Evolution of Yrast states and B(E2 : 8₁⁺ → 6₁⁺ ) VALUES OF ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²Cd by interacting boson model (IBM-1)

In this paper we address the evolution of yrast levels of low-lying structure in the neutron-rich even-even ¹¹⁴⁻¹²²Cd nuclei within the framework of interaction boson model (IBM-1). The reduced transition probabilities B(E2) ↓ between 8₁⁺ to 6₁⁺ states of even-even neutron rich Cd nuclei for N = 66;...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2015
Автори: Hossain, I., Abdullah, Hewa Y., Ahmed, I.M., Murarak, A.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/112109
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Evolution of Yrast states and B(E2 : 8₁⁺ → 6₁⁺ ) VALUES OF ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²CD by interacting boson model (IBM-1) / I. Hossain, Hewa Y. Abdullah, I.M. Ahmed, A.A.Murarak // Вопросы атомной науки и техники. — 2015. — № 3. — С. 19-24. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112109
record_format dspace
spelling Hossain, I.
Abdullah, Hewa Y.
Ahmed, I.M.
Murarak, A.A.
2017-01-17T16:40:15Z
2017-01-17T16:40:15Z
2015
Evolution of Yrast states and B(E2 : 8₁⁺ → 6₁⁺ ) VALUES OF ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²CD by interacting boson model (IBM-1) / I. Hossain, Hewa Y. Abdullah, I.M. Ahmed, A.A.Murarak // Вопросы атомной науки и техники. — 2015. — № 3. — С. 19-24. — Бібліогр.: 28 назв. — англ.
1562-6016
PACS: 21.60.Cs, 23.20Lv, 26.30. +k, 27.60+j
https://nasplib.isofts.kiev.ua/handle/123456789/112109
In this paper we address the evolution of yrast levels of low-lying structure in the neutron-rich even-even ¹¹⁴⁻¹²²Cd nuclei within the framework of interaction boson model (IBM-1). The reduced transition probabilities B(E2) ↓ between 8₁⁺ to 6₁⁺ states of even-even neutron rich Cd nuclei for N = 66; 68; 70; 72; 74 have been calculated by IBM-1 and compared with the previous available experimental values. The calculated values of ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, and ¹²²Cd, are 0.272 e²b², 0.281 e²b², 0.259 e²b², 0.190 e²b² and 0.149 e²b² respectively. The ratio of the excitation energies of the first 4⁺ and the first 2⁺ excited states, R₄/₂, were also calculated for those nuclei. The ¹¹⁴⁻¹²²Cd isotopes in U(5) - O(6) transitional symmetry were investigated. We have studied the systematic B(E2) values as a function of even neutrons from N = 66 to 74. Furthermore as a measure to quantify the evolution, we have studied systematically the ground state energy ratios RL = E(L⁺) / E(21⁺ ) and transition rate R = B(E2 : L⁺ → (L - 2)⁺) / B(E2 : 2⁺ → 0⁺) of some of the low-lying quadrupole collective states in comparison to the available experimental data.
Представлена еволюція yrast-рівнів низько-лежачої структури в богатому нейтронами парно-парному ядрі ¹¹⁴⁻¹²²Cd у рамках моделі взаємодіючих бозонів (IBM-1). Вірогідності змінених (reduced) переходів B(E2) ↓ між станами 8₁⁺ і 6₁⁺ в богатому нейтронами парно-парному ядрі Cd для N = 66; 68; 70; 72; 74 були розраховані за допомогою IBM-1 і порівняні з раніше відомими експериментальними величинами. Розраховані величини ¹¹⁴Cd, ¹¹⁶Cd, ¹¹⁸Cd, ¹²⁰Cd і ¹²²Cd і дорівнюють 0.272 e²b², 0.281 e²b², 0.259 e²b², 0.190 e²b² та 0.149 e²b², відповідно. Співвідношення енергій збудження першого 4⁺ та першого 2⁺ збуджених станів R₄/₂ були розраховані для цих ядер. ¹¹⁴⁻¹²²Cd ізотопи в U(5) - O(6) симетрії переходів були досліджені. Ми дослідили систематику B(E2) величин, як функцію парних нейтронів від N = 66 до 74. Крім того, вивчаючи кількісно еволюцію, ми систематично вивчили співвідношення енергій основних станів RL = E(L⁺) / E(21⁺ ) та величину R = B(E2 : L⁺ → (L - 2)⁺) / B(E2 : 2⁺ → 0⁺) для переходів кількох низько-розміщених квадрупольних колективних станів та порівняли з наявними експериментальними даними.
Представлена эволюция yrast-уровней низколежащей структуры в богатом нейтронами четно-четном ядре ¹¹⁴⁻¹²²Cd в рамках модели взаимодействующих бозонов (IBM-1). Вероятности измененных (reduced) переходов B(E2) ↓ между состяниями 8₁⁺ и 6₁⁺ в богатом нейтронами четно-четном ядре Cd для N = 66; 68; 70; 72; 74 были расчитаны с помощью IBM-1 и сравнены с ранее известными экспериментальными величинами. Рассчитанные величины ¹¹⁴Cd, ¹¹⁶Cd, ¹¹⁸Cd, ¹²⁰Cd и ¹²²Cd равны 0.272 e²b², 0.281 e²b², 0.259 e²b², 0.190 e²b² и 0.149 e²b², соответственно. Отношения энергий возбуждения первого 4⁺ и первого 2⁺ возбужденных состояний R₄/₂ были рассчитаны для этих ядер. ¹¹⁴⁻¹²²Cd изотопы в U(5) - O(6) симметрии переходов были исследованы. Мы исследовали систематику B(E2) величин, как функцию четных нейтронов от N = 66 до 74. Кроме того, изучая количественно эволюцию, мы систематически изучили отношения энергий основных состояний RL = E(L⁺) / E(21⁺ ) и величину R = B(E2 : L⁺ → (L - 2)⁺) / B(E2 : 2⁺ → 0⁺) для переходов нескольких низколежащих квадрупольных коллективных состояний и сравнили с доступными экспериментальными данными.
Acknowledgement. This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. Therefore, the authors thankfully acknowledge the technical and financial support of DSR.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Ядерная физика и элементарные частицы
Evolution of Yrast states and B(E2 : 8₁⁺ → 6₁⁺ ) VALUES OF ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²Cd by interacting boson model (IBM-1)
Еволюцiя Yrast -станiв та величини переходiв B(E2 : 8₁⁺ → 6₁⁺ ) ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²Cd у моделi взаємодiючих бозонiв (IBM-1)
Эволюция Yrast -состояний и величины переходов B(E2 : 8₁⁺ → 6₁⁺ ) ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²Cd в модели взаимодействующих бозонов (IBM-1)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Evolution of Yrast states and B(E2 : 8₁⁺ → 6₁⁺ ) VALUES OF ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²Cd by interacting boson model (IBM-1)
spellingShingle Evolution of Yrast states and B(E2 : 8₁⁺ → 6₁⁺ ) VALUES OF ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²Cd by interacting boson model (IBM-1)
Hossain, I.
Abdullah, Hewa Y.
Ahmed, I.M.
Murarak, A.A.
Ядерная физика и элементарные частицы
title_short Evolution of Yrast states and B(E2 : 8₁⁺ → 6₁⁺ ) VALUES OF ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²Cd by interacting boson model (IBM-1)
title_full Evolution of Yrast states and B(E2 : 8₁⁺ → 6₁⁺ ) VALUES OF ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²Cd by interacting boson model (IBM-1)
title_fullStr Evolution of Yrast states and B(E2 : 8₁⁺ → 6₁⁺ ) VALUES OF ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²Cd by interacting boson model (IBM-1)
title_full_unstemmed Evolution of Yrast states and B(E2 : 8₁⁺ → 6₁⁺ ) VALUES OF ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²Cd by interacting boson model (IBM-1)
title_sort evolution of yrast states and b(e2 : 8₁⁺ → 6₁⁺ ) values of ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²cd by interacting boson model (ibm-1)
author Hossain, I.
Abdullah, Hewa Y.
Ahmed, I.M.
Murarak, A.A.
author_facet Hossain, I.
Abdullah, Hewa Y.
Ahmed, I.M.
Murarak, A.A.
topic Ядерная физика и элементарные частицы
topic_facet Ядерная физика и элементарные частицы
publishDate 2015
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Еволюцiя Yrast -станiв та величини переходiв B(E2 : 8₁⁺ → 6₁⁺ ) ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²Cd у моделi взаємодiючих бозонiв (IBM-1)
Эволюция Yrast -состояний и величины переходов B(E2 : 8₁⁺ → 6₁⁺ ) ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²Cd в модели взаимодействующих бозонов (IBM-1)
description In this paper we address the evolution of yrast levels of low-lying structure in the neutron-rich even-even ¹¹⁴⁻¹²²Cd nuclei within the framework of interaction boson model (IBM-1). The reduced transition probabilities B(E2) ↓ between 8₁⁺ to 6₁⁺ states of even-even neutron rich Cd nuclei for N = 66; 68; 70; 72; 74 have been calculated by IBM-1 and compared with the previous available experimental values. The calculated values of ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, and ¹²²Cd, are 0.272 e²b², 0.281 e²b², 0.259 e²b², 0.190 e²b² and 0.149 e²b² respectively. The ratio of the excitation energies of the first 4⁺ and the first 2⁺ excited states, R₄/₂, were also calculated for those nuclei. The ¹¹⁴⁻¹²²Cd isotopes in U(5) - O(6) transitional symmetry were investigated. We have studied the systematic B(E2) values as a function of even neutrons from N = 66 to 74. Furthermore as a measure to quantify the evolution, we have studied systematically the ground state energy ratios RL = E(L⁺) / E(21⁺ ) and transition rate R = B(E2 : L⁺ → (L - 2)⁺) / B(E2 : 2⁺ → 0⁺) of some of the low-lying quadrupole collective states in comparison to the available experimental data. Представлена еволюція yrast-рівнів низько-лежачої структури в богатому нейтронами парно-парному ядрі ¹¹⁴⁻¹²²Cd у рамках моделі взаємодіючих бозонів (IBM-1). Вірогідності змінених (reduced) переходів B(E2) ↓ між станами 8₁⁺ і 6₁⁺ в богатому нейтронами парно-парному ядрі Cd для N = 66; 68; 70; 72; 74 були розраховані за допомогою IBM-1 і порівняні з раніше відомими експериментальними величинами. Розраховані величини ¹¹⁴Cd, ¹¹⁶Cd, ¹¹⁸Cd, ¹²⁰Cd і ¹²²Cd і дорівнюють 0.272 e²b², 0.281 e²b², 0.259 e²b², 0.190 e²b² та 0.149 e²b², відповідно. Співвідношення енергій збудження першого 4⁺ та першого 2⁺ збуджених станів R₄/₂ були розраховані для цих ядер. ¹¹⁴⁻¹²²Cd ізотопи в U(5) - O(6) симетрії переходів були досліджені. Ми дослідили систематику B(E2) величин, як функцію парних нейтронів від N = 66 до 74. Крім того, вивчаючи кількісно еволюцію, ми систематично вивчили співвідношення енергій основних станів RL = E(L⁺) / E(21⁺ ) та величину R = B(E2 : L⁺ → (L - 2)⁺) / B(E2 : 2⁺ → 0⁺) для переходів кількох низько-розміщених квадрупольних колективних станів та порівняли з наявними експериментальними даними. Представлена эволюция yrast-уровней низколежащей структуры в богатом нейтронами четно-четном ядре ¹¹⁴⁻¹²²Cd в рамках модели взаимодействующих бозонов (IBM-1). Вероятности измененных (reduced) переходов B(E2) ↓ между состяниями 8₁⁺ и 6₁⁺ в богатом нейтронами четно-четном ядре Cd для N = 66; 68; 70; 72; 74 были расчитаны с помощью IBM-1 и сравнены с ранее известными экспериментальными величинами. Рассчитанные величины ¹¹⁴Cd, ¹¹⁶Cd, ¹¹⁸Cd, ¹²⁰Cd и ¹²²Cd равны 0.272 e²b², 0.281 e²b², 0.259 e²b², 0.190 e²b² и 0.149 e²b², соответственно. Отношения энергий возбуждения первого 4⁺ и первого 2⁺ возбужденных состояний R₄/₂ были рассчитаны для этих ядер. ¹¹⁴⁻¹²²Cd изотопы в U(5) - O(6) симметрии переходов были исследованы. Мы исследовали систематику B(E2) величин, как функцию четных нейтронов от N = 66 до 74. Кроме того, изучая количественно эволюцию, мы систематически изучили отношения энергий основных состояний RL = E(L⁺) / E(21⁺ ) и величину R = B(E2 : L⁺ → (L - 2)⁺) / B(E2 : 2⁺ → 0⁺) для переходов нескольких низколежащих квадрупольных коллективных состояний и сравнили с доступными экспериментальными данными.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/112109
citation_txt Evolution of Yrast states and B(E2 : 8₁⁺ → 6₁⁺ ) VALUES OF ¹¹⁴, ¹¹⁶, ¹¹⁸, ¹²⁰, ¹²²CD by interacting boson model (IBM-1) / I. Hossain, Hewa Y. Abdullah, I.M. Ahmed, A.A.Murarak // Вопросы атомной науки и техники. — 2015. — № 3. — С. 19-24. — Бібліогр.: 28 назв. — англ.
work_keys_str_mv AT hossaini evolutionofyraststatesandbe28161valuesof114116118120122cdbyinteractingbosonmodelibm1
AT abdullahheway evolutionofyraststatesandbe28161valuesof114116118120122cdbyinteractingbosonmodelibm1
AT ahmedim evolutionofyraststatesandbe28161valuesof114116118120122cdbyinteractingbosonmodelibm1
AT murarakaa evolutionofyraststatesandbe28161valuesof114116118120122cdbyinteractingbosonmodelibm1
AT hossaini evolûciâyraststanivtaveličiniperehodivbe28161114116118120122cdumodelivzaêmodiûčihbozonivibm1
AT abdullahheway evolûciâyraststanivtaveličiniperehodivbe28161114116118120122cdumodelivzaêmodiûčihbozonivibm1
AT ahmedim evolûciâyraststanivtaveličiniperehodivbe28161114116118120122cdumodelivzaêmodiûčihbozonivibm1
AT murarakaa evolûciâyraststanivtaveličiniperehodivbe28161114116118120122cdumodelivzaêmodiûčihbozonivibm1
AT hossaini évolûciâyrastsostoâniiiveličinyperehodovbe28161114116118120122cdvmodelivzaimodeistvuûŝihbozonovibm1
AT abdullahheway évolûciâyrastsostoâniiiveličinyperehodovbe28161114116118120122cdvmodelivzaimodeistvuûŝihbozonovibm1
AT ahmedim évolûciâyrastsostoâniiiveličinyperehodovbe28161114116118120122cdvmodelivzaimodeistvuûŝihbozonovibm1
AT murarakaa évolûciâyrastsostoâniiiveličinyperehodovbe28161114116118120122cdvmodelivzaimodeistvuûŝihbozonovibm1
first_indexed 2025-11-26T08:10:21Z
last_indexed 2025-11-26T08:10:21Z
_version_ 1850618152298217472
fulltext EVOLUTION OF YRAST STATES AND B(E2 : 8+1 → 6+1 ) VALUES OF 114, 116, 118, 120, 122Cd BY INTERACTING BOSON MODEL (IBM-1) I.Hossain1∗, HewaY.Abdullah2, I.M.Ahmed3, A.A.Murarak1 1Department of Physics, Rabigh College of Science and arts, King Abdulaziz University; Rabigh 21911, Post box 344, Saudi Arabia 2Department of Physics, College of Science Education, Salahaddin University, Erbil, Krg, Iraq; 3Department of Physics, College of Education, Mosul University, Mosul, Iraq (Received March 24, 2014) In this paper we address the evolution of yrast levels of low-lying structure in the neutron-rich even-even 114−122Cd nuclei within the framework of interaction boson model (IBM-1). The reduced transition probabilities B(E2) ↓ between 8+1 to 6+1 states of even-even neutron rich Cd nuclei for N = 66, 68, 70, 72, 74 have been calculated by IBM-1 and compared with the previous available experimental values. The calculated values of 114Cd, 116Cd, 118Cd, 120Cd, and 122Cd, are 0.272 e2b2, 0.281 e2b2, 0.259 e2b2, 0.190 e2b2 and 0.149 e2b2 respectively. The ratio of the excitation energies of the first 4+ and the first 2+ excited states, R4/2, were also calculated for those nuclei. The 114−122Cd isotopes in U(5) − O(6) transitional symmetry were investigated. We have studied the system- atic B(E2) values as a function of even neutrons from N = 66 to 74. Furthermore as a measure to quantify the evolution, we have studied systematically the ground state energy ratios RL = E(L+)/E(2+1 ) and transition rate R = B(E2 : L+ → (L− 2)+)/B(E2 : 2+ → 0+) of some of the low-lying quadrupole collective states in comparison to the available experimental data. PACS: 21.60.Cs, 23.20Lv, 26.30. +k, 27.60+j 1. INTRODUCTION The interacting boson model (IBM-1) is an excellent interpretive model to understand the nuclear struc- ture [1,2]. The cadmium nuclei, with two protons removed from a strong shell closure, exhibit intrigu- ing aspects of nuclear structure at low excitation energies, namely the coexistence and mixing of vi- brational with other collective degrees of freedom arising from the promotion of a proton pair across shell gap [3,4]. The structure of neutron-rich Cd iso- topes has been studied the subject of many theoreti- cal and experimental works in recent years. The yrast states up to Iπ = 8+ in N = 48 isotones were found two-hole states νg−2 9/2 configurations for the N = 50 closed shell. The existences of structure of νg−2 9/2 con- figurations indicate to find structure of the valance mirror nuclei πg−2 9/2 configurations [5-8]. Therefore, it is interesting to study πg−2 9/2 configurations, which suggest that (πg−2 9/2) π I = 0+, 2+, 4+, 6+, 8+ configu- rations dominate the yrast states and their 8+1 states are very likely to become isomers. Moreover B(E2) of the yrast band between 8+1 to 6+1 plays important role in nuclear structure. There are a number of theoretical works dis- cussing intruder configuration and configuration mix- ing in the Cd isotopes. For instance, empirical spec- troscopic study within the configuration mixing cal- culation in IBM [9-11], the IBM configuration mixing model in strong connection with shell model [12,13], conventional collective Hamiltonian approach [14,15] and the one starting from self-consistent mean-field calculation with microscopic energy density func- tion[16]. Long et al. explained the low-lying lev- els and high-spin states of 116, 118, 120Cd in the frame work of interacting boson model [17]. We have cal- culated the ground state energy band up to 8+1 levels [18] and reduced transition probabilities B(E2) val- ues from 6+1 to 4+1 and 4+1 to 2+1 levels in even-even 114−122Cd isotopes by the framework of IBM-1[19]. In this work, we suggest an approach to search for the dynamical symmetries U(5), SU(3) and O(6) and to calculate B(E2) values between 8+1 to 6+1 states in even 114−122Cd isotopes using IBM-1 model [2]. ∗Corresponding author: hosain196977@yahoo.com, mihossain@kau.edu.sa Tel.: +966-558141319 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2015, N3(97). Series: Nuclear Physics Investigations (64), p.19-24. 19 2. THEORY AND METHOD OF CALCULATION 2.1. Yrast state energy band The Hamiltonian of the interacting bosons in IBM-1 is given by [2,18]. H = N∑ j=1 εj + N∑ i<j Vi,j , (1) where ε is the intrinsic boson energy and Vi,j is the interaction between bosons i and j. In the multi pole form the Hamiltonian is given by [2,18,19]. H = εnd+a0PP +a1LL+a2QQ+a3T3T3+a4T4T4 . (2) Here a0, a1, a2, a3 and a4, are the strength of pair- ing, the angular momentum and multi pole terms. The Hamiltonian as given in Eq.(2) tends to reduce to three limits, the vibration U(5), γ-soft O(6) and the rotational SU(3) nuclei, starting with the uni- tary group U(6) and finishing with group O(2). In U(5) limit, the effective parameter is ε, in the γ-soft limit, O(6), the effective parameter is the pairing a0, and in the SU(3) limit, the effective parameter is the quadrupole a2. The eigenvalues for the three limits are given by [18]. U(5) : E(nd, ν, L) = εnd +K1nd(nd + 4) + K4ν(ν + 3) +K5L(L+ 1) . (3) O(6) : E(σ, τ, L) = K3[N(N + 4)− σ(σ + 4)] + K4τ(τ + 3) +K5L(L+ 1) . (4) SU(3) : E(λ, µ, L) = K2[λ 2 + µ2 + 3(λ+ µ) + λµ] +K5L(L+ 1) . (5) Here, K1, K2, K3, K4 and K5 are other forms of strength parameters. Many nuclei have a transition property between two or three of the above limits and their eigenvalues for the yrast-line are given by [19]. U(5)−O(6) : E(nd, τ, L) = εnd + K1nd(nd + 4) +K4τ(τ + 3) +K5L(L+ 1) . (6) U(5)− SU(3) : E(ε, λ, L) = εnd + K2[λ 2 + 3(λ+ µ)] +K5L(L+ 1) . (7) O(6)− SU(3) : E(τ, λ, L) = K2[λ 2 + +3(λ+ µ)] +K4τ(τ + 3) +K5L(L+ 1) . (8) 2.2. Reduced transition probabilities B(E2) The reduced transition probability in interaction bo- son model IBM-1 [20] is given by equation (9). B(E2; J + 2 → J) ↓= α2 2 1 4 (J + 2)(2N − J) . (9) Where J is the state that the nucleus translates to it and N is the boson number, which is equal to half of the number of valence nucleons (proton and neutrons). The low-lying levels of even-even nuclei (Ji = 2, 4, 6, 8, ...) usually decay by E2 transition to the lower-lying yrast level with Jf = Ji − 2. From the given experimental value of transition (2 → 0), one can calculate the value the parameter α2 2 for each isotopes and use this value to calculate the transition (8+ → 6+). 3. RESULTS AND DISCUSSIONS The transition from the first excited state to the ground state is assumed to be a pure E2, (2+ → 0+) transition. The best parameters for ground- state band in even-even isotopes 114−122Cd are pre- sented in Table 1. A summary of boson num- ber, 8+ energy level, gamma-ray transitions 8+ to 6+, experimental B(E2) ↓ between 2+ to ground- state and reduced transition probabilities between 8+ to 6+ level of even even nuclei from 112Cd to 122Cd, are presented in Table 2. The calculated results using frame work of IBM-1 are compared with the previous available experimental results. Table 1. Parameters in (keV ) for even-even 114−122Cd isotopes [18] A ε K1 K4 K5 114 768.71 -33.62 -16.40 15.69 116 483.66 26.22 -34.54 14.14 118 484.78 26.29 -30.35 9.17 120 292.83 66.94 -29.95 5.72 122 521.45 55.09 -40.52 1.52 3.1. Boson numbers (N) A boson represents the pair of valence nucleons and the boson number is counted as the number of collec- tive pairs of the valence nucleons. A simple correla- tion exists between the nuclei showing identical spec- tra and their valence neutron proton (Np), neutron number (Nn). The number of valance proton Np and neutron (Nn) has a total N = (Np+Nn)/2 = nπ+nν bosons At present 132Sn doubly-magic nucleus is taken as an inert core to find boson number of 114Cd to 122Cd nuclei and they are presented in Table 2. 20 Table 2. Reduced transition probability B(E2) ↓ from level 8+1 → 6+1 Nucl. Boson 8+ level⋆ γ Energy ⋆B(E2) B(E2) B(E2)IBM−1 ⋆B(E2) num. in keV (8+ → 6+) (2+ → 0+) (2+ → 0+) (8+ → 6+) (8+ → 6+) N = nπ + nν keV W.U. e2b2 e2b2 e2b2 114Cd 9=1+8 2669 678 31(19) 0.102 0.272 0.279(71) 116Cd 8=1+7 2824 798 33.5(12) 0.113 0.281 118Cd 7=1+6 2591 771 33(3) 0.113 0.259 120Cd 6=1+5 2886 853 27 0.095 0.190 122Cd 5=1+4 3062 849 26(14) 0.093 0.149 ⋆Ref. [6,21-28] 3.2. The R4/2 classification In the collective dynamics of energies of even- even nuclei are grouped into classes, within each class the ratio: R4/2 = E(4+1 )/E(2+1 ) of excita- tion energies of the first 4+ and the first 2+ ex- cited states. As pointed out by other similar ra- tios were characteristics of different collective mo- tions of the nucleus. An harmonic vibrator has E(4+1 )/E(2+1 ) = 2.00, an axially symmetric rotor should have E(4+1 )/E(2+1 ) = 3.33, while X(5) behav- ior should have E(4+1 )/E(2+1 ) = 2.91. The variation of the E(4+1 )/E(2+1 ) values as a function of even neu- tron numbers of Cadmium isotopes for experimental values, IBM-1, U(5), O(6) and SU(3) limits are presented in Fig.1. We identified U(5) − O(6) tran- sitional symmetry in even-even nuclei with Z = 48 and N = 66, 68, 70, 72, 74 with a range 2.04 < R4/2 < 2.20. But they are near to U(5) symmetry. 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 65 70 75 IBM-1 Expt U(5) O(6) SU(3) E 4+ /E 2+ v al ue Neutron number Fig.1. E(4+1 )/E(2+1 ) values as a function of neu- tron numbers of Cadmium isotopes 114−122Cd for experimental values, IBM-1, U(5), O(6) and SU(3) limit 0 1 2 3 4 5 6 65 70 75 IBM-1(E4/E2) Expt(E4/E2) IBM-1(E6/E2) Expt(E6/E2) IBM-1(E8/E2) Expt(E8/E2) E2/E2 R L= E( L+ )/E 2+ Neutron number Fig.2. The yrast sequences of ground state band of RL = E(L+)/E(2+1 ) as a function of neutron numbers (normalized to the energy of their respective 2+1 levels) in 114−122Cd nuclei In Fig.2, we present the energies of the yrast se- quences of ground state band using IBM-1 (nor- malized to the energy of their respective 2 levels) in these nuclei and compared them with previous experimental values [6, 21-28]. We present the comparisons of the ratios RL = E(L+)/E(2+1 ) in the ground-state band (a usually adopted measure of nuclear collectivity), using the neutron numbers N = 66, 68, 70, 72, 74. From Figs.1 and 2, we can see that IBM-1 calculation fit the U(5)−O(6) predic- tions generally. However, we find that the RL values are consistently smaller in the IBM calculations than in experimental values. 3.3. Reduced transition probabilities B(E2) The values of the reduced transition probabilities have been fitted the calculated absolute strengths B(E2) of the transitions within the ground state band to the experimental ones. The value of the effec- tive charge α2 of the IBM-1 was determined by nor- malizing to the experimental data B(E2; 2+1 → 0+1 ) of each isotope by using Eq.(1). From the given 21 experimental value of the transitions (2 → 0), we calculated value of the parameter α2 2 for each iso- tope and used this value to calculate the tran- sition (8+ → 6+). The B(E2) values are pre- sented in Table 2, where the experimental data is compared with the present calculations and other previous work [6, 21-28]. The theoretical and ex- perimental values of B(E2) values are plotted as a function of even neutrons represented in Fig.3. 0.1 0.15 0.2 0.25 0.3 0.35 65 70 75 IBM-1 Expt (8 + t o 6+ ) B (E 2) e 2 b2 Neutron number Fig.3. Reduced transition probabilities B(E2 : 8+ → 6+) as a function of even neutron numbers of 114−122Cd isotopes The calculated reduced transition probabilities us- ing IBM-1 as a function of neutrons number slowly increase from 0.272 e2b2 to 0.282 e2b2 in the neu- tron number from 66 to 68, and then decrease to 0.149 e2b2 for up to neutron number 74. In Fig.3, results of the present work are compared with the available previous experimental values and shows good agreement for N = 66. Moreover, the gen- eral agreement between the calculation and their previous experimental values for B(E2; 8+ → 6+) transition in Cd isotopes show a little different for N = 66. Using IBM-1 in Fig.3, B(E2) values for the transition 8+ to 6+ decrease smoothly after the neutron number N = 68. The B(E2) values of the Z = 48 isotopes with N < 68 differ significantly from those with N > 68. This difference proba- bly originates from the orbital occupied by valance neutron; in the ground state with Z = 48, the va- lence protons occupy hole-like states in the Z = 50 closed shell, with a main configuration πg−2 9/2. The valence neutrons occupy mainly particle-like states in the 50 − 82 shells. Due to the proton-neutron interaction, the nucleus is deformed. In 114Cd66 and 116Cd68 isotopes the valance neutrons occupy in the 2d3/2 orbitals while for 118,120,122Cd isotopes, the valance neutrons occupy in the 3S1/21h11/2 orbitals. The nuclei 114Cd by IBM-1 model nicely repro- duced the experiment data and were fit satisfactory. 0.5 1 1.5 2 2.5 3 3.5 4 65 70 75 IBM-1(E4/E2) Expt(E4/E2) IBM-1(E6/E2) Expt(E6/E2) IBM-1(E8/E2) Expt(E8/E2) E2/E2 IB M -1 (E 4/ E 2) Neutron number Fig.4. Comparison of the B(E2) values in IBM-1 and experimental value. The ratio R = B(E2 : L+ → (L − 2)+)/B(E2 : 2+ → 0+) in the ground state bands (normalized to the B(E2 : 2+ → 0+)) in these nuclei In Fig.4, we compare the ratio R = B(E2 : L+ → (L − 2)+)/B(E2 : 2+ → 0+) of IBM-1 and the pre- vious experimental values in the ground state bands (normalized to theB(E2 : 2+ → 0+)) as a function of even neutron number in these nuclei. We found that the R values were consistently smaller in the IBM calculations than in the experimental values. How- ever, we could see that the best agreement is closed to the calculations with neutron number N = 66. Actually, in IBM-1 the proton and neutron bosons are not distinguishable as long as valence protons and neutrons are both hole-like or both particle-like [2]. The large B(E2) values in 114Cd and 116Cd nuclei are the main indicator of vibration characters. 4. CONCLUSIONS The evolution of nuclear low-lying yrast states in the even neutron-rich 114−122Cd isotopes were investi- gated within the interaction boson model (IBM-1). As a measure to quantify the evolution, we calcu- lated the energy ratios of yrast states and the B(E2) transition rates of some of the low-lying quadrupole collective states in comparison to the available exper- imental data. It is seen that ground state band up to 8+ levels and electric quadrupole reduced transition probability of those nuclei are in good agreement with the previous experimental results. The even- even 114−122Cd isotopes in U(5) − O(6) transitional symmetry were also investigated. ACKNOWLEDGEMENTS Acknowledgement. This work was funded by the Deanship of Scientific Research (DSR), King Ab- dulaziz University, Jeddah. Therefore, the authors thankfully acknowledge the technical and financial support of DSR. 22 References 1. N.Turkan and I.Maras E(5) // Math. and com- put. Appli., 2010, v.16, p.428. 2. F. Iachello and A.Arima // The interacting bo- son model. Cambridge Univ. Press, Cambridge, 1987. 3. R.Kumar, A. Sharma, and J.B.Gupta // Arme- nian J. Phys. 2010, v.3, p.150. 4. A.Aphahamian, D. S. Brenner, R. F.Casten and K.Heyda // Phys. Lett. v.B.140, p.22. 5. A.Makishima, M.Asai, T. Ishii, I. Hossain, M.Ogawa, S. Ichikawa and M. Ishii // Phys. Rev. 1999, v.C.59, p.2331. 6. H.Y.Abdulla, I. Hossain, I.M.Ahmed, S. T.Ahmed, W.Q.Karwan, M.K.Kasimin, J. C.Chong, K.K.Viswanathan and N. Ibrahim // Int J. Phys. Sci. 2011, v.6, p.901. 7. M.Gorska, H.Grawe, D. Foltescu, D. Fossan, R.Grzywacz, J. Heese, K.Maier M.Rejmund, H.Roth, R. Schubart // Zeitschrift für Physik A. Hadrons and Nuclei. 1995, v.353, p.233. 8. N.Mrginean, D.Bucurescu, A.C.Rossi, L. Skouras, L. Johnstone, D.Bazzacco, S. Lunardi , de G.Angles, M.Axiotis // Phys. Rev. 2003, v.C.67(6), p.61310. 9. M. Smbataro // Nucl. Phys. 1982, v.A.380, p.365. 10. M.Deleze et al. // Nucl. Phys. 1993, v.A.551, p.269. 11. P. E. Garrett, K. L.Green, and J. L.Wood // Phys. Rev. 2008, v.C.78, p.044307. 12. K.Heyde , P.Van Isacker, Waroquier, and Wenes // Phys. Rev. 1928, v.C.25, p.3160. 13. P. V. Isacker, S. Pittel, A. Frank, P. D. Duval // Nucl. Phys. 1986, v.A451, p.202. 14. I. Inci, D.Bonatsos, I. Boztosun // Phys. Rev. 2011, v.C.84, p.024309. 15. D.Bonatsos, P. E.Georgoudis, D. Lenis, N.Minkov, and C.Quesne // Phys. Rev. 2011, v.C.83, p.044321. 16. L. Prochniak et al. // Int. J. Mod. Phys. 2012, v.E.21, p.1250036. 17. G. L. Long, S. J. Zhut and H. Z. Sun // J. Phys. G; Nucl. Part. Phys. 1995, v.21, p.331. 18. I. Hossain, H.Y.Abdullah, I.M.Ahmed, M.A. Saeed and S.T.Ahmed // Int. J. Modern Phys. 2012, v.E.21, p.1250072. 19. I. Hossain, H.Y.Abdullah, I.M.Ahmed, M.A. Saeed and S.T.Ahmed // Armenian J. Phys. 2012, v.5, p.101. 20. R. F.Casten, D.D.Warner // Rev. Mod. Phys. 1988, v.60, p.389. 21. T.Venkova, W.Andrejtscheff // Atomic Data and Nucl. Data Tab. 1981, v.26, p.93. 22. MEl-Khoshi // II Nuovo Cimento A. 1993, v.106, p.875. 23. S.Raman, C.Malakey, W.Milner, C.Nestor // Atomic data Nucl. Data Tab. 1987, v.36, p.1. 24. J. Blachot // Nucl. data sheets. 2002, v.97, p.593. 25. J. Blachot // Nucl. data sheets. 2010, v.111, p.717. 26. K.Kitao // Nucl. data sheets. 1995, v.75, p.99. 27. K.Kitao // Nucl. data sheets. 2002, v.96, p.241. 28. Tamuza // Nucl. data sheets. 2007, v.108, p.455. ÝÂÎËÞÖÈß YRAST-ÑÎÑÒÎßÍÈÉ È ÂÅËÈ×ÈÍÛ ÏÅÐÅÕÎÄΠB(E2 : 8+1 → 6+1 ) 114, 116, 118, 120, 122Cd  ÌÎÄÅËÈ ÂÇÀÈÌÎÄÅÉÑÒÂÓÞÙÈÕ ÁÎÇÎÍΠ(IBM-1) È.Õîññàéí, Åâàß.Àáäóëëàõ, È.Ì.Àõìåä, À.À.Ìóðàðàê Ïðåäñòàâëåíà ýâîëþöèÿ yrast-óðîâíåé íèçêîëåæàùåé ñòðóêòóðû â áîãàòîì íåéòðîíàìè ÷åòíî-÷åòíîì ÿäðå 114−122Cd â ðàìêàõ ìîäåëè âçàèìîäåéñòâóþùèõ áîçîíîâ (IBM-1). Âåðîÿòíîñòè èçìåíåííûõ (reduced) ïåðåõîäîâ B(E2) ↓ ìåæäó ñîñòÿíèÿìè 8+1 è 6+1 â áîãàòîì íåéòðîíàìè ÷åòíî-÷åòíîì ÿäðå Cd äëÿ N = 66, 68, 70, 72, 74 áûëè ðàñ÷èòàíû ñ ïîìîùüþ IBM-1 è ñðàâíåíû ñ ðàíåå èçâåñòíûìè ýêñïåðèìåí- òàëüíûìè âåëè÷èíàìè. Ðàññ÷èòàííûå âåëè÷èíû 114Cd, 116Cd, 118Cd, 120Cd è 122Cd ðàâíû 0.272 e2b2, 0.281 e2b2, 0.259 e2b2, 0.190 e2b2 è 0.149 e2b2, ñîîòâåòñòâåííî. Îòíîøåíèå ýíåðãèé âîçáóæäåíèÿ ïåðâîãî 4+ è ïåðâîãî 2+ âîçáóæäåííûõ ñîñòîÿíèé R4/2 áûëè ðàññ÷èòàíû äëÿ ýòèõ ÿäåð. 114−122Cd èçîòîïû â U(5)−O(6) ñèììåòðèè ïåðåõîäîâ áûëè èññëåäîâàíû. Ìû èññëåäîâàëè ñèñòåìàòèêó B(E2) âåëè÷èí, êàê ôóíêöèþ ÷åòíûõ íåéòðîíîâ îò N = 66 äî 74. Êðîìå òîãî, èçó÷àÿ êîëè÷åñòâåííî ýâîëþöèþ, ìû ñèñòåìàòè÷åñêè èçó÷èëè îòíîøåíèÿ ýíåðãèé îñíîâíûõ ñîñòîÿíèé RL = E(L+)/E(2+1 ) è âåëè÷èíó R = B(E2 : L+ → (L− 2)+)/B(E2 : 2+ → 0+) äëÿ ïåðåõîäîâ íåñêîëüêèõ íèçêîëåæàùèõ êâàäðóïîëü- íûõ êîëëåêòèâíûõ ñîñòîÿíèé è ñðàâíèëè ñ äîñòóïíûìè ýêñïåðèìåíòàëüíûìè äàííûìè. 23 ÅÂÎËÞÖIß YRAST-ÑÒÀÍI ÒÀ ÂÅËÈ×ÈÍÈ ÏÅÐÅÕÎÄI B(E2 : 8+1 → 6+1 ) 114, 116, 118, 120, 122Cd Ó ÌÎÄÅËI ÂÇÀ�ÌÎÄIÞ×ÈÕ ÁÎÇÎÍI (IBM-1) I.Õîññàéí, �âàß.Àáäóëëàõ, I.Ì.Àõìåä, À.À.Ìóðàðàê Ïðåäñòàâëåíà åâîëþöiÿ yrast-ðiâíiâ íèçüêîëåæà÷î¨ ñòðóêòóðè â áàãàòîìó íåéòðîíàìè ïàðíî-ïàðíîìó ÿäði 114−122Cd ó ðàìêàõ ìîäåëi âçà¹ìîäiþ÷èõ áîçîíiâ (IBM-1). Âiðîãiäíîñòi çìiíåíèõ (reduced) ïå- ðåõîäiâ B(E2) ↓ ìiæ ñòàíàìè 8+1 i 6+1 ó áàãàòîìó íåéòðîíàìè ïàðíî-ïàðíîìó ÿäði Cd äëÿ N = 66, 68, 70, 72, 74 áóëè ðîçðàõîâàíi çà äîïîìîãîþ IBM-1 i ïîðiâíÿíi ç ðàíiøå âiäîìèìè åêñïåðèìåíòàëüíèìè âåëè- ÷èíàìè. Ðîçðàõîâàíi âåëè÷èíè 114Cd, 116Cd, 118Cd, 120Cd i 122Cd äîðiâíþþòü 0.272 e2b2, 0.281 e2b2, 0.259 e2b2, 0.190 e2b2 òà 0.149 e2b2, âiäïîâiäíî. Ñïiââiäíîøåííÿ åíåðãié çáóäæåííÿ ïåðøîãî 4+ òà ïåð- øîãî 2+ çáóäæåíèõ ñòàíiâ R4/2 áóëè ðîçðàõîâàíi äëÿ öèõ ÿäåð. 114−122Cd içîòîïè â U(5)−O(6) ñèìåòði¨ ïåðåõîäiâ áóëè äîñëiäæåíi. Ìè äîñëiäèëè ñèñòåìàòèêó B(E2) âåëè÷èí, ÿê ôóíêöiþ ïàðíèõ íåéòðîíiâ âiä N = 66 äî 74. Êðiì òîãî, âèâ÷àþ÷è êiëüêiñíî åâîëþöiþ, ìè ñèñòåìàòè÷íî âèâ÷èëè ñïiââiäíîøåííÿ åíåðãié îñíîâíèõ ñòàíiâ RL = E(L+)/E(2+1 ) òà âåëè÷èíó R = B(E2 : L+ → (L− 2)+)/B(E2 : 2+ → 0+) äëÿ ïåðåõîäiâ êiëüêîõ íèçüêîðîçìiùåíèõ êâàäðóïîëüíèõ êîëåêòèâíèõ ñòàíiâ òà ïîðiâíÿëè ç íàÿâíèìè åêñïåðèìåíòàëüíèìè äàíèìè. 24