Functional capabilities of the breadboard model of Sidra satellite-borne instrument
This paper presents the structure, principles of operation and functional capabilities of the breadboard model of SIDRA compact satellite-borne instrument. SIDRA is intended for monitoring fluxes of high-energy charged particles under outer-space conditions. We present the reasons to develop a parti...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2013 |
| Hauptverfasser: | , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/111896 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Functional capabilities of the breadboard model of Sidra satellite-borne instrument / O.V. Dudnik, M. Prieto, E.V. Kurbatov, S. Sanchez, K.G. Titov, J. Sylwester, S. Gburek, P. Podg´orski // Вопросы атомной науки и техники. — 2013. — № 3. — С. 289-296. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-111896 |
|---|---|
| record_format |
dspace |
| spelling |
Dudnik, O.V. Prieto, M. Kurbatov, E.V. Sanchez, S. Titov, K.G. Sylwester, J. Gburek, S. Podg´orski, P. 2017-01-15T14:35:42Z 2017-01-15T14:35:42Z 2013 Functional capabilities of the breadboard model of Sidra satellite-borne instrument / O.V. Dudnik, M. Prieto, E.V. Kurbatov, S. Sanchez, K.G. Titov, J. Sylwester, S. Gburek, P. Podg´orski // Вопросы атомной науки и техники. — 2013. — № 3. — С. 289-296. — Бібліогр.: 20 назв. — англ. 1562-6016 PACS: 29.30.Aj, 94.80.+g, 29.40.Wk, 29.85.Ca https://nasplib.isofts.kiev.ua/handle/123456789/111896 This paper presents the structure, principles of operation and functional capabilities of the breadboard model of SIDRA compact satellite-borne instrument. SIDRA is intended for monitoring fluxes of high-energy charged particles under outer-space conditions. We present the reasons to develop a particle spectrometer and we list the main objectives to be achieved with the help of this instrument. The paper describes the major specifications of the analog and digital signal processing units of the breadboard model. A specially designed and developed data processing module based on the Actel ProAsic3E A3PE3000 FPGA is presented and compared with the all-in one digital processing signal board based on the Xilinx Spartan 3 XC3S1500 FPGA. Представлено структурна схема, принципи роботи i функцiональнi можливостi лабораторного макету компактного супутникового приладу SIDRA, призначеного для монiторингу потокiв заряджених частинок високих енергiй у космiчному просторi. Обґрунтовується необхiднiсть розробки спектрометру частинок й наводиться перелiк актуальних здач, що можуть вирiшуватись за допомогою приладу. Представлено основнi характеристики вузлiв аналогової i цифрової обробки сигналiв лабораторного прототипу. Спецiально розроблений i виготовлений модуль обробки даних на основi ПЛIС Actel ProAsic3E A3PE3000 представлений у порiвняннi з унiверсальною платою цифрової обробки сигналiв на основi ПЛIС XilinX Spartan 3 XC3S1500. Представлены структурная схема, принципы работы и функциональные возможности лабораторного макета компактного спутникового прибора SIDRA, предназначенного для мониторинга потоков заряженных частиц высоких энергий в космическом пространстве. Обосновывается необходимость разработки спектрометра частиц и приводится перечень актуальных задач, решаемых с помощью прибора. Представлены основные характеристики узлов аналоговой и цифровой обработок сигналов лабораторного прототипа. Специально разработанный и изготовленный модуль обработки данных на основе ПЛИС Actel ProA- sic3E A3PE3000 представлен в сравнении с универсальной платой цифровой обработки сигналов на основе ПЛИС XilinX Spartan 3 XC3S1500. The work was carried out with the support of the Science-and-Technology Center in Ukraine, Grant No. 3542, University of Alcala, Grant No. CCG08-UAH/ESP-3991, and Ministry of Science and Innovations in Spain, Grant No. ESP2005-07290-C02-02. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Вычислительные и модельные системы Functional capabilities of the breadboard model of Sidra satellite-borne instrument Функцiональнi можливостi лабораторного макету супутникового приладу Sidra Функциональные возможности лабораторного макета спутникового прибора Sidra Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Functional capabilities of the breadboard model of Sidra satellite-borne instrument |
| spellingShingle |
Functional capabilities of the breadboard model of Sidra satellite-borne instrument Dudnik, O.V. Prieto, M. Kurbatov, E.V. Sanchez, S. Titov, K.G. Sylwester, J. Gburek, S. Podg´orski, P. Вычислительные и модельные системы |
| title_short |
Functional capabilities of the breadboard model of Sidra satellite-borne instrument |
| title_full |
Functional capabilities of the breadboard model of Sidra satellite-borne instrument |
| title_fullStr |
Functional capabilities of the breadboard model of Sidra satellite-borne instrument |
| title_full_unstemmed |
Functional capabilities of the breadboard model of Sidra satellite-borne instrument |
| title_sort |
functional capabilities of the breadboard model of sidra satellite-borne instrument |
| author |
Dudnik, O.V. Prieto, M. Kurbatov, E.V. Sanchez, S. Titov, K.G. Sylwester, J. Gburek, S. Podg´orski, P. |
| author_facet |
Dudnik, O.V. Prieto, M. Kurbatov, E.V. Sanchez, S. Titov, K.G. Sylwester, J. Gburek, S. Podg´orski, P. |
| topic |
Вычислительные и модельные системы |
| topic_facet |
Вычислительные и модельные системы |
| publishDate |
2013 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Функцiональнi можливостi лабораторного макету супутникового приладу Sidra Функциональные возможности лабораторного макета спутникового прибора Sidra |
| description |
This paper presents the structure, principles of operation and functional capabilities of the breadboard model of SIDRA compact satellite-borne instrument. SIDRA is intended for monitoring fluxes of high-energy charged particles under outer-space conditions. We present the reasons to develop a particle spectrometer and we list the main objectives to be achieved with the help of this instrument. The paper describes the major specifications of the analog and digital signal processing units of the breadboard model. A specially designed and developed data processing module based on the Actel ProAsic3E A3PE3000 FPGA is presented and compared with the all-in one digital processing signal board based on the Xilinx Spartan 3 XC3S1500 FPGA.
Представлено структурна схема, принципи роботи i функцiональнi можливостi лабораторного макету компактного супутникового приладу SIDRA, призначеного для монiторингу потокiв заряджених частинок високих енергiй у космiчному просторi. Обґрунтовується необхiднiсть розробки спектрометру частинок й наводиться перелiк актуальних здач, що можуть вирiшуватись за допомогою приладу. Представлено основнi характеристики вузлiв аналогової i цифрової обробки сигналiв лабораторного прототипу. Спецiально розроблений i виготовлений модуль обробки даних на основi ПЛIС Actel ProAsic3E A3PE3000 представлений у порiвняннi з унiверсальною платою цифрової обробки сигналiв на основi ПЛIС XilinX Spartan 3 XC3S1500.
Представлены структурная схема, принципы работы и функциональные возможности лабораторного макета компактного спутникового прибора SIDRA, предназначенного для мониторинга потоков заряженных частиц высоких энергий в космическом пространстве. Обосновывается необходимость разработки спектрометра частиц и приводится перечень актуальных задач, решаемых с помощью прибора. Представлены основные характеристики узлов аналоговой и цифровой обработок сигналов лабораторного прототипа. Специально разработанный и изготовленный модуль обработки данных на основе ПЛИС Actel ProA- sic3E A3PE3000 представлен в сравнении с универсальной платой цифровой обработки сигналов на основе ПЛИС XilinX Spartan 3 XC3S1500.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/111896 |
| citation_txt |
Functional capabilities of the breadboard model of Sidra satellite-borne instrument / O.V. Dudnik, M. Prieto, E.V. Kurbatov, S. Sanchez, K.G. Titov, J. Sylwester, S. Gburek, P. Podg´orski // Вопросы атомной науки и техники. — 2013. — № 3. — С. 289-296. — Бібліогр.: 20 назв. — англ. |
| work_keys_str_mv |
AT dudnikov functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument AT prietom functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument AT kurbatovev functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument AT sanchezs functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument AT titovkg functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument AT sylwesterj functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument AT gbureks functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument AT podgorskip functionalcapabilitiesofthebreadboardmodelofsidrasatelliteborneinstrument AT dudnikov funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra AT prietom funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra AT kurbatovev funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra AT sanchezs funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra AT titovkg funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra AT sylwesterj funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra AT gbureks funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra AT podgorskip funkcionalʹnimožlivostilaboratornogomaketusuputnikovogopriladusidra AT dudnikov funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra AT prietom funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra AT kurbatovev funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra AT sanchezs funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra AT titovkg funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra AT sylwesterj funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra AT gbureks funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra AT podgorskip funkcionalʹnyevozmožnostilaboratornogomaketasputnikovogopriborasidra |
| first_indexed |
2025-11-25T22:33:20Z |
| last_indexed |
2025-11-25T22:33:20Z |
| _version_ |
1850566702815772672 |
| fulltext |
FUNCTIONAL CAPABILITIES OF THE BREADBOARD
MODEL OF SIDRA SATELLITE-BORNE INSTRUMENT
O.V. Dudnik1∗, M. Prieto2, E.V. Kurbatov1, S. Sanchez2, K.G. Titov1,
J. Sylwester3, S. Gburek3, P. Podgórski3
1V.N. Karazin Kharkov National University, Svobody Square, 4, 61022 Kharkov, Ukraine,
E-mail: Oleksiy.V.Dudnik@univer.kharkov.ua;
2Space Research Group, Alcala University, Alcala de Henares, Spain,
E-mail: mpm@aut.uah.es, sebastian.sanchez@uah.es, pablo.parra@uah.es;
3Solar Physics Division, Space Research Center, Kopernika str., 11, 51-622, Wroclaw, Poland,
E-mail: js@cbk.pan.wroc.pl, sg@cbk.pan.wroc.pl, pp@cbk.pan.wroc.pl
(Received February 22, 2013)
This paper presents the structure, principles of operation and functional capabilities of the breadboard model of
SIDRA compact satellite-borne instrument. SIDRA is intended for monitoring fluxes of high-energy charged particles
under outer-space conditions. We present the reasons to develop a particle spectrometer and we list the main
objectives to be achieved with the help of this instrument. The paper describes the major specifications of the analog
and digital signal processing units of the breadboard model. A specially designed and developed data processing
module based on the Actel ProAsic3E A3PE3000 FPGA is presented and compared with the all-in one digital
processing signal board based on the Xilinx Spartan 3 XC3S1500 FPGA.
PACS: 29.30.Aj, 94.80.+g, 29.40.Wk, 29.85.Ca
1. INTRODUCTION
In the process of designing vehicle-borne equipment,
engineers apply different methods for protecting the
electronic and optical elements against the adverse
effects of charged radiation. Despite this effort, news
about failures of space vehicle devices or systems is
continued to be received. For example, according to
the GOES-15 geostationary satellite data, star sen-
sors of the “Venus-Express” space probe were subject
to the impact of charged radiation enhanced fluxes
as a result of a solar flare on March 7, 2012. The
decision taken by the Flight Control Group of the
European Space Agency was to temporarily with-
draw the sensors from operation and to maintain the
spacecraft orientation with the help of gyroscopes
[1]. Even more hurtful conditions may be encoun-
tered if the satellite is in a interplanetary mission,
going into orbits close to the Sun like Solar Orbiter
[2] or Interhelioprobe [3]. The mission trajectory will
inevitably cross the CME (coronal mass ejections,
once per 24h on average) and Solar Energetic Par-
ticle (SEP) clouds (once per week or month depend-
ing on the level of solar activity). During crossing,
very high density of energetic particles, higher than
in the magnetosphere, may cause damage to the in-
struments on board. These examples prove the need
to provide for continuous monitoring of radiation en-
vironment in the outer near-Earth space with the aid
of specialized instruments.
The experimental data on solar corona X-rays,
which were obtained with the use of scientific equip-
ment installed on some low Earth orbit satellites,
contained information concerned with energy particle
fluxes below Earth radiation belts and in the region
of South Atlantic Anomaly (SAA)[4-6]. This was due
to the fact that X-ray sensing elements are sensitive
to secondary electromagnetic radiation resulting from
interaction between space-origin primary electrons
and space vehicle structural materials [7]. Hence,
planning further scientific experiments to study vari-
ations of electromagnetic background and its sepa-
rate lines in energy range 1...100 keV, not only in
the solar corona, but also close to planets that have
magnetic fields, calls for attendant continuous regis-
tration of high-energy particle fluxes. Miniaturized
SIDRA-type particle detector [8] would be very use-
ful for interplanetary missions, to support the X-ray
instruments like ChemiX [9]. SIDRA would allow
saving resources of such instruments and help to un-
derstand the particle-induced signal in the X-ray de-
tectors.
In recent years new detecting systems used to
record charged particle fluxes have been developed at
a fast rate. In particular, application of organic scin-
∗Corresponding author E-mail address: Oleksiy.V.Dudnik@univer.kharkov.ua
ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85).
Series: Nuclear Physics Investigations (60), p.289-296.
289
tillators based on p-terphenyl or stilbene, involving
registration of light flashes, with use of silicon photo
multipliers [10-12] as part of the unit of instrument
detectors, will allow to reduce the number of layers in
the telescopic system, when compared with the use of
semiconductor detectors only. Highly integrated elec-
tronic systems for digital signal processing, such as
microprocessors and Field-Programmable Gate Ar-
ray (FPGA) enable to engineer sufficiently simple
and, at the same time, quite efficient small-size in-
struments and devices intended for recording and
transmitting data on fluxes of particles of different
sorts and energies.
This paper describes the principles of operation
of the analog and digital signals processing modules
of the SIDRA (Space Instrument for Determination
of RAdiation environment) prototype, SIDRA’s con-
ceptual design is described in [13-16]. Electrical pa-
rameters of the modules, comparative characteristics
of the all-in-one digital signal processing board GR-
XC3S-1500, and the special-design board SRG-A3P-
v2 based on the ProAsic3E A3PE3000 FPGA are pre-
sented.
2. SCIENTIFIC PROBLEMS
SOLVABLE WITH USE OF SIDRA
INSTRUMENT
Joint analysis of the data obtained with the help of
solar X-ray spectrophotometer SphinX and satellite-
borne telescope of electrons and protons STEP-F,
which were engineered by the Space Research Cen-
ter of the Polish Academy of Sciences, and V.N.
Karazin Kharkiv National University, respectively,
and mounted on the board of the “CORONAS-
Photon” satellite, showed a material difference in the
characteristics of energy electron spectra in the re-
gion of the SAA, of the outer and inner radiation
belts [17]. There is evidence that even in the case of
weak geomagnetic storms at small altitudes there can
be observed two inner electron radiation belts of the
Earth [18]. In this case, the energy spectrum of the
extra inner belt is considerably softer than the main
spectrum. In addition, electron beams below the ra-
diation belts at an altitude of ∼ 550 km bear an ex-
pressed anisotropic character as compared to nearly
isotropic distribution of particle fluxes in the SAA re-
gions at similar altitudes. However, the above results
were obtained during a quiet solar period within a
short time and need to be given a more precise defin-
ition and confirmation. Considering this fact, further
study of dynamics of fluxes and energy electron spec-
tra continues to be critical.
The nature of generation of electron micro-bursts
in low and subequatorial latitudes below the Earth
radiation belts, at altitudes of several hundreds kilo-
meters from the Earth surface, remains practically
unexplored. Thus, in August, 2009, the instrument
STEP-F installed on board of “CORONAS-Photon”
spacecraft recorded tens- and thousand-fold intensi-
fication of electrons, having energy up to ∼ 0.5 MeV
in the form of short-time micro-bursts. Such micro-
bursts were observed in those zones of the magne-
tosphere where they were not expected to be found
on the models of distribution of charged radiation,
i.e. in low latitudes and close to the equator in the
areas being far from SAA.
Illustrated in Fig. 1 is the time dependence
of density of electron fluxes, with energies
Ee=0.18...0.51 MeV, at an altitude of ∼ 550 km,
on August 9, 2009, during the time period from
09h:25m to 09h:58m of the Universal Time, Coor-
dinated (UTC), with a time resolution of 2 s. The
green line denotes geographical latitudes of the satel-
liteґs position when it moves. As it can be seen
in Figure 1, during the period between two pass-
ing of the inner radiation belt in the Southern and
Northern hemispheres, in the satellite orbit ascend-
ing node, the STEP-F instrument, when passing
low-latitude and subequatorial zones, recorded in-
tensive bursts of fluxes of electrons, having energies
Ee=0.18...0.51 MeV. The maximum amplitudes of
the bursts were comparable to the particle flux den-
sity in the inner belt and were mainly recorded in
low latitudes of the Northern hemisphere.
Fig.1. Time dependence of electron flux density on
August 9, 2009 with temporal resolution of 2 s, in the
orbit ascending node, based on data of STEP-F in-
strument on board of “CORONAS-Photon” satellite.
Right-hand scale of axis Y – geographical latitude of
satellite position (green curve)
With the consideration of the extremely low, con-
stant level of solar X-ray emission and absence of geo-
magnetic activity at the time of measurements shown
in Fig. 1, we postulate that such uncommon behavior
of electrons might have been caused by an increased
seismic activity and, in particular, by the earthquake
of 7.1 magnitude near Japan at 10h:55m UTC, hav-
ing coordinates of 330 northern latitude and 1380 east
longitude. To confirm this assumption and identify
what are the reasons for the generation of intensive
bursts of precipitating electrons in low latitudes and
in the equatorial zone, there must be conducted fur-
ther satellite experiments, involving a decrease in the
lower energy registration threshold from Ee=180 keV
to the minimum possible energy threshold.
290
3. INSTRUMENT COMPONENTS AND
FUNCTIONAL UNITS
The designed and implemented instrument bread-
board model [19] is shown in Fig. 2. The detector
head is a telescopic structure consisting of 3 high-
resistance silicon PIN-detectors of different thick-
nesses and an organic scintillation detector that has
low values of effective charge and density. Located
directly below the detector head is an analog signal
processing module. The module consists of 3 single-
type channels, comprising low-noise charge-sensitive
preamplifiers (CSA), shaping amplifiers (ShA), scal-
ing amplifiers (SCA), programmable-adjusted gain
coefficients, as well as an separated ShA-based chan-
nel. Additionally, the 1st, 2nd and 3rd signal process-
ing channels comprise sample and hold circuits (S/H),
as well fast-response analog-to-digital converters
(ADCs). The principal tasks fulfilled by the sig-
nal digital processing module are the collection and
primary processing of digital data provided by the
ADCs, the identification of particles and their en-
ergies, and finally the transmission of the scientific
data to the on-board computer [20].
Fig.2. General view of SIDRA instrument model
The secondary power module is located in the lower
part of the instrument and is designed as two identi-
cal semi-sets assembled on a common printed circuit
board. The module operates in a «cold redundant»
configuration. That is, only the semi-set that pro-
vides all secondary power supplies is connected to
the on-board source of 18...36 V primary power. The
other semi-set is disconnected, thus allowing the
extension of the operational active time of the in-
strument. Protecting circuits are provided in both
primary and secondary supply modules. The con-
nected semi-set is selected by sending an appropriate
telecommand. The status of all secondary voltage of
both semi-sets is included in the satellite’s telemetry
system.
4. DETECTOR HEAD AND ANALOG
SIGNAL PROCESSING MODULE
The detector head PIN-detectors are made of super-
purity silicon and were produced on a special or-
der by Micron Semiconductor, Ltd∗. They are pro-
tected against direct sun rays and low-energy mag-
netospheric particles and interplanetary plasma with
∼ 20 µm-thick aluminum foil. Such level of protec-
tion provides a threshold of Ee ≈40 keV for the low
energy electrons.
Fig. 3 shows a general view of the detector head
and silicon detectors enclosed in their mechanical
cases. Fig. 4 shows the energy spectra of conver-
sion electrons from β-radioactive source 207Bi, which
are recorded by means of detectors D2 and D3 with
the use of conventional laboratory equipment under
normal temperature and humidity conditions. The
spectra demonstrate rather high effectiveness of data-
recording for the maximum energy of Ee=1048 keV.
Fig.3. General view of detector head and silicon
PIN-detectors
Fig.4. Energy spectra of β-radioactive source 207Bi,
which were recorded by detectors D2 and D3, having
thickness values of 1mm and 1.5mm respectively
∗http://www.micronsemiconductor.co.uk
291
Table 1. SCSA sensitivity and ranges of recorded energies in respect of three values of gain
coefficients G of scaling amplifiers, depending on feedback capacity Cf of CSA
CSA Shaper, U=25...3600 mV
Cf , pF SCSA, Emax at Uout=3.6V, ∆E at G1=1, ∆E at G2=10, ∆E at G3=25,
mV/MeV MeV MeV MeV MeV
1 44.2 81.3 0.56...81.3 0.06...8.1 0.02...3.25
2 22.1 163 1.13...163 0.11...16.3 0.05...6.5
3 14.8 244 1.7...244 0.17...24.4 0.07...9.8
4.3 10.3 350 2.4...350 0.24...35 0.1...14.0
5.1 8.7 414 2.9...414 0.29...41.4 0.12...16.6
6.8 6.5 553 3.8...553 0.38...55.3 0.15...22.1
10 4.4 813 5.6...813 0.56...81.3 0.23...32.5
In respect of detector D3, the data-recording ef-
fectiveness is higher than in respect of D2. This is
due to the larger thickness of the former and, conse-
quently, a larger quantity of electrons that are com-
pletely stopped. The good energy resolution rang-
ing from ∆E=14 keV to ∆E=17 keV in respect of
electrons, having energies Ee=0.4...1 MeV, allows to
construct the SIDRA instrument as a charged parti-
cle energy spectrometer providing an energy quanti-
zation step of ∆E ≥ 20 keV.
The charge-sensitive preamplifiers are based on
broadband operational amplifiers. They include a
feedback circuit where the feedback capacitance Cf
determines the CSA sensitivity SCSA, which is ex-
pressed in units mV/MeV. Table 1 presents the values
of SCSA and maximum possible recorded energies of
particles at CSA outputs, depending on value Cf in
those cases where CSA maximum output voltage is
equal to Uout = 3.6 V.
The shaping amplifiers are based on an active
band-pass filter together with baseline restoration cir-
cuits that function efficiently with the pulse repeti-
tion rate being up to f=250 kHz. The ShA gain coef-
ficient is equal to 1.
The scaling amplifiers can modify the gain coeffi-
cients of the analog spectrometric channels by send-
ing the appropriate commands from the on-board
computer. In this case, the range of energies being
recorded is changed. The ranges of recorded parti-
cle energies for three arbitrary values of gain coeffi-
cients of the scaling amplifier (G1, G2, G3) are pre-
sented in Table 1. The range of output voltage val-
ues U=25...3600 mV corresponds to the linear part of
characteristic Uout=f(Uin) of the S/H circuits of the
analog signal processing spectrometric channels. The
shaped pulse width amounts to ∼2.1 µs at level of 0.1
Umax, where Umax is the maximum amplitude of the
output signals.
The sample and hold circuit has an extensive
range of duration of signals for holding, low distor-
tions, and allowing a maximum count rate up to
f=600 kHz. The slew rate of peak detector signals
is W1,2,3=8.1 V/µs.
Each channel of the analog signal processing mod-
ule has a test input that allows injecting test charge
at the CSA input and observe the output signal of
the shapers and peak detectors on the oscilloscope
during the process of instrument adjustment.
5. DIGITAL SIGNAL PROCESSING
MODULE
The diagram of Fig. 5 shows the main components
of the digital signal processing module. It includes
the FPGA that contains the LEON2 soft-processor,
a software test debugging port, interfaces intended
for connection with analog electronic equipment and
on-board data collection subsystems.
For the development of the first prototype of the
digital electronics module, and in order to reduce
time and cost, a commercial version of the GR-XC3S-
1500 board was used. This board was engineered
by «Aeroflex Gaisler† and «Pender electronic design
GmbH»‡ companies. The software tools were writ-
ten in C++ programming language and loaded via
the RTEMS real-time operating system. The soft-
ware enables to carry out routine data analysis in
such a manner that a type of particle, its energy and
flux density can be identified. Those requirements
cause the microprocessor to perform a sequence of
mathematical operations in real time.
The digital electronics prototype provides the two
main input/output interfaces, the interface used for
connection with the personal computer for debug-
ging and testing purposes, and the interface used for
connection with the analog electronic module. The
computer interface is a 10/100 Mbit/s Ethernet link.
Using the Ethernet port, the computer receives and
stores the telemetry data generated by the instrument
(scientific information and status data). It also sends
commands and configures the instrument according
to a chosen mode of operation. For operating the in-
strument, provisions are made to allow remote con-
trol in those cases where the instrument is connected
to the Internet network. The main functions associ-
ated to the interface with the analog signal processing
module are to collect data from the high-speed ADCs
†http//www.gaisler.com
‡http://www.pender.ch
292
and to analyze the S/H statuses. The later signals are
used in the process of assessment of particle sorts in
the real-time. Finally, some parameters of the analog
electronics units can be adjusted, such as gain coef-
ficients of the scaling amplifiers and discrimination
threshold levels.
Fig.5. Block-scheme of the digital signal processing
module of SIDRA instrument prototype
Fig.6. General view of the SRG-A3P-v2 signal digi-
tal processing board of SIDRA instrument prototype
Fig.7. View of the SidraRawView.exe program interface for reception and presentation of data in digital
and graphic formats
293
Table 2. Comparative characteristics of the digital signal processing boards for SIDRA breadboard models
Board SRG-A3P-v2 GR-XC3S-1500
FPGA manufacturer Microsemi SoC Products
Group (former Actel)
Xilinx
FPGA type ProAsic3E A3PE3000-FG484 Spartan 3 XC3S1500 4FG456
Main characteristics of FPGA
Number of system gates 3 000 000 1 500 000
Number of logic cells 75 264 29 952
RAM, kbit 504 576
Flash ROM, bit 1 024 No
Maximal number of user I/O lines 341 333
Maximal clock rate, MHz 350 300
Input voltage,V +5 +5
Secondary voltages on the board, V +3,3; +2,5; +1,5 +3,3; +2,5; +1,2
Clock oscilator friquencies, MHz 50; 25 50; 25
Memory
ROM Flash 8 Mbytes Flash 8 Mbytes
RAM 64 Mbytes PC-133 compatible 64 Mbytes PC-133 compatible
RAM expansion capacity Up to 64 Mbytes x 64 bit on
SODIMM-144
No
Interfaces
RS-232 UARTs 2 2
RS-422 UARTs 4 No
Ethernet 10/100 Mbit 10/100 Mbit
SpaceWire 2 x LVDS No
CAN bus 1 Dual No
USB 2.0 No 1
ADC AD7472 No
User input-output lines
Number of differential lines 12 (LVDS (2,5V)) 12 (LVDS (2,5V))
Number of general -purpose lines 60 (LVTTL/LVCMOS (3.3V)) 60 (LVTTL/LVCMOS (3.3V))
Communication lins with comple-
mentary periphery
No 1 port 16 bit LVTTL/LVCMOS
(3.3V)
Maximal line frequency, MHz 66 66
Dimensions, mm 100 x 160 100 x 160
Recomended soft CPU cores Leon 2/3 is supported Leon 4 Leon 2/3 is supported Leon 4
The next stage of the development of the signal
digital processing module involved the design of a
new original board known as SRG-A3P-v2, which
is plug-compatible with the above-mentioned GR-
XC3S-1500 board. Figure 6 presents a general view
of the SRG-A3P-v2 board. The major distinctive
feature of the new board is the use of the Actel
ProAsic3E A3PE3000 FPGA instead of Xilinx Spar-
tan 3 XC3S1500 FPGA. Presented in Table 2 are
the comparative characteristics of both digital signal
processing boards. The advantages of the SRG-A3P-
v2 board over an extensive range of parameters are
evident.
The software tools to collect data and transmit
to the control compute were developed in the C++
programming language. The SidraRawView.exe pro-
gram is able to display data in real time, thus aiding
in detecting anomalies in the data collection process.
The main interface window of the SidraRawView
program is shown in Fig.7. As it can be seen, a
user can send telecommands, receive and monitor
raw data, using only this interface window.
CONCLUSIONS
The breadboard model of the SIDRA compact single-
unit instrument manufactured to monitor charged
high-energy particles under outer-space conditions
has been presented. The measured parameters of the
solid-state detectors and the analog signal processing
module allow to use the instrument for the registra-
tion of fluxes and energy spectra of electrons, protons
and nuclei of light elements. The initial use of the
GR-XC3S-1500 board manufactured by the compa-
nies “Aeroflex Gaisler” and “Pender electronic design
GmbH” in standard EuroCard form factor, including
a Xilinx Spartan 3 FPGA and LEON2 soft-processor,
allowed the prototyping of the data digital process-
ing module. It also enabled to optimize the design
and development of a new board based on the Ac-
tel ProAsic3E A3PE3000 FPGA. Based on it, the
new laboratory model of the single-unit compact in-
strument, features small overall dimensions and low
power consumption properties.
294
The work was carried out with the support of
the Science-and-Technology Center in Ukraine, Grant
No. 3542, University of Alcala, Grant No. CCG08-
UAH/ESP-3991, and Ministry of Science and Inno-
vations in Spain, Grant No. ESP2005-07290-C02-02.
References
1. O.V.Dudnik, M.Prieto, E.V.Kurbatov,
S. Sanchez, T.G.Timakova, K.G.Titov, P. Parra.
A Small-Sized Device for Monitoring of High-
Energy Electrons and Nuclei in the Outer Space
// Space Scie. Technol. 2012, v. 18, N6, p. 22-34
(in Russian).
2. W.I. Axford, E.Marsch, V.N.Oraevsky,
V.D.Kuznetsov, T.K.Breus, et al. Space
mission for exploration of the Sun, Mercury and
inner heliosphere ("InterHelios") // Adv. Space
Res. 1998, v. 21, N1-2, p. 275–289.
3. V.D.Kuznetsov, V.N.Oraevsky. Polar-Ecliptic
Patrol (PEP) for Solar Studies and Monitoring
of Space Weather // Journ. British Interplane-
tary Soc. 2002, v. 55, N11-12, p. 398-403.
4. A.S.Glyanenko, Yu.D.Kotov, A.V.Pavlov,
A.I. Arkhangelsky, V.T. Samoilenko, V.N.Yurov,
V.M.Pankov, S.P.Ryumin. The AVS-F exper-
iment on recording rapidly changing fluxes of
cosmic and gamma radiation prepared under the
CORONAS-F project // Instrum. Exper. Tech.
2009, v. 42, N5, p. 596–603.
5. I.V.Arkhangelskaja, D.B.Amandjolova,
A.I. Arkhangelsky, Yu.D.Kotov. Features of
quasi-stationary precipitations according to
the data obtained with the AVS-F instrument
onboard the CORONAS-F satellite // Solar
Syst. Res. 2008, v. 42, N6, p. 536–542.
6. O.V.Dudnik, P. Podgorski, J. Sylwester,
S.Gburek, M.Kowalinski, M. Siarkowski,
S. Plocieniak, J. Bakala. Investigation of Elec-
tron Belts in the Earth’s Magnetosphere with
the Help of X-ray Spectrophotometer SphinX
and Satellite Telescope of Electrons and Protons
STEP-F: Preliminary Results // Space Scie.
Technol. 2011, v. 17, N4, p. 14-25 (in Russian).
7. O.V.Dudnik, P. Podgorski, J. Sylwester,
S.Gburek, M.Kowalinski, M. Siarkowski,
S. Plocieniak, and J. Bakala. X-Ray Spectropho-
tometer SphinX and Particle Spectrometer
STEP-F of the Satellite Experiment CORONAS-
PHOTON. Preliminary Results of the Joint Data
Analysis // Solar Syst. Res. 2012, v. 46, N2,
p. 160–169.
8. O.V.Dudnik, V.K.Persikov, E.V.Kurbatov,
Yu.D.Kotov, V.N.Yurov. Principles of elab-
oration for particle analyzer SIDRA of the
"Solar monitor" project // Scientific session of
National Research Nuclear University "Moscow
Engineering Physics Institute-2011". Moscow,
Russia. Abstracts. v. 2 "Fundamental problems
of the science", p. 115 (in Russian).
9. J. Sylwester, J. Bakala, P. Podgórski,
M.Kowaliński, Z.Kordylewski, S.Gburek,
et al. ChemiX – New generation solar soft X-ray
Bragg spectrometer // in Proc. of workshop
"INTERHELIOPROBE Project. Tarusa, 11–13
May 2011". Moscow, IZMIRAN, Russia, Ed.
V.D.Kuznetsov, p. 52-64 (in Russian).
10. D.Renker. Geiger-mode avalanche photodiodes,
history, properties and problems // Nucl. In-
strum. Meth. A.2006, v.567, iss. 1, p. 48-56.
11. A.Vacheret, G.J. Barker, M.Dziewiecki,
P.Guzowski, M.D.Haigh, B.Hartfiel,
A. Izmaylov, et. al. Characterization and
simulation of the response of Multi-Pixel Photon
Counters to low light levels // Nucl. Instrum.
Meth. A. 2011, v. 656, iss. 1, p. 69-83.
12. S.Korpar. Status and perspectives of solid state
photon detectors // Nucl. Instrum. Meth. A.
2011, v. 639, iss. 1, p. 88-93.
13. O.V.Dotsenko, O.V.Dudnik, D.Meziat,
M.Prieto. Concept of application of the
SIDRA instrument to ensure safe operation
of a satellite // 9th Ukrainian Conf. on space
research. Crimea, Ukraine. Abstracts, 2009,
p. 76.
14. O.V.Dudnik, D.Meziat, M.Prieto. The concept
of compact on-board instrument for measure-
ments of particle fluxes and dose rates // Sci-
entific Session of Moscow Engineering Physics
Institute-2009, Moscow, Russia, Abstracts. 2009,
v. 2. p. 151 (in Russian).
15. O.V.Dudnik, V.V.Bilogub, E.V.Kurbatov, et.
al. Compact on-board instrument SIDRA for
measurement of particle fluxes and dose rates –
concept and first model // 9th Ukrainian Conf.
on space research. Crimea, Ukraine. Abstracts,
2009, p. 78.
16. O.V.Dudnik, M.Prieto, E.V.Kurbatov,
S. Sanchez, T.G.Timakova, V.N.Dubina,
P. Parra. First concept of compact instrument
SIDRA for measurements of particle fluxes in
the space // Journ. of Kharkiv University, phys.
series "Nuclei, Particles, Fields". 2011, v. 969,
iss. 3(51), p. 62-66.
17. P. Podgorski, O.V.Dudnik, J. Sylwester,
S.Gburek, M.Kowalinski, M. Siarkowski,
S. Plocieniak, J. Bakala. Joint analysis of SphinX
and STEP-F instruments data on magne-
tospheric electron flux dynamics at low Earth
orbit // 39th Scientific Assembly of the Com-
mittee on Space Research, July 14-22, 2012.
295
Mysore, India. Abstracts. Panel PSW.3: "Space
Weather Data: Observations and Exploitation
for Research and Applications". STW-C-119
PSW.3-0028-12. p. 112.
18. OleksiyDudnik. Unexpected behavior of subrel-
ativistic electron fluxes under Earth radiation
belts // 4th Int. workshop HEPPA/SOLARIS-
2012, 9-12 October 2012. Boulder, Colorado,
USA. Abstract book, p. 15.
19. O.V.Dudnik, S. Sanchez, M.Prieto,
E.V.Kurbatov, T.G.Timakova, V.N.Dubina,
P. Parra. Onboard instrument SIDRA prototype
for measurements of radiation environment
in the space // 39th Scientific Assembly of
the Committee on Space Research. July 14-22,
2012. Mysore, India. Abstracts. Session H0.3:
“Technical Development of Instrumentation for
Current Missions”, STW-B-153 H0.3-0023-12,
p. 106.
20. M.Prieto, D.Guzman, J.I. Garcia, et. al. Control
Unit of the SIDRA Scientific Instrument // Proc.
of 9th Conf. “Jornadas de Computacion Reconfig-
urable y Aplicaciones”. Alcala de Henares, Spain.
2009, p. 475-484.
ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ ЛАБОРАТОРНОГО МАКЕТА
СПУТНИКОВОГО ПРИБОРА SIDRA
А.В.Дудник, М.Прето, Е.В.Курбатов, С.Санчез, К.Г.Титов,
Я.Сильвестер, Ш.Гбурек, П.Подгурски
Представлены структурная схема, принципы работы и функциональные возможности лабораторного
макета компактного спутникового прибора SIDRA, предназначенного для мониторинга потоков заряженных
частиц высоких энергий в космическом пространстве. Обосновывается необходимость разработки
спектрометра частиц и приводится перечень актуальных задач, решаемых с помощью прибора. Представлены
основные характеристики узлов аналоговой и цифровой обработок сигналов лабораторного прототипа.
Специально разработанный и изготовленный модуль обработки данных на основе ПЛИС Actel ProA-
sic3E A3PE3000 представлен в сравнении с универсальной платой цифровой обработки сигналов на
основе ПЛИС XilinX Spartan 3 XC3S1500.
ФУНКЦIОНАЛЬНI МОЖЛИВОСТI ЛАБОРАТОРНОГО МАКЕТУ
СУПУТНИКОВОГО ПРИЛАДУ SIDRA
О.В.Дудник, М.Прєто, Є.В.Курбатов, С.Санчез, К.Г.Тiтов,
Я.Сiльвестер, Ш.Гбурек, П.Подгурскi
Представлено структурна схема, принципи роботи i функцiональнi можливостi лабораторного маке-
ту компактного супутникового приладу SIDRA, призначеного для монiторингу потокiв заряджених
частинок високих енергiй у космiчному просторi. Обґрунтовується необхiднiсть розробки спектромет-
ру частинок й наводиться перелiк актуальних здач, що можуть вирiшуватись за допомогою приладу.
Представлено основнi характеристики вузлiв аналогової i цифрової обробки сигналiв лабораторно-
го прототипу. Спецiально розроблений i виготовлений модуль обробки даних на основi ПЛIС Actel
ProAsic3E A3PE3000 представлений у порiвняннi з унiверсальною платою цифрової обробки сигналiв
на основi ПЛIС XilinX Spartan 3 XC3S1500.
296
|