user I/O lines 341 333 Maximal clock rate, MHz 350 300 Input voltage,V +5 +5 Secondary voltages on the board, V +3,3; +2,5; +1,5 +3,3; +2,5; +1,2 Clock oscilator friquencies, MHz 50; 25 50; 25 Memory ROM Flash 8 Mbytes Flash 8 Mbytes RAM 64 Mbytes PC-133 compatible 64 Mbytes PC-133 compatible RAM expansion capacity Up to 64 Mbytes x 64 bit on SODIMM-144 No Interfaces RS-232 UARTs 2 2 RS-422 UARTs 4 No Ethernet 10/100 Mbit 10/100 Mbit SpaceWire 2 x LVDS No CAN bus 1 Dual No USB 2.0 No 1 ADC AD7472 No User input-output lines Number of differential lines 12 (LVDS (2,5V)) 12 (LVDS (2,5V)) Number of general -purpose lines 60 (LVTTL/LVCMOS (3.3V)) 60 (LVTTL/LVCMOS (3.3V)) Communication lins with comple- mentary periphery No 1 port 16 bit LVTTL/LVCMOS (3.3V) Maximal line frequency, MHz 66 66 Dimensions, mm 100 x 160 100 x 160 Recomended soft CPU cores Leon 2/3 is supported Leon 4 Leon 2/3 is supported Leon 4 The next stage of the development of the signal digital processing module involved the design of a new original board known as SRG-A3P-v2, which is plug-compatible with the above-mentioned GR- XC3S-1500 board. Figure 6 presents a general view of the SRG-A3P-v2 board. The major distinctive feature of the new board is the use of the Actel ProAsic3E A3PE3000 FPGA instead of Xilinx Spar- tan 3 XC3S1500 FPGA. Presented in Table 2 are the comparative characteristics of both digital signal processing boards. The advantages of the SRG-A3P- v2 board over an extensive range of parameters are evident. The software tools to collect data and transmit to the control compute were developed in the C++ programming language. The SidraRawView.exe pro- gram is able to display data in real time, thus aiding in detecting anomalies in the data collection process. The main interface window of the SidraRawView program is shown in Fig.7. As it can be seen, a user can send telecommands, receive and monitor raw data, using only this interface window. CONCLUSIONS The breadboard model of the SIDRA compact single- unit instrument manufactured to monitor charged high-energy particles under outer-space conditions has been presented. The measured parameters of the solid-state detectors and the analog signal processing module allow to use the instrument for the registra- tion of fluxes and energy spectra of electrons, protons and nuclei of light elements. The initial use of the GR-XC3S-1500 board manufactured by the compa- nies “Aeroflex Gaisler” and “Pender electronic design GmbH” in standard EuroCard form factor, including a Xilinx Spartan 3 FPGA and LEON2 soft-processor, allowed the prototyping of the data digital process- ing module. It also enabled to optimize the design and development of a new board based on the Ac- tel ProAsic3E A3PE3000 FPGA. Based on it, the new laboratory model of the single-unit compact in- strument, features small overall dimensions and low power consumption properties. 294 The work was carried out with the support of the Science-and-Technology Center in Ukraine, Grant No. 3542, University of Alcala, Grant No. CCG08- UAH/ESP-3991, and Ministry of Science and Inno- vations in Spain, Grant No. ESP2005-07290-C02-02. References 1. O.V.Dudnik, M.Prieto, E.V.Kurbatov, S. Sanchez, T.G.Timakova, K.G.Titov, P. Parra. A Small-Sized Device for Monitoring of High- Energy Electrons and Nuclei in the Outer Space // Space Scie. Technol. 2012, v. 18, N6, p. 22-34 (in Russian). 2. W.I. Axford, E.Marsch, V.N.Oraevsky, V.D.Kuznetsov, T.K.Breus, et al. Space mission for exploration of the Sun, Mercury and inner heliosphere ("InterHelios") // Adv. Space Res. 1998, v. 21, N1-2, p. 275–289. 3. V.D.Kuznetsov, V.N.Oraevsky. Polar-Ecliptic Patrol (PEP) for Solar Studies and Monitoring of Space Weather // Journ. British Interplane- tary Soc. 2002, v. 55, N11-12, p. 398-403. 4. A.S.Glyanenko, Yu.D.Kotov, A.V.Pavlov, A.I. Arkhangelsky, V.T. Samoilenko, V.N.Yurov, V.M.Pankov, S.P.Ryumin. The AVS-F exper- iment on recording rapidly changing fluxes of cosmic and gamma radiation prepared under the CORONAS-F project // Instrum. Exper. Tech. 2009, v. 42, N5, p. 596–603. 5. I.V.Arkhangelskaja, D.B.Amandjolova, A.I. Arkhangelsky, Yu.D.Kotov. Features of quasi-stationary precipitations according to the data obtained with the AVS-F instrument onboard the CORONAS-F satellite // Solar Syst. Res. 2008, v. 42, N6, p. 536–542. 6. O.V.Dudnik, P. Podgorski, J. Sylwester, S.Gburek, M.Kowalinski, M. Siarkowski, S. Plocieniak, J. Bakala. Investigation of Elec- tron Belts in the Earth’s Magnetosphere with the Help of X-ray Spectrophotometer SphinX and Satellite Telescope of Electrons and Protons STEP-F: Preliminary Results // Space Scie. Technol. 2011, v. 17, N4, p. 14-25 (in Russian). 7. O.V.Dudnik, P. Podgorski, J. Sylwester, S.Gburek, M.Kowalinski, M. Siarkowski, S. Plocieniak, and J. Bakala. X-Ray Spectropho- tometer SphinX and Particle Spectrometer STEP-F of the Satellite Experiment CORONAS- PHOTON. Preliminary Results of the Joint Data Analysis // Solar Syst. Res. 2012, v. 46, N2, p. 160–169. 8. O.V.Dudnik, V.K.Persikov, E.V.Kurbatov, Yu.D.Kotov, V.N.Yurov. Principles of elab- oration for particle analyzer SIDRA of the "Solar monitor" project // Scientific session of National Research Nuclear University "Moscow Engineering Physics Institute-2011". Moscow, Russia. Abstracts. v. 2 "Fundamental problems of the science", p. 115 (in Russian). 9. J. Sylwester, J. Bakala, P. Podgórski, M.Kowaliński, Z.Kordylewski, S.Gburek, et al. ChemiX – New generation solar soft X-ray Bragg spectrometer // in Proc. of workshop "INTERHELIOPROBE Project. Tarusa, 11–13 May 2011". Moscow, IZMIRAN, Russia, Ed. V.D.Kuznetsov, p. 52-64 (in Russian). 10. D.Renker. Geiger-mode avalanche photodiodes, history, properties and problems // Nucl. In- strum. Meth. A.2006, v.567, iss. 1, p. 48-56. 11. A.Vacheret, G.J. Barker, M.Dziewiecki, P.Guzowski, M.D.Haigh, B.Hartfiel, A. Izmaylov, et. al. Characterization and simulation of the response of Multi-Pixel Photon Counters to low light levels // Nucl. Instrum. Meth. A. 2011, v. 656, iss. 1, p. 69-83. 12. S.Korpar. Status and perspectives of solid state photon detectors // Nucl. Instrum. Meth. A. 2011, v. 639, iss. 1, p. 88-93. 13. O.V.Dotsenko, O.V.Dudnik, D.Meziat, M.Prieto. Concept of application of the SIDRA instrument to ensure safe operation of a satellite // 9th Ukrainian Conf. on space research. Crimea, Ukraine. Abstracts, 2009, p. 76. 14. O.V.Dudnik, D.Meziat, M.Prieto. The concept of compact on-board instrument for measure- ments of particle fluxes and dose rates // Sci- entific Session of Moscow Engineering Physics Institute-2009, Moscow, Russia, Abstracts. 2009, v. 2. p. 151 (in Russian). 15. O.V.Dudnik, V.V.Bilogub, E.V.Kurbatov, et. al. Compact on-board instrument SIDRA for measurement of particle fluxes and dose rates – concept and first model // 9th Ukrainian Conf. on space research. Crimea, Ukraine. Abstracts, 2009, p. 78. 16. O.V.Dudnik, M.Prieto, E.V.Kurbatov, S. Sanchez, T.G.Timakova, V.N.Dubina, P. Parra. First concept of compact instrument SIDRA for measurements of particle fluxes in the space // Journ. of Kharkiv University, phys. series "Nuclei, Particles, Fields". 2011, v. 969, iss. 3(51), p. 62-66. 17. P. Podgorski, O.V.Dudnik, J. Sylwester, S.Gburek, M.Kowalinski, M. Siarkowski, S. Plocieniak, J. Bakala. Joint analysis of SphinX and STEP-F instruments data on magne- tospheric electron flux dynamics at low Earth orbit // 39th Scientific Assembly of the Com- mittee on Space Research, July 14-22, 2012. 295 Mysore, India. Abstracts. Panel PSW.3: "Space Weather Data: Observations and Exploitation for Research and Applications". STW-C-119 PSW.3-0028-12. p. 112. 18. OleksiyDudnik. Unexpected behavior of subrel- ativistic electron fluxes under Earth radiation belts // 4th Int. workshop HEPPA/SOLARIS- 2012, 9-12 October 2012. Boulder, Colorado, USA. Abstract book, p. 15. 19. O.V.Dudnik, S. Sanchez, M.Prieto, E.V.Kurbatov, T.G.Timakova, V.N.Dubina, P. Parra. Onboard instrument SIDRA prototype for measurements of radiation environment in the space // 39th Scientific Assembly of the Committee on Space Research. July 14-22, 2012. Mysore, India. Abstracts. Session H0.3: “Technical Development of Instrumentation for Current Missions”, STW-B-153 H0.3-0023-12, p. 106. 20. M.Prieto, D.Guzman, J.I. Garcia, et. al. Control Unit of the SIDRA Scientific Instrument // Proc. of 9th Conf. “Jornadas de Computacion Reconfig- urable y Aplicaciones”. Alcala de Henares, Spain. 2009, p. 475-484. ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ ЛАБОРАТОРНОГО МАКЕТА СПУТНИКОВОГО ПРИБОРА SIDRA А.В.Дудник, М.Прето, Е.В.Курбатов, С.Санчез, К.Г.Титов, Я.Сильвестер, Ш.Гбурек, П.Подгурски Представлены структурная схема, принципы работы и функциональные возможности лабораторного макета компактного спутникового прибора SIDRA, предназначенного для мониторинга потоков заряженных частиц высоких энергий в космическом пространстве. Обосновывается необходимость разработки спектрометра частиц и приводится перечень актуальных задач, решаемых с помощью прибора. Представлены основные характеристики узлов аналоговой и цифровой обработок сигналов лабораторного прототипа. Специально разработанный и изготовленный модуль обработки данных на основе ПЛИС Actel ProA- sic3E A3PE3000 представлен в сравнении с универсальной платой цифровой обработки сигналов на основе ПЛИС XilinX Spartan 3 XC3S1500. ФУНКЦIОНАЛЬНI МОЖЛИВОСТI ЛАБОРАТОРНОГО МАКЕТУ СУПУТНИКОВОГО ПРИЛАДУ SIDRA О.В.Дудник, М.Прєто, Є.В.Курбатов, С.Санчез, К.Г.Тiтов, Я.Сiльвестер, Ш.Гбурек, П.Подгурскi Представлено структурна схема, принципи роботи i функцiональнi можливостi лабораторного маке- ту компактного супутникового приладу SIDRA, призначеного для монiторингу потокiв заряджених частинок високих енергiй у космiчному просторi. Обґрунтовується необхiднiсть розробки спектромет- ру частинок й наводиться перелiк актуальних здач, що можуть вирiшуватись за допомогою приладу. Представлено основнi характеристики вузлiв аналогової i цифрової обробки сигналiв лабораторно- го прототипу. Спецiально розроблений i виготовлений модуль обробки даних на основi ПЛIС Actel ProAsic3E A3PE3000 представлений у порiвняннi з унiверсальною платою цифрової обробки сигналiв на основi ПЛIС XilinX Spartan 3 XC3S1500. 296