Universal system for tomographic reconstruction on GPUS

MLEM methods are commonly used in PET and SPECT reconstruction. The paper presents a parallel implementation of MLEM using an OpenCL programming language. Evaluation of the algorithms is performed using simulated sinograms and real PET/SPECT data. Comparison with the CPU-based reference FBP and MLEM...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Kotina, E.D., Latypov, V.N., Ploskikh, V.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/112086
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Universal system for tomographic reconstruction on GPUS / E.D. Kotina, V.N. Latypov, V.A. Ploskikh // Вопросы атомной науки и техники. — 2013. — № 6. — С. 175-178. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112086
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1120862025-02-09T11:32:10Z Universal system for tomographic reconstruction on GPUS Універсальна система для томографічної реконструкції з використанням графічних процесорів Универсальная система для томографической реконструкции с использованием графических процессоров Kotina, E.D. Latypov, V.N. Ploskikh, V.A. Применение ускоренных пучков. Детекторы и детектирование ядерных излучений MLEM methods are commonly used in PET and SPECT reconstruction. The paper presents a parallel implementation of MLEM using an OpenCL programming language. Evaluation of the algorithms is performed using simulated sinograms and real PET/SPECT data. Comparison with the CPU-based reference FBP and MLEM algorithms is performed. Реконструкція на основі методу максимальної правдоподібності (MLEM) широко використовується в позитронно-емісійній томографії. У статті представлена паралельна реалізація методу MLEM на мові OpenCL. Оцінка алгоритмів проводилася на основі змодельованих сінограмм, а також даних ПЕТ- та ОФЕКТ-досліджень. Проведено порівняння базового методу фільтрованих зворотних проекцій, виконуваного на центральному процесорі, з алгоритмами MLEM, в тому числі з реалізованими з використанням сучасних графічних процесорів. Реконструкция на основе метода максимального правдоподобия (MLEM) широко используется в позитронно-эмиссионной томографии. В статье представлена параллельная реализация метода MLEM на языке OpenCL. Оценка алгоритмов производилась на основе смоделированных синограмм, а также данных ПЭТ- и ОФЭКТ-исследований. Проведено сравнение базового метода фильтрованных обратных проекций, выполняемого на центральном процессоре, с алгоритмами MLEM, в том числе с реализуемыми с использованием современных графических процессоров. The work was supported by St. Petersburg State University (theme 9.39.1065.2012). 2013 Article Universal system for tomographic reconstruction on GPUS / E.D. Kotina, V.N. Latypov, V.A. Ploskikh // Вопросы атомной науки и техники. — 2013. — № 6. — С. 175-178. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 87.57.uk, 87.57.nf https://nasplib.isofts.kiev.ua/handle/123456789/112086 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускоренных пучков. Детекторы и детектирование ядерных излучений
Применение ускоренных пучков. Детекторы и детектирование ядерных излучений
spellingShingle Применение ускоренных пучков. Детекторы и детектирование ядерных излучений
Применение ускоренных пучков. Детекторы и детектирование ядерных излучений
Kotina, E.D.
Latypov, V.N.
Ploskikh, V.A.
Universal system for tomographic reconstruction on GPUS
Вопросы атомной науки и техники
description MLEM methods are commonly used in PET and SPECT reconstruction. The paper presents a parallel implementation of MLEM using an OpenCL programming language. Evaluation of the algorithms is performed using simulated sinograms and real PET/SPECT data. Comparison with the CPU-based reference FBP and MLEM algorithms is performed.
format Article
author Kotina, E.D.
Latypov, V.N.
Ploskikh, V.A.
author_facet Kotina, E.D.
Latypov, V.N.
Ploskikh, V.A.
author_sort Kotina, E.D.
title Universal system for tomographic reconstruction on GPUS
title_short Universal system for tomographic reconstruction on GPUS
title_full Universal system for tomographic reconstruction on GPUS
title_fullStr Universal system for tomographic reconstruction on GPUS
title_full_unstemmed Universal system for tomographic reconstruction on GPUS
title_sort universal system for tomographic reconstruction on gpus
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Применение ускоренных пучков. Детекторы и детектирование ядерных излучений
url https://nasplib.isofts.kiev.ua/handle/123456789/112086
citation_txt Universal system for tomographic reconstruction on GPUS / E.D. Kotina, V.N. Latypov, V.A. Ploskikh // Вопросы атомной науки и техники. — 2013. — № 6. — С. 175-178. — Бібліогр.: 15 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kotinaed universalsystemfortomographicreconstructionongpus
AT latypovvn universalsystemfortomographicreconstructionongpus
AT ploskikhva universalsystemfortomographicreconstructionongpus
AT kotinaed uníversalʹnasistemadlâtomografíčnoírekonstrukcíízvikoristannâmgrafíčnihprocesorív
AT latypovvn uníversalʹnasistemadlâtomografíčnoírekonstrukcíízvikoristannâmgrafíčnihprocesorív
AT ploskikhva uníversalʹnasistemadlâtomografíčnoírekonstrukcíízvikoristannâmgrafíčnihprocesorív
AT kotinaed universalʹnaâsistemadlâtomografičeskojrekonstrukciisispolʹzovaniemgrafičeskihprocessorov
AT latypovvn universalʹnaâsistemadlâtomografičeskojrekonstrukciisispolʹzovaniemgrafičeskihprocessorov
AT ploskikhva universalʹnaâsistemadlâtomografičeskojrekonstrukciisispolʹzovaniemgrafičeskihprocessorov
first_indexed 2025-11-25T21:43:07Z
last_indexed 2025-11-25T21:43:07Z
_version_ 1849800249779945472
fulltext ISSN 1562-6016. ВАНТ. 2013. №6(88) 175 UNIVERSAL SYSTEM FOR TOMOGRAPHIC RECONSTRUCTION ON GPUS E.D. Kotina, V.N. Latypov, V.A. Ploskikh Saint-Petersburg State University, Saint-Petersburg, Russian Federation E-mail: ekotina123@mail.ru MLEM methods are commonly used in PET and SPECT reconstruction. The paper presents a parallel implemen- tation of MLEM using an OpenCL programming language. Evaluation of the algorithms is performed using simulat- ed sinograms and real PET/SPECT data. Comparison with the CPU-based reference FBP and MLEM algorithms is performed. PACS: 87.57.uk, 87.57.nf 1. INTRODUCTION 1.1. PREVIOUS WORK During the last decade multiple attempts have been made to utilize the ever growing computational power of the graphical processing units in PET/SPECT image reconstruction. Standard MLEM and OSEM algorithms have been previously implemented [1, 2]. Modifications of these algorithms, such as Weighted Least-Squares [12], improve the image quality with some extra compu- tations. Extensions to the 3D reconstructions are also proposed [8, 9]. Modifications also exist for the gated PET reconstruction [11]. Comparison of the MLEM algorithm with FBP on a large number of medical imag- es is performed in [7]. MLEM/OSEM algorithms are based on a solution of linear algebraic equations, making them an ideal target for effective GPU-based parallelization. Previously lin- ear algebraic equation solvers were implemented using graphics interfaces like OpenGL. With the invention of the GPGPU techniques and OpenCL [5] programming language it is possible to create the unified reconstruc- tion system for PET and SPECT reconstruction which differs only in the system matrix calculation. 1.2. MLEM METHODS The process of PET data acquisition is usually mod- elled as a system of linear algebraic equations. Fig. 1. The volumetric and projection data If f(x,y,z) is the unknown density and p(i) is the set of recorded detection events, then after replacing f by the discrete set of f(i,j,k) we can write down the relation ,p Af (1) where A is the System Response Matrix (SRM) or the projection matrix, whose entries a(i,j) are proportional to the influence of an i-th volume element (voxel) to the j-th projection data element p(j). Data indexing for SPECT is shown in Fig. 1. For the PET we use the a(i,j) equal to the probability of the detection of the photon emitted at the center of the i-th voxel on the j-th line of response (LOR). Typical LORs are shown in Fig. 2. Fig. 2. PET lines of response Given a detector configuration we calculate the сar- tesian coordinates for each detector pair and use the modification of Besenham's algorithm to trace the line from one detector to another. SPECT projection matrix has more non-zero elements, because the projection bin p(i) accumulates events from the conic volume (Fig. 3). The calculation of SRM for the SPECT is discussed in details in [15]. Fig. 3. SPECT geometry To solve the equation (1) iterative methods are used. The most common algorithm is the Maximum Likeli- hood – Expectance Maximization (MLEM) by Shepp and Vardi [1] and its modification, Ordered Subsets EM (OSEM), by Hudson and Larkin [2]. Single iteration of the MLEM algorithm can be formulated as 1 1 T T kk A Af p A ff . (2) ISSN 1562-6016. ВАНТ. 2013. №6(88) 176 In (2) the f is an N·N·N-dimensional vector and the division is performed element-wise. The 1 denotes a constant vector. The denominator is a vector with ele- ments equal to the sum of A rows. The iterations stop when two sequential approxima- tions differ less than a specified threshold. The stopping criteria is based on the Normalized Root Mean-Square Deviation (NRMSD), given in [3]: HW ji jigjif HW gfRMSD , 1, 2 2 ),(),( * 1 ),( , minmax ),( ),( gfRMSD gfNRMSD, where max and min are the minimum and maximum values of the pixels found in f and g images. At the end of each iteration we compare kf and 1kf , using the NRMSD 1,k kf f . 1.3. 2D RECONSTRUCTION Restriction of the reconstruction to 2D slice allows to reduce the memory consumption for the SRM. Also the single reconstructed slice fits in the cache memory and minimizes the number of random memory accesses on each iteration of the MLEM algorithm. 2. IMPLEMENTATION DETAILS 2.1. ALGORITHM OUTLINE The single iteration of the MLEM algorithm consists of three basic operations: 1) Projection or the multiplication by A. 2) Backprojection or the multiplication by AT. 3) Correction element-wise multiplication of the image by the projection and backprojection ratio. Third step of the iteration is easily parallelizable and takes less time compared to step 1 and 2. First two steps are essentially the same and consist only of the matrix by vector multiplication. In this paper we restrict the problem to 2D recon- struction. For the high-quality image and a symmetric PET detector configuration it is possible to upload the whole SRM to the GPU memory using the Yale com- pression scheme also known as compressed row storage [4]. 2.2. MATRIX COMPRESSION Both PET and SPECT projection matrices contain many zero entries. If the reconstructed slice is the N·N array and the number of lines of response is M=D(D-1)/2, where D is the number of detectors, then the complete SRM matrix consists of (N·N)×M ele- ments. Since each line of response may intersect with no more than 4*N voxels, each row may contain no more than 4*N non-zero elements, which is about 5% of the total memory space for a typical detector configuration and a high-resolution slice. We store the list of non-zero matrix entries in three linear arrays, the IA, JA and A. IA[i] contains the index of the first non-zero element in i-th row, JA[i] contains the number of non-zero elements in the i-th row and A contains all the values of non-zero entries of the SRM. For example, the matrix [0.3 0.5 0.0 0.0] [0.0 0.2 0.7 0.0] [0.0 0.0 0.3 0.2] [0.0 0.0 0.0 0.1] has 7 non-zero elements and the corresponding A, IA and JA arrays are the following: A = [0.3 0.5 0.2 0.7 0.3 0.2 0.1], IA = [0 2 4 7], JA = [0 1 1 2 2 3 3]. 2.3. OPENCL PROGRAMMING In this work the OpenCL [5] is chosen to implement the parallel version of the MLEM algorithm. This tech- nology allows the program to run on any modern GPU from major manufacturers as nVidia, AMD and Intel. The 2D variant of the MLEM algorithm reconstructs the volume data slice by slice. Each slice is initially filled with a single non-zero value. Then the projection data acquired from PET scanner is uploaded to the GPU memory and the iterations are performed. Each iteration uses a double-buffering scheme to store the old and new slice value ( kf and 1kf ). The steps of one iteration of the MLEM algorithm are based on the formula (2). The list of steps is the following: 1) Calculate backprojection vector Xnew. 2) Calculate projection Pnew from Xold. 3) Multiply Xnew by the Correction factor. 4) Swap Xnew and Xold vectors. 5) Calculate the NRMSD(Xnew, Xold) and stop itera- tion if this value is smaller than the given threshold. 3. NUMERICAL EXPERIMENTS 3.1. GENERATING PROJECTION DATA All numerical experiments in this article are per- formed in the same way. We start with a given volumet- ric image, add some Poisson noise [10] to each pixel, project the modified image using the projection opera- tion of the MLEM algorithm and finally we use the ob- tained projection data as the source for our MLEM re- constructor. To validate the MLEM algorithm we use the filtered backprojections (FBP). The images are re- constructed using the FBP, MLEM and GPU-based MLEM implementation. 3.2. DERENZO PHANTOMS The first numerical example is the reconstruction of a 256 by 256 pixels volume slice with the Derenzo phantom. Derenzo-type phantoms are widely used in the evaluation of PET reconstruction algorithms because they can be easily manufactured as thin tubes in a hol- low plastic case [6]. Fig. 4 shows the same volume reconstructed with MLEM, FBP and GPU/MLEM algorithms. Left image, obtained with MLEM algorithm, uses the projection of a volume without noise. The central image is the slice reconstructed with filtered backprojections. The right image is the slice reconstructed with our GPU-based MLEM algorithm from the projection data with the same amount of Poisson noise as the central image. ISSN 1562-6016. ВАНТ. 2013. №6(88) 177 Fig. 4. Reconstruction of Derenzo phantom 3.3. HUMAN BRAIN SCANS To demonstrate the applicability of the developed GPU reconstructor to SPECT, we use a slice of a human brain scan from EFATOM SPECT [13]. In this experi- ment we compare the FBP reconstruction from the standard EFATOM software suite and our new GPU- based MLEM reconstruction of low-statistics data (Fig. 5). Fig. 5. Reconstruction of the EFATOM SPECT scans The final experiment (Fig. 6) concerns the 128 128 PET human brain scan. We add the Poisson noise to the projection data and the reconstruct the slice using all reconstruction methods: FBP, MLEM and GPU-based MLEM. Fig. 6. Reconstruction of reprojected PET human brain scan 3.4. ALGORITHM PERFORMANCE To make conclusions about the reconstruction speed of the algorithms we perform a series of experiments. Tables 1 and 2 present the reconstruction speed in se- conds for the two tests: the high-resolution Derenzo phantom and a human brain scan. The first line of the tables contains the name of the method used and the second line contains the number of iterations for the MLEM methods (for filtered backprojections there is no iteration count). Table 1 FBP MLEM MLEM/GPU Iterations 5 10 20 10 20 40 Time 2,7 38 103 208 3.5 7 11.5 Derenzo, 256 256, 1 slice Table 2 FBP MLEM MLEM/GPU Iterations 5 10 20 10 20 40 Time 15 175 380 910 24.5 43 80 Brain scan, 128 128, 63 slices CONCLUSIONS A simple and effective parallel implementation of the MLEM algorithm is presented. The reconstruction speed is significantly faster than the CPU version of the same method and the algorithm is suitable for both SPECT and PET. The work was supported by St. Petersburg State University (theme 9.39.1065.2012). REFERENCES 1. L.A. Shepp, Y. Vardi. Maximum Likelihood Recon- struction for Emission Tomography // IEEE Trans. Med. Imag. 1982, v. 1, №.2, p. 113-121. 2. M. Hudson, R.S. Larkin. Accelerated Image Recon- struction using Ordered Subsets of Projection Data // IEEE Trans. Med. Imag. 1994, №13, p. 601-609. 3. A. Gaitanis, G. Kontaxakis, G. Spyrou, G. Panayiotakis, G. Tzanakos. PET image recon- struction: A stopping rule for the MLEM algorithm based on properties of the updating coefficients // Comput Med Imaging Graph. 2010, v. 34, №2, p. 131-141. 4. S. Pissanetzky. Sparse Matrix Technology. Academ- ic Press, 1984. 5. A. Munshi ed. The OpenCL Specification v. 2.0. Khronos Group. http://www.khronos.org/registry/cl/. Last accessed 30 July 2013. 6. M.-A. Park, R.E. Zimmerman, A. Tabener, M.W. Kaye, S.C. Moore. Design and fabrication of phantoms using stereolithography for small-animal imaging systems // Mol Imaging Biol. 2008, v. 10(5), p. 231-236. 7. D.D. Duarte, M.S. Monteiro, El Hakmaoui F., J.O. Prior, L. Vieira, J.A. Pires-Jorge. Influence of Reconstruction Parameters During Filtered Backpro- jection and Ordered-Subset Expectation Maximiza- tion in the Measurement of the Left-Ventricular Volumes and Function During Gated SPECT // J. Nucl. Med. Technol. 2012, v. 40, p. 29-36. 8. P. Aguiara, M. Rafecas, J.E. Ortuno, G. Kontaxakis, A. Santos, J. Pavia, D. Ros. Geometrical and Monte Carlo projectors in 3D PET reconstruction // Med. Phys. 2010, v. 37(11), p. 5691-5702. 9. S. Moehrs, M. Defrise, N. Belcari, A. Del Guerra, A. Bartoli, S. Fabbri, G. Zanetti. Multi-ray-based system matrix generation for 3D PET reconstruction. // Phys. Med. Biol. 2008, v. 53, p. 6925-6945. 10. L. Devroye. Non-Uniform Random Variate Generation. New-York: Springer-Verlag, 1986. 11. J. Dey, M.A. King. Theoretical and Numerical Study of MLEM and OSEM Reconstruction Algorithms for Motion Correction in Emission Tomography // IEEE Trans. Nucl. Sci. 2009, v. 56(5), p. 2739-2749. 12. C.W. Stearns, J.A. Fessler. 3D PET Reconstruction with FORE and WLS-OS-EM // IEEE Nuclear Sci- ence Symposium. 2002, p. 912-915. 13. M.A. Arlychev, V.L. Novikov, A.V. Sidorov, A.M. Fialkovskii, E.D. Kotina, D.A. Ovsyannikov, V.A. Ploskikh. EFATOM Two-Detector One-Photon Emission Gamma Tomograph // Technical Physics. The Russian Journal of Applied Physics. 2009, v. 54, № 10, p. 1539-1547. ISSN 1562-6016. ВАНТ. 2013. №6(88) 178 14. N. Mitsuhashi, K. Fujieda, T. Tamura, S. Kawamoto, T. Takagi, K. Okubo. Body Parts 3D: 3D structure database for anatomical concepts // Nu- cleic Acids Research. 2009, v. 37, p. 782-785. 15. Z. Liang, T.G. Turkington, D.R. Gilland, R.J. Jaszczak, R.E. Coleman. Simultaneous compen- sation for attenuation, scatter and detector response for SPECT reconstruction in three dimensions // Phys. Med. Biol. 1992, v. 37, p. 587-603. Article received 04.10.2013 УНИВЕРСАЛЬНАЯ СИСТЕМА ДЛЯ ТОМОГРАФИЧЕСКОЙ РЕКОНСТРУКЦИИ С ИСПОЛЬЗОВАНИЕМ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ Е.Д. Котина, В.Н. Латыпов, В.А. Плоских Реконструкция на основе метода максимального правдоподобия (MLEM) широко используется в пози- тронно-эмиссионной томографии. В статье представлена параллельная реализация метода MLEM на языке OpenCL. Оценка алгоритмов производилась на основе смоделированных синограмм, а также данных ПЭТ- и ОФЭКТ-исследований. Проведено сравнение базового метода фильтрованных обратных проекций, выпол- няемого на центральном процессоре, с алгоритмами MLEM, в том числе с реализуемыми с использованием современных графических процессоров. УНІВЕРСАЛЬНА СИСТЕМА ДЛЯ ТОМОГРАФІЧНОЇ РЕКОНСТРУКЦІЇ З ВИКОРИСТАННЯМ ГРАФІЧНИХ ПРОЦЕСОРІВ О.Д. Котіна, В.Н. Латипов, В.А. Плоскіх Реконструкція на основі методу максимальної правдоподібності (MLEM) широко використовується в по- зитронно-емісійній томографії. У статті представлена паралельна реалізація методу MLEM на мові OpenCL. Оцінка алгоритмів проводилася на основі змодельованих сінограмм, а також даних ПЕТ- та ОФЕКТ- досліджень. Проведено порівняння базового методу фільтрованих зворотних проекцій, виконуваного на центральному процесорі, з алгоритмами MLEM, в тому числі з реалізованими з використанням сучасних графічних процесорів.