Methods of calculation of cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn

The cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn is expected by different methods. Results of the got cross section it is well comported inter se the Penfold-Leiss and Tikhonov's methods. The calculation of cross section is conducted the Penfold-Leiss method with smoothing out by the method of...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2015
Автори: Zhaba, V.I., Parlag, A.M.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/112124
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Methods of calculation of cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn / V.I. Zhaba, A.M. Parlag // Вопросы атомной науки и техники. — 2015. — № 3. — С. 34-37. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112124
record_format dspace
spelling Zhaba, V.I.
Parlag, A.M.
2017-01-17T17:23:26Z
2017-01-17T17:23:26Z
2015
Methods of calculation of cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn / V.I. Zhaba, A.M. Parlag // Вопросы атомной науки и техники. — 2015. — № 3. — С. 34-37. — Бібліогр.: 14 назв. — англ.
1562-6016
PACS: 24.75+1, 25.85.-w, 25.85. Ec, 25.85. Ca
https://nasplib.isofts.kiev.ua/handle/123456789/112124
The cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn is expected by different methods. Results of the got cross section it is well comported inter se the Penfold-Leiss and Tikhonov's methods. The calculation of cross section is conducted the Penfold-Leiss method with smoothing out by the method of iterations. Number of iterations n = 1; 3; 5. In the programmatic package of TALYS-1.4 got cross section for five models of closeness of levels. Theoretical and experimental results well coincide in a maximum.
Переріз реакції ¹¹⁵In(γ, n) ¹¹⁴mIn розраховано різними методами. Результати отриманого перерізу методами Пенфольда-Лейсса і Тіхонова добре узгоджуються між собою. Розрахунок перерізу методом Пенфольда-Лейсса проведено зі згладжуванням методом ітерацій. Число ітерацій n = 1; 3; 5. У програмному пакеті TALYS-1.4 отримано переріз для п'яти моделей густини рівнів. Теоретичні та експериментальні результати добре співпадають у максимумі.
Сечение реакции ¹¹⁵In(γ, n) ¹¹⁴mIn рассчитано разными методами. Результаты полученного сечения методами Пенфольда-Лейсса и Тихонова хорошо согласуются между собой. Расчет сечения методом Пенфольда-Лейсса проведен со сглаживанием методом итераций. Число итераций n = 1; 3; 5. В программном пакете TALYS-1.4 получены сечения для пяти моделей плотности уровней. Теоретические и экспериментальные результаты хорошо совпадают в максимуме.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Ядерная физика и элементарные частицы
Methods of calculation of cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn
Методи розрахунку перерiзу реакцiї ¹¹⁵In(γ, n) ¹¹⁴mIn
Методы расчета сечения реакции ¹¹⁵In(γ, n) ¹¹⁴mIn
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Methods of calculation of cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn
spellingShingle Methods of calculation of cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn
Zhaba, V.I.
Parlag, A.M.
Ядерная физика и элементарные частицы
title_short Methods of calculation of cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn
title_full Methods of calculation of cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn
title_fullStr Methods of calculation of cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn
title_full_unstemmed Methods of calculation of cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn
title_sort methods of calculation of cross section of reaction ¹¹⁵in(γ, n) ¹¹⁴min
author Zhaba, V.I.
Parlag, A.M.
author_facet Zhaba, V.I.
Parlag, A.M.
topic Ядерная физика и элементарные частицы
topic_facet Ядерная физика и элементарные частицы
publishDate 2015
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Методи розрахунку перерiзу реакцiї ¹¹⁵In(γ, n) ¹¹⁴mIn
Методы расчета сечения реакции ¹¹⁵In(γ, n) ¹¹⁴mIn
description The cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn is expected by different methods. Results of the got cross section it is well comported inter se the Penfold-Leiss and Tikhonov's methods. The calculation of cross section is conducted the Penfold-Leiss method with smoothing out by the method of iterations. Number of iterations n = 1; 3; 5. In the programmatic package of TALYS-1.4 got cross section for five models of closeness of levels. Theoretical and experimental results well coincide in a maximum. Переріз реакції ¹¹⁵In(γ, n) ¹¹⁴mIn розраховано різними методами. Результати отриманого перерізу методами Пенфольда-Лейсса і Тіхонова добре узгоджуються між собою. Розрахунок перерізу методом Пенфольда-Лейсса проведено зі згладжуванням методом ітерацій. Число ітерацій n = 1; 3; 5. У програмному пакеті TALYS-1.4 отримано переріз для п'яти моделей густини рівнів. Теоретичні та експериментальні результати добре співпадають у максимумі. Сечение реакции ¹¹⁵In(γ, n) ¹¹⁴mIn рассчитано разными методами. Результаты полученного сечения методами Пенфольда-Лейсса и Тихонова хорошо согласуются между собой. Расчет сечения методом Пенфольда-Лейсса проведен со сглаживанием методом итераций. Число итераций n = 1; 3; 5. В программном пакете TALYS-1.4 получены сечения для пяти моделей плотности уровней. Теоретические и экспериментальные результаты хорошо совпадают в максимуме.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/112124
citation_txt Methods of calculation of cross section of reaction ¹¹⁵In(γ, n) ¹¹⁴mIn / V.I. Zhaba, A.M. Parlag // Вопросы атомной науки и техники. — 2015. — № 3. — С. 34-37. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT zhabavi methodsofcalculationofcrosssectionofreaction115inγn114min
AT parlagam methodsofcalculationofcrosssectionofreaction115inγn114min
AT zhabavi metodirozrahunkupererizureakcií115inγn114min
AT parlagam metodirozrahunkupererizureakcií115inγn114min
AT zhabavi metodyrasčetasečeniâreakcii115inγn114min
AT parlagam metodyrasčetasečeniâreakcii115inγn114min
first_indexed 2025-11-27T08:31:15Z
last_indexed 2025-11-27T08:31:15Z
_version_ 1850806012737486848
fulltext METHODS OF CALCULATION OF CROSS SECTION OF REACTION 115In(γ, n)114mIn V. I.Zhaba, A.M.Parlag ∗ Uzhhorod National University, 88000, Uzhhorod, Voloshin Str., 54 (Received January 27, 2015) The cross section of reaction 115In(γ, n)114mIn is expected by different methods. Results of the got cross section it is well comported inter se the Penfold-Leiss and Tikhonov’s methods. The calculation of cross section is conducted the Penfold-Leiss method with smoothing out by the method of iterations. Number of iterations n = 1; 3; 5. In the programmatic package of TALYS-1.4 got cross section for five models of closeness of levels. Theoretical and experimental results well coincide in a maximum. PACS: 24.75+1, 25.85.-w, 25.85. Ec, 25.85. Ca 1. INTRODUCTION The purpose of the majority of physical researches that are carried spent on brake beams electronic accelerators,- studying of power dependence of cross sections of different photonuclear processes. As the spectrum received from the accelerator γ-quantum’s has continuous character, therefore in experiment not cross section is measure of reaction, it is so-called output. The output is intensity photonuclear to the process, the doze attributed to unit γ-quantums that have passed through a target with researched sub- stance at various values of the top border of a brake spectrum [1]. The output is directly connected with effective cross section of reaction by integrated equation Fred- holm’s (or Voltera’s) the first sort: Y (Eγmax) = ∫ Eγmax Enop σ(E)Φ(E, Eγmax)dE , (1) where Em - a threshold of reaction, Eγmax - the max- imal energy of a spectrum brake γ- quantum’s, σ(E) - cross section of reaction, Φ(E, Eγmax) - a spec- trum of brake radiation (Shiff’s spectrum [2]). So, the cross section of reaction can be received from experimental data about output as a result of the decision of a return task (1). For the numerical de- cision of this task mathematical methods have been developed. The most widespread methods are ”a dif- ference of photons”, ”the least structure” Cook’s [3], ”a return matrix” (Penfold-Leiss method) [4], ”regu- larizations” (Tikhonov’s method) [5-8]. Penfold-Leiss and Tikhonov’s methods differ the form of the effec- tive spectrum of photons hardware function of the method. It is the direct decision of a return task. But other methods of definition of cross section are also possible: a combination of outputs of reaction and a method of a reduction. Conditions of correct statement of Adamar’s task [6,7] is: 1) Existence of the decision in space of possible values for any curve of an output from space of her possible values; 2) The decision should be the only thing; 3) continuous dependence of the decision on the initial data. One more condition is that the cross section should be positive. 2. METHODS OF CALCULATION OF SECTION OF REACTION In a method of a return matrix [4] required cross sec- tion σ(Ej−∆E)/2 is defined on experimental outputs Y (Eγmax): σ(Ej −∆Ej/2) = Ej −∆Ej/2 f(Ej −∆Ej/2)∆Ej j∑ i=1 BjiYi , (2) where Bij – elements of a return matrix. The stan- dard deviation (2) is defined as δσ(Ej −∆Ej/2) = Ej −∆Ej/2 f(Ej −∆Ej/2)∆Ej ×√√√√ j∑ i=1 (Bji) 2 (∆Yi) 2 , (3) where ∆Yi - a standard deviation of experimental value Yi. One more method of the decision of the integrated equation (1) is three dot method or measurement of photonuclear cross sections with the help ”quasi- monochromatic” γ-quantum’s of brake radiation [9]. For the fixed values j elements Bj,j−1, Bj,j−3, Bj,j−5 have negative values, and also at i < j− 2 values Bji are decreased very quickly. Using these properties of ∗Corresponding author E-mail address: parlag.oleg@gmail.com 34 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2015, N3(97). Series: Nuclear Physics Investigations (64), p.34-37. elements Bj,i for the analysis of cross section σ(Eγ), it is possible to write down σj1 = Ej −∆Ej/2 f(Ej −∆Ej/2)∆Ej × (Bj,j −Bj,j−2) Yj − Yj−2 2∆E , (4) σj2 = Ej −∆Ej/2 f(Ej −∆Ej/2)∆Ej ∆E 2 × (Bj,j −Bj,j−2) Yj − 2Yj−1 + Yj−2 ∆E2 . (5) Numerical experiment in the work [9] has shown, that cross section (Ej − ∆E/2) can be approximated by expression σ̃ = σ(Ej −∆Ej/2) = σj,1 + σj,2 . (6) According to this method the cross section of pho- tonuclear reaction can be found on three experimen- tal values of output Y (Eγmax), received on a brake beam for three different values of maximal energy Eγmax. In Cook’s method [3] set of σj s will be considered as acceptable solution to equation (1) if χ2(σj) = n∑ i=1 ( ∑ Bi,jσj − Yi) 2 (∆Yi) 2 ≤ n . (7) The ”most smooth” set of decisions is chosen from physical decisions. For this purpose an auxiliary func- tion S(σj) called ”the structure function” will be de- fined. Within certain wide limits, the exact definition of S(σj) is arbitrary. Several definitions of S(σj) have been extensively explored, namely: S1(σj) = n−1∑ j=1 (σj+1 − σj) 2 , (8) and S2(σj) = n∑ j=2 (σj+1 − 2σj + σj−1) 2 . (9) In Tikhonov’s method a choice of the approached cross section the principle of smoothness [7] of set of ”formal” decisions σ(k), satisfying a condition is used m∑ j=1 [∫ Ej Em a(Ej , k)σ(k)dk − y(Ej) ]2 [dy(Ej)] 2 ≤ m (10) is chosen such, for which special functional Ω[σ] = ∫ Emax Em [ σ2(k) + ( dσ(k) dk )2 ] dk (11) if has the minimal value. That is the finding of func- tion σ(k) is reduced to search of a minimum func- tional α M = ∥∥∥∥∥ ∫ E Em a(E, k)σ(k)dk − y(E) ∥∥∥∥∥+ αΩ[σ] , (12) where α – parameter regularizations. In work [1] research of influence by miscellaneous of methods of smoothing of an experimental curve of an output on power dependence of cross section of re- action (γ, γ′) is carried out. By the example of reac- tion 115In(γ, n)115mIn it is shown, that smoothings by a method of iterations and a method of approxi- mation give three variants of power dependence of dif- ferential cross section. In some power area the cross section has negative values, and it testifies about ”not physical” results. To remove this discrepancy in cal- culations, it is necessary to impose a requirement: the cross section should be the positive. 3. CALCULATIONS OF CROSS SECTION OF REACTION 115In(γ, n)114mIn AND CONCLUSIONS Calculation of differential cross section of reaction was spent on outputs from work [10]. Results of calculation of cross section are resulted by Penfold- Leiss method on Fig.1. Smoothing cross section by a method of iterations was used. Number of iterations n = 1; 3; 5. The received cross section σ(E) > 0 also is quite comparable to the data in [11,12]. On Fig.1 comparison calculations with the data of op- eration [11] is made. Nuclear performances of an isomers 114mIn is specified in Table 1, where Em – a threshold (γ, n) – responses that gives in for- mation of an isomer; T1/2 – a half-life period; Eγ – energy γ- quantum’s that radiates an isomer; Jm, Jg – the complete moment isomeric and the basic states; ”+”, ”−” – paired relationship of a state. Fig.1. Cross section of reaction 115In(γ, n)114mIn (Penfold-Leiss method) Table 1. Nuclear characteristics of an isomers In Isomer Em T1/2 Eγ Jg Jm MeV keV 113mIn 0.39 1.658 h 392 9/2+ 1/2- 114mIn 9.23 43 ms 310 1+ 8- 115mIn 0.33 4.486 h 336 9/2+ 1/2- For Tikhonov’s method a nucleus of the equa- tion (1) will be Shiff’s spectrum Φ(E, Eγmax). Thus 35 it is necessary to take into account function of re- sponse of the absolute chamber f(E). On Fig.2 the cross section received by a method of Tikhonov’s is resulted. The difference between calculations by Penfold-Leiss and Tikhonov’s methods makes 5...7%. Fig.2. Cross section of reaction 115In(γ, n)114mIn (Tikhonov’s method) For calculation of cross section of reaction 115In(γ, n)114mIn is possible to use programmatic package TALYS-1.4 [13,14]. At calculations of cross section in TALYS-1.4 is possible to choose a level density model per nuclide considered in the reaction (parameter ldmodel). There are 3 phenomenological level density models and 2 options for microscopic level densities: ldmodel 1 – constant temperature + Fermi gas model; ldmodel 2 – back-shifted Fermi gas model; ldmodel 3 – generalised superfluid model; ld- model 4 – microscopic level densities from Goriely’s table; ldmodel 5 – microscopic level densities from Hi- laire’s table. In package TALYS-1.4 the cross section of reaction 115In(γ, n)114mIn in the interval of en- ergies 10...25MeV with step 0.1MeV is numerically designed. In Fig.3 is resulted the received results for five models of density of levels nuclide (ldmodel 1- 5). For ldmodel 1-3 value of cross section is relatives, and a maximum ∼ 58...59mb. Also differ from ex- perimental in 1.52 times. A maximum thus displaced to the left on 0.1MeV . The results of treatment of peaks of power dependences of section of reaction are driven to the Table 2, where next denotations are used: χ2 – value of function of selection; R2 – coeffi- cient of determination. As an approximating function the Gauss function was chosen: y = y0 + A w √ π/2 e−(x−xc) 2/w2 , (13) where A, w, xc - parameters of Gauss function. Fig.3. Cross section of reaction 115In(γ, n)114mIn (TALYS-1.4) Consequently, the cross section of reaction is expected by the Penfold-Leiss method, by the Tikhonov’s method and in the package of TALYS - 1.4. The got results well coincide in a maximum. Table 2. Results of treatment of peaks of section of reaction Model χ2 R2 Area Emax Width Offset σmax MeV mb ldmodel 1 2.21121 0.98574 168.40 15.632 3.8456 1.7953 34.941 ldmodel 2 2.14085 0.98681 175.97 15.672 3.9378 1.7112 35.656 ldmodel 3 2.09347 0.98714 177.93 15.698 3.9794 1.6275 35.674 ldmodel 4 2.19684 0.98902 199.53 15.742 4.0273 2.1202 39.530 ldmodel 5 2.67697 0.98810 206.03 15.633 3.9095 2.1692 42.048 [11] 2.37070 0.98893 232.66 15.715 5.0989 1.6392 36.407 References 1. V. S. Bohinyuk, V. I. Zhaba, A.M.Parlag. On the reaction cross section energy dependence (γ, γ′) // Uzhhorod Univ. Scien. Herald. Ser. Phys. 2012, N.31, p.111-115 (in Ukrainian). 2. L. I. Schiff. Energy-Angle Distribution of Thin Target Bremsstrahlung // Phys. Rev. 1951, v.83, p.252-253. 3. B.C.Cook. Least structure solution of photonu- clear yield function // Nucl. Instrum. Meth. 1963, v.24, N3, p.256-268. 4. A. S. Penfold, J.E. Leiss. Analysis of Photonu- clear Cross Sections // Phys. Rev. 1959, v.114, N5, p.1332-1337. 5. A.N.Tikhonov, A.V.Honcharovskiy, V.V. Stepanov, et al. Numerical methods of 36 the decision of incorrect tasks. Moscow: ”Sci- ence”, 1990, 229 p. (in Russian). 6. A.N.Tikhonov, V. J.Arsenin. Methods of the de- cision of incorrect tasks. Moscow: ”Science”, 1979, 288 p. (in Ukrainian). 7. V.V.Varlamov, B. S. Ishhanov, I.M.Kapitonov. Photonuclear reactions/ The modern status of experimental data: the Manual. Moscow: ”Univ. book”, 2008, 304 p.(in Russian). 8. V. I. Zhaba. Methods of calculation of sections of photonuclear reactions // Materials and the program of scientific and technical conference ”Physics, electronics, the electrical engineer”. Sumy: ”Sum. stat. Univ.”, 2014, p. 59 (in Ukrainian). 9. H.H.Thies, N.Dytlewski, S. Sherlock, et al. Measurement of photonuclear cross-sections with quasi-monochromatic photons using bremsstrahlung // Nucl. Instrum. Meth. 1980, v.178, N1, p.181-185. 10. I. I. Haysak, I. V.Khimich, A.M.Parlag, et al. The report on research work. Experimental and theoretical research of interaction electrons and photons in area energy up to 25MeV . N stat. reg. 0109U000873. Uzhhorod: ”Uzhh. nat. Univ”, 2011, 150 p. (in Ukrainian). 11. V. S. Bohinyuk, A.M.Parlag, V.A. Pylypchenko. Investigation of the exitation of isomeric states for indium isotopes in the reactions (γ, γ′), (γ, n) // Uzhhorod Univ. Scien. Herald. Ser. Phys. 2011, N30, p. 154-159 (in Ukrainian). 12. J. Z. Beseda, V. S. Bohinyuk, M.T. Sabolchij. Re- search of function excitation briefly the period isomeric conditions 114mIn // Ukr. Phys. Journ. 1995, v.40, N6, p.536-538 (in Ukrainian). 13. A. J.Koning, S.Hilarie, M.C.Duijvestijn. Talys- 1.0. Proceed. of the Intern // Conference on Nucl. Data for Science and Technology, Nice, France: ”EDP Science”, 2008, p.211-214. 14. TALYS: Home: // www.talys.eu ÌÅÒÎÄÛ ÐÀÑ×ÅÒÀ ÑÅ×ÅÍÈß ÐÅÀÊÖÈÈ 115In(γ, n)114mIn Â.È. Æàáà, À.Ì. Ïàðëàã Ñå÷åíèå ðåàêöèè 115In(γ, n)114mIn ðàññ÷èòàíî ðàçíûìè ìåòîäàìè. Ðåçóëüòàòû ïîëó÷åííîãî ñå÷åíèÿ ìåòîäàìè Ïåíôîëüäà-Ëåéññà è Òèõîíîâà õîðîøî ñîãëàñóþòñÿ ìåæäó ñîáîé. Ðàñ÷åò ñå÷åíèÿ ìåòîäîì Ïåíôîëüäà-Ëåéññà ïðîâåäåí ñî ñãëàæèâàíèåì ìåòîäîì èòåðàöèé. ×èñëî èòåðàöèé n = 1; 3; 5.  ïðî- ãðàììíîì ïàêåòå TALYS-1.4 ïîëó÷åíû ñå÷åíèÿ äëÿ ïÿòè ìîäåëåé ïëîòíîñòè óðîâíåé. Òåîðåòè÷åñêèå è ýêñïåðèìåíòàëüíûå ðåçóëüòàòû õîðîøî ñîâïàäàþò â ìàêñèìóìå. ÌÅÒÎÄÈ ÐÎÇÐÀÕÓÍÊÓ ÏÅÐÅÐIÇÓ ÐÅÀÊÖI� 115In(γ, n)114mIn Â.I. Æàáà, Î.Ì. Ïàðëàã Ïåðåðiç ðåàêöi¨ 115In(γ, n)114mIn ðîçðàõîâàíî ðiçíèìè ìåòîäàìè. Ðåçóëüòàòè îòðèìàíîãî ïåðåðiçó ìå- òîäàìè Ïåíôîëüäà-Ëåéññà i Òiõîíîâà äîáðå óçãîäæóþòüñÿ ìiæ ñîáîþ. Ðîçðàõóíîê ïåðåðiçó ìåòîäîì Ïåíôîëüäà-Ëåéññà ïðîâåäåíî çi çãëàäæóâàííÿì ìåòîäîì iòåðàöié. ×èñëî iòåðàöié n = 1; 3; 5. Ó ïðî- ãðàìíîìó ïàêåòi TALYS-1.4 îòðèìàíî ïåðåðiç äëÿ ï'ÿòè ìîäåëåé ãóñòèíè ðiâíiâ. Òåîðåòè÷íi òà åêñïå- ðèìåíòàëüíi ðåçóëüòàòè äîáðå ñïiâïàäàþòü ó ìàêñèìóìi. 37