Wakefield excitation and electron acceleration at detuning bunch repetition frequency and frequency of eigen principal mode of wakefield

Theoretical results of process of the wake field excitation in the dielectric waveguide by sequence of relativistic bunches in the presence of detuning between the bunch repetition frequency and the frequency of the fundamental wave waveguide. In this case the wake waves radiated by individual bunch...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2013
Автори: Balakirev, V.A., Onishchenko, I.N., Tolstoluzhsky, A.P.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/111930
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Wakefield excitation and electron acceleration at detuning bunch repetition frequency and frequency of eigen principal mode of wakefield / V.A. Balakirev, I.N. Onishchenko, A.P. Tolstoluzhsky // Вопросы атомной науки и техники. — 2013. — № 4. — С. 80-83. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111930
record_format dspace
spelling Balakirev, V.A.
Onishchenko, I.N.
Tolstoluzhsky, A.P.
2017-01-15T16:37:42Z
2017-01-15T16:37:42Z
2013
Wakefield excitation and electron acceleration at detuning bunch repetition frequency and frequency of eigen principal mode of wakefield / V.A. Balakirev, I.N. Onishchenko, A.P. Tolstoluzhsky // Вопросы атомной науки и техники. — 2013. — № 4. — С. 80-83. — Бібліогр.: 11 назв. — англ.
1562-6016
PACS: 41.75.Jv, 41.75.Lx, 41.75.Ht, 96.50.Pw
https://nasplib.isofts.kiev.ua/handle/123456789/111930
Theoretical results of process of the wake field excitation in the dielectric waveguide by sequence of relativistic bunches in the presence of detuning between the bunch repetition frequency and the frequency of the fundamental wave waveguide. In this case the wake waves radiated by individual bunches, there is the phase shift, and, beginning with some number of the bunch, the phase shift will be. The polarity of the field is changed and the subsequent bunches gain energy. Energy spectra of accelerated (decelerated) particles are obtained.
Викладено результати теоретичних досліджень процесу збудження кільватерного поля в діелектричному хвилеводі послідовністю релятивістських згустків при наявності розстройки між частотою проходження згустків і частотою основної хвилі хвилеводу. У цьому випадку для кільватерних хвиль, випромінюваних окремими згустками, виникає набіг фази і, починаючи з деякого номера згустку, набіг фази складе π . Змінюється полярність поля і наступні згустки набирають енергію. Отримані енергетичні спектри прискорених (уповільнених) частинок.
Изложены результаты теоретических исследований процесса возбуждения кильватерного поля в диэлектрическом волноводе последовательностью релятивистских сгустков при наличии расстройки между частотой следования сгустков и частотой основной волны волновода. В этом случае для кильватерных волн, излучаемых отдельными сгустками, возникает набег фазы и, начиная с некоторого номера сгустка, набег фазы составит π . Изменяется полярность поля и последующие сгустки набирают энергию. Получены энергетические спектры ускоренных (замедленных) частиц.
This work was supported by the US Department of Energy/NNSA through the Global Initiatives for Proliferation Prevention (GIPP) Program in Partnership with the Science and Technology Center in Ukraine (Project ANL-T2-247-UA and STCU Agreement P522).
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Новые методы ускорения заряженных частиц
Wakefield excitation and electron acceleration at detuning bunch repetition frequency and frequency of eigen principal mode of wakefield
Збудження кільватерного поля і прискорення електронів за наявності розстройки частоти слідування згустків і частоти основної власної кільватерної хвилі
Возбуждение кильватерного поля и ускорение электронов при наличии расстройки частоты следования сгустков и частоты основной собственной кильватерной волны
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Wakefield excitation and electron acceleration at detuning bunch repetition frequency and frequency of eigen principal mode of wakefield
spellingShingle Wakefield excitation and electron acceleration at detuning bunch repetition frequency and frequency of eigen principal mode of wakefield
Balakirev, V.A.
Onishchenko, I.N.
Tolstoluzhsky, A.P.
Новые методы ускорения заряженных частиц
title_short Wakefield excitation and electron acceleration at detuning bunch repetition frequency and frequency of eigen principal mode of wakefield
title_full Wakefield excitation and electron acceleration at detuning bunch repetition frequency and frequency of eigen principal mode of wakefield
title_fullStr Wakefield excitation and electron acceleration at detuning bunch repetition frequency and frequency of eigen principal mode of wakefield
title_full_unstemmed Wakefield excitation and electron acceleration at detuning bunch repetition frequency and frequency of eigen principal mode of wakefield
title_sort wakefield excitation and electron acceleration at detuning bunch repetition frequency and frequency of eigen principal mode of wakefield
author Balakirev, V.A.
Onishchenko, I.N.
Tolstoluzhsky, A.P.
author_facet Balakirev, V.A.
Onishchenko, I.N.
Tolstoluzhsky, A.P.
topic Новые методы ускорения заряженных частиц
topic_facet Новые методы ускорения заряженных частиц
publishDate 2013
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Збудження кільватерного поля і прискорення електронів за наявності розстройки частоти слідування згустків і частоти основної власної кільватерної хвилі
Возбуждение кильватерного поля и ускорение электронов при наличии расстройки частоты следования сгустков и частоты основной собственной кильватерной волны
description Theoretical results of process of the wake field excitation in the dielectric waveguide by sequence of relativistic bunches in the presence of detuning between the bunch repetition frequency and the frequency of the fundamental wave waveguide. In this case the wake waves radiated by individual bunches, there is the phase shift, and, beginning with some number of the bunch, the phase shift will be. The polarity of the field is changed and the subsequent bunches gain energy. Energy spectra of accelerated (decelerated) particles are obtained. Викладено результати теоретичних досліджень процесу збудження кільватерного поля в діелектричному хвилеводі послідовністю релятивістських згустків при наявності розстройки між частотою проходження згустків і частотою основної хвилі хвилеводу. У цьому випадку для кільватерних хвиль, випромінюваних окремими згустками, виникає набіг фази і, починаючи з деякого номера згустку, набіг фази складе π . Змінюється полярність поля і наступні згустки набирають енергію. Отримані енергетичні спектри прискорених (уповільнених) частинок. Изложены результаты теоретических исследований процесса возбуждения кильватерного поля в диэлектрическом волноводе последовательностью релятивистских сгустков при наличии расстройки между частотой следования сгустков и частотой основной волны волновода. В этом случае для кильватерных волн, излучаемых отдельными сгустками, возникает набег фазы и, начиная с некоторого номера сгустка, набег фазы составит π . Изменяется полярность поля и последующие сгустки набирают энергию. Получены энергетические спектры ускоренных (замедленных) частиц.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111930
citation_txt Wakefield excitation and electron acceleration at detuning bunch repetition frequency and frequency of eigen principal mode of wakefield / V.A. Balakirev, I.N. Onishchenko, A.P. Tolstoluzhsky // Вопросы атомной науки и техники. — 2013. — № 4. — С. 80-83. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT balakirevva wakefieldexcitationandelectronaccelerationatdetuningbunchrepetitionfrequencyandfrequencyofeigenprincipalmodeofwakefield
AT onishchenkoin wakefieldexcitationandelectronaccelerationatdetuningbunchrepetitionfrequencyandfrequencyofeigenprincipalmodeofwakefield
AT tolstoluzhskyap wakefieldexcitationandelectronaccelerationatdetuningbunchrepetitionfrequencyandfrequencyofeigenprincipalmodeofwakefield
AT balakirevva zbudžennâkílʹvaternogopolâípriskorennâelektronívzanaâvnostírozstroikičastotislíduvannâzgustkívíčastotiosnovnoívlasnoíkílʹvaternoíhvilí
AT onishchenkoin zbudžennâkílʹvaternogopolâípriskorennâelektronívzanaâvnostírozstroikičastotislíduvannâzgustkívíčastotiosnovnoívlasnoíkílʹvaternoíhvilí
AT tolstoluzhskyap zbudžennâkílʹvaternogopolâípriskorennâelektronívzanaâvnostírozstroikičastotislíduvannâzgustkívíčastotiosnovnoívlasnoíkílʹvaternoíhvilí
AT balakirevva vozbuždeniekilʹvaternogopolâiuskorenieélektronovprinaličiirasstroikičastotysledovaniâsgustkovičastotyosnovnoisobstvennoikilʹvaternoivolny
AT onishchenkoin vozbuždeniekilʹvaternogopolâiuskorenieélektronovprinaličiirasstroikičastotysledovaniâsgustkovičastotyosnovnoisobstvennoikilʹvaternoivolny
AT tolstoluzhskyap vozbuždeniekilʹvaternogopolâiuskorenieélektronovprinaličiirasstroikičastotysledovaniâsgustkovičastotyosnovnoisobstvennoikilʹvaternoivolny
first_indexed 2025-11-26T00:17:51Z
last_indexed 2025-11-26T00:17:51Z
_version_ 1850599643771043840
fulltext ISSN 1562-6016. ВАНТ. 2013. №4(86) 80 WAKEFIELD EXCITATION AND ELECTRON ACCELERATION AT DETUNING BUNCH REPETITION FREQUENCY AND FREQUENCY OF EIGEN PRINCIPAL MODE OF WAKEFIELD V.A. Balakirev, I.N. Onishchenko, A.P. Tolstoluzhsky National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: tolstoluzhsky@kipt.khakov.ua Theoretical results of process of the wake field excitation in the dielectric waveguide by sequence of relativistic bunches in the presence of detuning between the bunch repetition frequency and the frequency of the fundamental wave waveguide. In this case the wake waves radiated by individual bunches, there is the phase shift, and, beginning with some number of the bunch, the phase shift will be. The polarity of the field is changed and the subsequent bunches gain energy. Energy spectra of accelerated (decelerated) particles are obtained. PACS: 41.75.Jv, 41.75.Lx, 41.75.Ht, 96.50.Pw INTRODUCTION Linear accelerators are an effective device for ob- taining sequences of relativistic electron bunches of high quality. Such sequences bunches can be used for excitation of intense wake fields in dielectric waveguide. Wake fields in turn can be used to acceler- ate electrons (positrons). We note that various aspects of the wake fields excitation by relativistic electron bunches are considered in [1-8]. Development of accel- erator based on wakefields excited by a long sequence of bunches is encountered with the physical and techni- cal difficulties associated with the injection of electron bunches in the accelerating phase of the wake field. To solve the problem of injection of accelerated particles the scheme is proposed, in which a separate accelerator- injector is not required. This scheme is based on input of the detuning between the bunch repetition frequency and frequency of the excited eigenmode of the dielectric waveguide. In this case for the wakefield, excited by individual bunches, a phase shift will originate. Begin- ning from certain number of bunches, which is deter- mined by the frequency detuning the phase shift will be accumulated to π and, therefore, the polarity of wake- field is reversed. Subsequent bunches will gain energy. Thus, in this acceleration scheme, using the same se- quence of bunches, one part of bunches moving in the head of the sequence will lose its energy to excite wake- field and another part of bunches beginning from a men- tioned number, will be accelerated. In this paper the results of theoretical investigations of wake field excitation by a sequence of electron bunches and accelerate bunches of the same sequence in the dielectric waveguide in the presence of frequency detuning are presented. 1. STATEMENT OF THE PROBLEM Let’s consider an infinite dielectric waveguide, which is a cylindrical metal tube of radius b , filled with homogeneous dielectric of permittivity ε , having axial vacuum channel of radius a . In the vacuum channel along of the longitudinal axis z a periodic sequence of N axisymmetric relativistic electron bunches with arbi- trary spatial period L propagates. The longitudinal and transverse density profile of bunches are arbitrary. We will find the wakefields in a dielectric waveguide excited by a finite sequence of relativistic electron bunches. In the ultrarelativistic case, when relativistic factor of the electron bunches 0 1γ >> , the motion of electrons in the longitudinal and transverse directions is strongly "frozen." Therefore, at the first step of the in- vestigation the approximation of the “given motion” of bunches. For the taken geometry of the dielectric waveguide and electron bunches the wakefields will be excited as E-type electromagnetic waves. The wakefield excitation in a dielectric waveguide by a sequence of relativistic electron bunches describes by inhomogeneous Maxwell equations. We will solve the problem as follows. Firstly we determine the wakefield of an infinitely thin ring electron bunch with a longitudinal current density 0 0 0 0 0 0 ( ) ( / / ) 2ext r rdj edN t z V z V r δ δ π − = − − − , (1) where 0r − is the radius of the ring, t − is the current time, 0z − is the initial coordinate of the ring bunch, 0V − is the longitudinal velocity, z − is the longitudinal coordinate, e is the electron charge, ( )xδ − is the delta function, 0dN − is the number of particles in the electron ring associated with the current density of the bunch at the dielectric waveguide 0 0 0 0 0 0 0 0 1 ( , )2dN j z r r dr dz eV π= − , (2) 0 0 0( , )j z r is given initial current density electron bunch. The resulting electromagnetic wake field of the bunch of arbitrary axisymmetric form may be obtained by summation (integration over initial longitudinal coordi- nates 0z and initial radii 0r ) wake fields of the elemen- tary ring bunches. 2. WAKE FIELD EXCITATION BY SEQUENCE OF RELATIVISTIC BUNCHES Wakefield of the periodic sequence of thin relativis- tic ring electron bunches with period 0/T L V= is de- termined by direct summation of individual bunch wakefields. The expression for the longitudinal compo- nent of the electric wakefield of a sequence of thin rela- tivistic ring bunches (1) has the form ISSN 1562-6016. ВАНТ. 2013. №4(86) 81 0 0 0 0 0 10 0 0 0 4 ( , ) ( ) ( ) ( ) cos( ( )) ( ), n n n zN n n n n N n m edN F k a k b I r E I r aV D I a mT mT κ κ γ κ ω τ θ τ ∞ ⊥ ⊥ = = = × ′ × − − ∑ ∑ (3) ( ) /nD dD dω ω′ = at nω ω= , nω is the frequencies of dielectric waveguide eigenmodes, 1 0 0 1( ) ( ) ( , ) ( ) ( , )D I a F a b I a F a bκεω κ κ κ κ κ κ κ⊥ ⊥ ⊥ ⊥ ⊥ = − is dispersion equation, functions 0F and 1F are 0 0 0 0 0( , ) ( ) ( ) ( ) ( )n n n n n nF a b J a N b J b N aκ κ κ κ κ κ⊥ ⊥ ⊥ ⊥ ⊥ ⊥= − , 1 1 0 0 1( , ) ( ) ( ) ( ) ( )n n n n n nF a b J a N b J b N aκ κ κ κ κ κ⊥ ⊥ ⊥ ⊥ ⊥ ⊥= − , 2 2 2 0 0 02 0 ( 1), ,n n V V c ωκ β ε β⊥ = − = 2 2 2 2 0 0 n n V ωκ γ = , ε − di- electric constant, 0/t z Vτ = − . Let’s consider the case when the bunch repetition frequency 2 /r Tω π= is close to the fundamental mode frequency 1ω of the dielectric waveguide, i.e. 1α << , 1( ) /r rα ω ω ω= − . Then, for large amount of bunches 1N >> (in our case of the nonequidistant radial modes) the excitation of the only fundamental mode 1n = will be prevail. In such singlemode approximation the ex- pression for the wakefield (3) takes the form 0 0 ( ) Re ,i zm mE E I r e ωτκ −= Λ (4) where 1 exp[ ( 1) ] 1 exp( )m i m i − + Δ Λ = − Δ , sin[( 1) / 2] sin( / 2)m m + Δ Λ = Δ , 2παΔ = , 0E is the wakefield amplitude of separate ring bunch, 1 1,κ κ ω ω≡ ≡ . Factor mΛ describes the interference of the wakefield excited by separate bunches and depends on the frequency detuning. In turn, the function mΛ takes into account the change of am- plitude with the number of bunch in the sequence. In the absence of detuning 0Δ = we have 1m mΛ = + . Wakefield amplitude increases linearly with the number of bunch. Linear growth is due to the coherent summa- tion of wakefields of separate bunches. Dependence mΛ on the number of bunch at small detuning is pre- sented in Fig. 1. At the beginning, linear growth of am- plitude with increasing number of the bunch takes place. Then the amplitude growth diminishes and for bunch with number 1 1 /m π+ = Δ amplitude reaches the maximum value 1 / sin( / 2) 2 /mΛ = Δ ≈ Δ . Further the amplitude begins to decrease and for bunch with number 2 1 2 /m π+ = Δ becames zero, and th picture is periodically repeated. Bunches with numbers up to /m π= Δ increases wakefield due to summation and, therefore, lose its energy. On the other hand the region of slowdown of amplitude wakefield for bunches with number 2 / /mπ πΔ > > Δ contrary take away energy from the wakefield spend its energy on corresponding bunches acceleration. Now we consider the change of the bunch energy with the bunch number m . It is described by the equa- tion sin[ ( 1 / 2)] , 0,1,2,... 2sin( / 2) md m m N d γ ε ζ Δ + = − = Δ , (5) where 2 0/ , / ez L eE L m cζ ε= = , mγ is the relativistic factor. At the exact synchronism condition of the bunches with the fundamental wave (i.e. detuning is absent 0Δ = ) we have instead of (5) the equation / ( 1 / 2)md d mγ ζ ε= − + . The first bunch ( 0m = ) ex- periences the deceleration field, which is equal / 2ε− , the second one 3 / 2ε− , the third one 5 / 2ε− , etc. In the presence of frequency detuning in result of phase shift the polarity of the wakefield will be changed. The proc- ess of deceleration will be replaced by process of bunches acceleration. The graph of function sin[ ( 1 / 2)]mF m= − Δ + , which determines the force sign in the right side of the equation (5), is shown in Fig. 1. Bunches with numbers / 1 ( 1)mπ Δ > > Δ << are decelerated, i.e. / 0sd dγ ζ < . Accordingly, the wakefield amplitude is increased. In turn, bunches with numbers 2 / /mπ πΔ > > Δ gain the energy. The amplitude of the wakefield decreases. Bunch with number max 3 / 2mγ π= Δ has maximum of acceleration rate max / 1 / 1d dγ ζ = Δ >> . Fig. 1. mΛ (red line) and mF (blue line) as functions of bunch number. Frequency detuning α=0.05 Fig. 2 shows the dependence of the longitudinal component of the electric field on the axis upon τ for sequence of 10 infinitely thin ring bunches for the ra- dius of bunches 0,5br a = , 1,44a = cm, radius of the waveguide 4,325b = cm, the permittivity 2,1ε = , bunch energy 4,5bunchE = MeV in the absence of fre- quency detuning α=0 and in its presence α=0.1. For given parameters of the waveguide and the energy of the electron bunches the frequency of the excited fun- damental radial mode is 1 2,804f = GHz. In the reso- nant case (without detuning) Fig. 2 shows a coherent (linear) growth of wakefield with bunch number with its jumps that corresponds to adding excited field of the each next bunch. If detuning α = 0.1 the growth of wakefield after 5-th bunch is changed by its decrease up to zero on 10-th bunch. ISSN 1562-6016. ВАНТ. 2013. №4(86) 82 Fig. 2. Dependence of the longitudinal component Ez of wakefield excited by a sequence of infinitely thin ring bunches upon τ at absence of frequency detuning α=0 (blue line) and its presence α=0.1 (red line) Wakefield of the bunch of arbitrary form and, there- fore, wakefield of the sequence of such bunches can be found by summation of wakefields of elementary thin ring bunches (3). For this in formula (2) we must set the current density of a sequence of bunches at waveguide entrance. Let’s consider wakefield of bunches sequence with rectangular longitudinal and transverse profiles. The expression for the longitudinal component of the electric field excited by a sequence of bunches has the view 1 0 02 1 0 4 2 ( ) ( , ) ( ) ( ), ( ) b n b n n n zN n Nn n n b n n n Q I r a F k a k bE I r Z a r D I a κ κ κ τ κ ω κ ∞ ⊥ ⊥ = = ′∑ 0 ( ) ( ) ( ), N Nn mn m Z Z mTτ τ θ τ = = −∑ (6) sin ( ); 1( ) sin ( ) sin ( ); ( 1) , n b mn n n b n b b mT mT t mT Z mT mT t t m T mT t ω τ τ τ ω τ ω τ ω τ − + > >⎧ ⎪= − − − −⎨ ⎪ + > > +⎩ bt is the duration of the rectangular bunch, bQ is its charge, br is the radius of the bunch, ( )mTθ τ − is the unit Heaviside function. Let’s consider the wakefield between the bunches. In this case for first mode, performing the summation in accordance with the formula (6), we find 1 1 1 1 2( ) sin( / 2) Re[exp( ( / 2)) ]N b b N b Z t i t t τ ω ω τ ω = − Λ . (7) Factor 1 1 sin( / 2) / 2 b b t t ω ω describes the interference of wakefield excited by head and back fronts of each sepa- rate rectangular bunches, and the factor NΛ takes into account the interference of wakefields excited by a se- quence of bunches. Fig. 3 presents the dependence of the longitudinal component of the electric field upon τ for sequence of 10 bunches with rectangular longitudinal and transverse profiles with duration 1 / 3b btτ ω π= = in the absence of frequency detuning α=0 and in its presence α=0.1. The other parameters are the same as in Fig. 2, and corre- spond to the experimental facility of the accelerator "Al- maz-2". It is seen that the behavior of the field differs little from the case of infinitely short bunches (see Fig. 2). Jumps of the field becomes smoother and maximum amplitude of the beating is slightly less. So bunches of duration 1 / 3b btτ ω π= = can be considered as infinitely short ones. Region of growth of wakefield amplitude corresponds to the deceleration of electron bunches (bunches give up energy to wakefield). When wakefield amplitude decreases the acceleration of the electron bunches takes place Fig. 3. Dependence of the longitudinal component Ez of wakefield excited by a sequence of rectangular bunches of duration 1 / 3b btτ ω π= = upon τ at absence of frequency detuning α=0 (blue line) and its presence α=0.1 (red line) 3. ENERGY SPECTRA OF BUNCH PARTICLES The energy spectrum of particles in the single-mode approximation (the fundamental mode) for the case of thin circular bunches (red line) and the length of the rectangular bunches (blue line) is shown in the graphics of Fig. 4. Interaction length has been set at six wave- lengths of the fundamental mode a wake field. Detuning is α=0.002. The values of other parameters listed above. Changing of the frequency of the exciting electromag- netic field, depending on the energy of the bunch is not taken into account. Fig. 4. Energy spectra particles sequences of bunches for infinitely thin ring bunches (red line) and rectangu- lar (blue line) at detuning α=0.002, N=500 For infinitely thin bunches energy spectrum has two narrow peaks corresponding to acceleration and decel- eration of bunches. For the chosen parameters the maxi- mum increase of the relativistic factor is 0 0.9γΔ = or 410 keV on the initial value 4.5 MeV. For bunches of finite width is a significant broadening of the energy spectrum of particles. Instead of narrow peaks have weakly expressed maxima. The maximum of the parti- cle acceleration has been the increment 612 keV. The reason for the broadening of the energy spectrum is the gradient of accelerating (decelerating) electric field in- side the bunches, which leads to the gradient energy and, consequently, to a broadening of the energy spec- trum. Fig. 5 illustrates the above, which shows the change of the relativistic factor of the first particle bunch (lilac line) and last (blue line). Red curve corresponds to an ISSN 1562-6016. ВАНТ. 2013. №4(86) 83 infinitely thin bunch. It is seen that for all bunches, ex- cept bunches near the front and rear edges of the chain, where the electric field is zero. There is a significant difference in the increase in the energy of the first and the last particles in each bunch. Fig. 5. Dependences of energy first particle (magenta line), last particle (blue line) of rectangular bunches upon bunch number. Red curve corresponds case of infinitely thin ring bunches. Detuning is α=0.002, N=500 Thus, in this paper we have shown that the introduc- tion of small detuning between the frequency of the fundamental eigen mode excited in dielectric waveguide and bunch repetition frequency allows to excite wake- field efficiently and on the other hand, to solve the prob- lem of injection of relativistic electron bunches in the accelerating phase of the wakefield. In this acceleration scheme the bunches of the head of the sequence, excite the wakefield and thus they are decelerated. For bunches with large numbers, in result of the phase shift, polarity of the wakefield is reversed, and these bunches are occurred in the acceleration process. ACKNOWLEDGEMENTS This work was supported by the US Department of Energy/NNSA through the Global Initiatives for Prolif- eration Prevention (GIPP) Program in Partnership with the Science and Technology Center in Ukraine (Project ANL-T2-247-UA and STCU Agreement P522). REFERENCES 1. R. Keinigs, M.E. Jones, W. Gai. The dielectric wake field accelerator // ANL-HEP-PR-88-27. 1988, p. 12. 2. W. Gai. Calculation of longitudinal and transversal wakefield effects in dielectric structure // ANL-HEP- CP-89-24. 1989. 3. W. Gai, P.M. Schoessow, B. Cole, R. Konechny, J. Noren, J. Rozenzweig, J. Simpson // Phys. Rev. Lett. 1989, v. 61, № 24, p. 2756. 4. E. Garate, A. Fisher. Transverse dimension effect in the dielectric wake-field accelerator // Phys. Fluids B. 1990, v. 2, № 1, p. 171-178. 5. M. Rosing, W. Gai // Phys. Rev. D, 1990, v. 42, № 5, p. 1829-1834. 6. R.N. Kochergov, I.N. Onishchenko, G.V. Sotnikov. Excitation of a wake field in dielectric waveguide // Electromagnitnyje yavleniya. 1998, v. 1, № 4, p. 499-502 (in Russian). 7. T.B. Zvang, T.C. Marshall, J.L. Hirshfield // IEEE Trans. Plasma Sci. 1998, v. 26, p. 787. 8. W. Gai, A.D. Kanareikin, A. Kustov, J. Simpson // Phys. Rev. E. 1997, v. 55, № 3, p. 3481-3488. 9. S.Y. Park, J.L. Hirshfield. Theory of wakefields in dielectric waveguide // Phys. Rev. E, 2000, v. 62, № 1, p. 1266-1283. 10. A.D. Kanareikin, I.L. Sheinman, A.M. Al`tmapk Excitation of cylindrical dielectric waveguides by a relativistic electron bunch // Izvestiya SPbGETU. Se- riya «Fizika, matematika, khimiya». 2001, № 1, p. 89-97 (in Russian). 11. V.A. Balakirev, I.N. Onishchenko, D.Yu. Sidorenko, G.V. Sotnikov. Excitation of a wake field by a rela- tivistic electron bunch in a semi-infinite dielectric waveguide // JETPh. 2001, v. 93, № 1, p. 33-42. Article received 26.04.2013. ВОЗБУЖДЕНИЕ КИЛЬВАТЕРНОГО ПОЛЯ И УСКОРЕНИЕ ЭЛЕКТРОНОВ ПРИ НАЛИЧИИ РАССТРОЙКИ ЧАСТОТЫ СЛЕДОВАНИЯ СГУСТКОВ И ЧАСТОТЫ ОСНОВНОЙ СОБСТВЕННОЙ КИЛЬВАТЕРНОЙ ВОЛНЫ В.А. Балакирев, И.Н. Онищенко, А.П. Толстолужский Изложены результаты теоретических исследований процесса возбуждения кильватерного поля в диэлек- трическом волноводе последовательностью релятивистских сгустков при наличии расстройки между часто- той следования сгустков и частотой основной волны волновода. В этом случае для кильватерных волн, из- лучаемых отдельными сгустками, возникает набег фазы и, начиная с некоторого номера сгустка, набег фазы составит π . Изменяется полярность поля и последующие сгустки набирают энергию. Получены энергетиче- ские спектры ускоренных (замедленных) частиц. ЗБУДЖЕННЯ КІЛЬВАТЕРНОГО ПОЛЯ І ПРИСКОРЕННЯ ЕЛЕКТРОНІВ ЗА НАЯВНОСТІ РОЗСТРОЙКИ ЧАСТОТИ СЛІДУВАННЯ ЗГУСТКІВ І ЧАСТОТИ ОСНОВНОЇ ВЛАСНОЇ КІЛЬВАТЕРНОЇ ХВИЛІ В.А. Балакірєв, І.М. Оніщенко, О.П. Толстолужський Викладено результати теоретичних досліджень процесу збудження кільватерного поля в діелектричному хвилеводі послідовністю релятивістських згустків при наявності розстройки між частотою проходження згустків і частотою основної хвилі хвилеводу. У цьому випадку для кільватерних хвиль, випромінюваних окремими згустками, виникає набіг фази і, починаючи з деякого номера згустку, набіг фази складе π . Змі- нюється полярність поля і наступні згустки набирають енергію. Отримані енергетичні спектри прискорених (уповільнених) частинок.