Synchrotron radiation and its polarization from runaway electrons in toroidal magnetic fields
The formulas to describe synchrotron radiation and its polarization in toroidal magnetic field configurations are presented. The radiated power and direction of polarization of the synchrotron radiation spot of runaway electrons for medium-sized tokamaks are estimated. Two polarization models are pr...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2015 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/112143 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Synchrotron radiation and its polarization from runaway electrons in toroidal magnetic fields / Ya.M. Sobolev // Вопросы атомной науки и техники. — 2015. — № 4. — С. 135-139. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-112143 |
|---|---|
| record_format |
dspace |
| spelling |
Sobolev, Ya.M. 2017-01-17T18:25:26Z 2017-01-17T18:25:26Z 2015 Synchrotron radiation and its polarization from runaway electrons in toroidal magnetic fields / Ya.M. Sobolev // Вопросы атомной науки и техники. — 2015. — № 4. — С. 135-139. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 41.60.Ap, 52.55.Fa, 97.60.Gb https://nasplib.isofts.kiev.ua/handle/123456789/112143 The formulas to describe synchrotron radiation and its polarization in toroidal magnetic field configurations are presented. The radiated power and direction of polarization of the synchrotron radiation spot of runaway electrons for medium-sized tokamaks are estimated. Two polarization models are proposed. It is shown that the polarization measurements give additional diagnostics for the radiating relativistic electrons. Пропонуються формули, які описують синхротронне випромінювання (СВ) та його поляризацію в тороїдальній конфігурації магнітного поля. Дані оцінки потужності випромінювання і напрям поляризації у плямі синхротронного випромінювання утікаючих електронів для токамаків середніх розмірів. Розглянуто дві поляризаційні моделі. Показано, що вимірювання поляризації СВ може слугувати додатковим засобом для діагностики релятивістських електронів. Предлагаются формулы для описания синхротронного излучения (СИ) и его поляризации в тороидальных конфигурациях магнитного поля. Оценены излучаемая мощность и направления поляризации в пятне синхротронного излучения убегающих электронов с параметрами, характерными для токамаков средних размеров. Рассматриваются две модели формирования поляризации. Показано, что измерение поляризации СИ может быть дополнительным средством для диагностики излучающих релятивистских электронов. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Термоядерный синтез (коллективные процессы) Synchrotron radiation and its polarization from runaway electrons in toroidal magnetic fields Синхротронне випромінювання та його поляризація від утікаючих електронів у тороїдальному магнітному полі Синхротронное излучение и его поляризация от убегающих электронов в тороидальном магнитном поле Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Synchrotron radiation and its polarization from runaway electrons in toroidal magnetic fields |
| spellingShingle |
Synchrotron radiation and its polarization from runaway electrons in toroidal magnetic fields Sobolev, Ya.M. Термоядерный синтез (коллективные процессы) |
| title_short |
Synchrotron radiation and its polarization from runaway electrons in toroidal magnetic fields |
| title_full |
Synchrotron radiation and its polarization from runaway electrons in toroidal magnetic fields |
| title_fullStr |
Synchrotron radiation and its polarization from runaway electrons in toroidal magnetic fields |
| title_full_unstemmed |
Synchrotron radiation and its polarization from runaway electrons in toroidal magnetic fields |
| title_sort |
synchrotron radiation and its polarization from runaway electrons in toroidal magnetic fields |
| author |
Sobolev, Ya.M. |
| author_facet |
Sobolev, Ya.M. |
| topic |
Термоядерный синтез (коллективные процессы) |
| topic_facet |
Термоядерный синтез (коллективные процессы) |
| publishDate |
2015 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Синхротронне випромінювання та його поляризація від утікаючих електронів у тороїдальному магнітному полі Синхротронное излучение и его поляризация от убегающих электронов в тороидальном магнитном поле |
| description |
The formulas to describe synchrotron radiation and its polarization in toroidal magnetic field configurations are presented. The radiated power and direction of polarization of the synchrotron radiation spot of runaway electrons for medium-sized tokamaks are estimated. Two polarization models are proposed. It is shown that the polarization measurements give additional diagnostics for the radiating relativistic electrons.
Пропонуються формули, які описують синхротронне випромінювання (СВ) та його поляризацію в тороїдальній конфігурації магнітного поля. Дані оцінки потужності випромінювання і напрям поляризації у плямі синхротронного випромінювання утікаючих електронів для токамаків середніх розмірів. Розглянуто дві поляризаційні моделі. Показано, що вимірювання поляризації СВ може слугувати додатковим засобом для діагностики релятивістських електронів.
Предлагаются формулы для описания синхротронного излучения (СИ) и его поляризации в тороидальных конфигурациях магнитного поля. Оценены излучаемая мощность и направления поляризации в пятне синхротронного излучения убегающих электронов с параметрами, характерными для токамаков средних размеров. Рассматриваются две модели формирования поляризации. Показано, что измерение поляризации СИ может быть дополнительным средством для диагностики излучающих релятивистских электронов.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/112143 |
| citation_txt |
Synchrotron radiation and its polarization from runaway electrons in toroidal magnetic fields / Ya.M. Sobolev // Вопросы атомной науки и техники. — 2015. — № 4. — С. 135-139. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT sobolevyam synchrotronradiationanditspolarizationfromrunawayelectronsintoroidalmagneticfields AT sobolevyam sinhrotronnevipromínûvannâtaiogopolârizacíâvídutíkaûčihelektronívutoroídalʹnomumagnítnomupolí AT sobolevyam sinhrotronnoeizlučenieiegopolârizaciâotubegaûŝihélektronovvtoroidalʹnommagnitnompole |
| first_indexed |
2025-11-24T02:19:43Z |
| last_indexed |
2025-11-24T02:19:43Z |
| _version_ |
1850836744303280128 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2015. №4(98) 135
SYNCHROTRON RADIATION AND ITS POLARIZATION FROM
RUNAWAY ELECTRONS IN TOROIDAL MAGNETIC FIELDS
Ya.M. Sobolev
Institute of Radio Astronomy NASU, Kharkov, Ukraine
E-mail: sobolev@rian.kharkov.ua
The formulas to describe synchrotron radiation and its polarization in toroidal magnetic field configurations are
presented. The radiated power and direction of polarization of the synchrotron radiation spot of runaway electrons
for medium-sized tokamaks are estimated. Two polarization models are proposed. It is shown that the polarization
measurements give additional diagnostics for the radiating relativistic electrons.
PACS: 41.60.Ap, 52.55.Fa, 97.60.Gb
INTRODUCTION
Synchrotron radiation provides information about
the runaway electrons in tokamaks. Polarization meas-
urements will give extra features.
In [1] the formulas that take into account curvature of
magnetic field lines have been derived. In [2 - 4] the radi-
ation formulae of a relativistic charge moving along
bent spiral path have been generalized. The new expres-
sions for frequency spectra and polarization components
of synchrotron radiation were obtained. The synchrotron
radiation spectrum of runaway electrons in tokamak was
recieved in [5].
In [6] the polarization pattern of the synchrotron ra-
diation of runaway electrons in tokamak has been calcu-
lated.
The synchrotron radiation is the powerful tool to di-
agnose the parameters of relativistic runaway electrons.
This diagnostic provides a direct image of the runaway
beam inside the plasma. The radiation was measured in
infra-red and visual wavelength ranges [7 - 10].
Analysis of experimental data has shown that the
description of the synchrotron radiation of runaway
electrons in tokamaks is the case when you need to take
into account the curvature of magnetic field lines.
In this paper, we will continue to study the polariza-
tion of synchrotron radiation in a toroidal magnetic field
configuration, using formulas from [3, 6].
The topology of toroidal magnetic fields and drift
trajectories, the electron energies take values that are
typical for medium-size tokamaks.
The paper is organized as follows. The formulas
proposed to describe the synchrotron radiation are given
in Section 1. Terms of using these formulas instead of
classical formulas of synchrotron radiation are written
out.
In Section 2, the spectrum and polarization
properties of radiation emitted by relativistic electrons
are derived. The formulas for calculating the direction
of polarization are given. The contribution to the
radiation in the defined direction from one or two
emitting points is considered.
In Section 3, the polarization in synchrotron radia-
tion spot is calculated and discussed. The influence on
the polarization pattern of unequal shift of drift
trajectories is shown.
1. RADIATION FORMULAE IN CURVED
MAGNETIC FIELDS
The spectral power density of the synchrotron radia-
tion emitted by relativistic electrons moving within
magnetic field lines with curvature radius BR and mag-
netic field B is expressed by [3, 4]
),( C
C
C
ai
i qyfP
d
dP
λλ
= , (1)
−+
+
2
+
+=
∫
∫
−
+
∞
−
|1|
1
22
C
2
|q1|
CC
C
C
C
2
/1arcsin)(1
)(
16
39),(
a
a
a
q
y
q
y a
a
i
y
iai
q
xyqxdxF
xdxFyqyf
π
π
π
here 22
||
4 Ω= βγ
c
e
P
2
C 3
2 is the total power emitted by a
charged particle moving with velocity ||V along a circu-
lar orbit of radius BR , λλCy =C , ( )Ω≈ 3γπλ 34C the
characteristic radiation wavelength, BRV||=Ω ,
( )Da Rrq 2
B
2
B Ω=ω , ( )mceBB γω = , γ,, mee = are
the electron charge, mass, and Lorentz-factor, Br is the
Larmor radius, i denote the cases of π- and σ-
polarization,
( )( )3/13/53/23/5 2/1/ KKdxdKKF −=+=π ,
( )( )3/13/53/23/5 32/1/ KKdxdKKF +=−=σ ,
νK is the Macdonald function.
Formulas (1) contain the parameter aq that deter-
mines the radiation mode. The parameter aq is defined
as the quotient of the acceleration of the particle motion
in the small Larmor circle to the centrifugal acceleration
due to movement on the larger circumference of radius
equal to the radius of curvature of the magnetic field
line. Also, it is the ratio of Larmor’s speed BBrω to the
speed of centrifugal drift. This parameter indicates the
extent of changing the curvature radius along the parti-
cle trajectory. Formula (1) has classical synchrotron or
curvature radiation limits when 1>>aq or 1<<aq ,
respectively [3, 4].
ISSN 1562-6016. ВАНТ. 2015. №4(98) 136
The parameter aq can be written as
=
05.0
MeV40
cm200T2
5.1q α
E
RB
a ,
where energies E are measured in MeV, magnetic field
B is measured in T.
Equations (1) are valid for arbitrary values of the pa-
rameter aq . Formula (1) should be used whenever the
parameter value of the order of unity, 1~aq . In other
cases, the classical formulas of synchrotron radiation
can be applied.
Taking sum of components σπ FFF += in eq. (1)
we obtain the formula of total spectral power. Then, the
formula obtained and eq. (15) in [5] corresponds to each
other (more details see in [4]).
In Fig. 1, the spectra of total emitted power
( σπ FFF += in eq. (1)) for different particle energies
E and pitch angles α are shown. The vertical lines
show the range of wavelengths of visible light and infra-
red wavelengths. The magnitude of magnetic field is
G102 4⋅=B . The radiated power increases in magnetic
field G103 4⋅=B .
Fig. 1. Spectra according eq. (1): magnetic field
G102 4⋅=B , curvature radius cm180=BR . Radiation
bands: visible light 0.38…0.75 µm (left) and infrared
wavelength 3…8 µm (right)
2. TOROIDAL MAGNETIC FIELDS
AND ELECTRON TRAJECTORIES
Cartesian coordinates are taken as shown in Fig. 1.
The torus is described with coordinates ( )ϕϑ,,r : coor-
dinates ( )ϑ,r with centre at major radius R and the
toroidal angle ϕ , ϕϑ eee ,,r are the corresponding orts,
[ ]ϑϕ eee ,r= . Magnetic surfaces and drift surfaces have
a toroidal topology. The major radius of nested magnet-
ic surfaces is 0RR = , the major radius of drift surfaces is
δ+= 0RR .
So, there are two coordinate systems ( )ϕϑ,,r and
( )ϕϑ ,, ffr corresponding to drift and magnetic torus,
respectively.
Suppose, the toroidal magnetic field ϕB and plasma
current I are clockwise, radiating electrons are moving
counterclockwise.
Magnetic fields take the form [11]
( ) ( )
+
−
−
= ϕϑϑ
ϑ eeB
00
0
cos1
,
Rrq
r
Rr
Br , (2)
here ffrr ϑϑ == , are the radius and poloidal angle of
magnetic surface, ( )rq the safety factor. The subscript
f is omitted in eq. (2).
Suppose that the safety factor of the magnetic field
lines ( )frq is equal that of the particle drift orbits ( )rqD
when equal radii of magnetic field line surface fr and
drift surface r are considered [7].
The guiding center is moving along drift trajectory
with speed ||v . The electron pitch angle is
||vv⊥≈α 1<< , where BBrv ω=⊥ , ( )mceBB γω = ,
( )ϑ,rBB = the magnetic field at the point with drift
coordinates ϑ,r .
The electron velocity vector is given by
( )DDD vv bντv Θ−Θ−+= ⊥ cossin|| , (3)
here DDD bντ ,, are the tangent, normal, and binormal
to the drift path, the angle Θ is measured from normal
Dν to the direction of vector Db− , Bω=Θ (Fig. 2).
Fig. 2. Coordinate systems on torus. Cartesian coordi-
nates ( )zyx ,, ; orts on a small circle of the torus
ϕϑ eee ,,r (bottom left corner); Larmor’s circumference
and trihedron orts of the drift trajectory DDD bντ ,,
(bottom right corner)
2.1. RADIATION POINTS
The detector is located at the point OP with Carte-
sian coordinates ( )0,, YD− (see Fig. 2). The line of
sight is directed from the detection point OP to the radia-
tion point eP , denote unit vector in the direction eO PP as
n . The high energetic electrons emit their synchrotron
radiation practically along their velocity vector (3).
The coordinates of radiation point are founded out
after equating components zy nn −− , to the directional
cosines of velocity vector, i. e., equations 0=+ vnv are
solved.
ISSN 1562-6016. ВАНТ. 2015. №4(98) 137
For any ϑ,r the third coordinate of radiation point
takes a value ϕπϕ ∆+= 2/ , where ϕ∆ is the first-
order correction with respect to 1<<Rr , 1<<α .
The electron position in Larmor circle, angle Θ , is
given by [6]
( ) ( )0
0
cos
cos
cos ϑϑ
ϑα
−=Θ
Rrq
r
D
, (4)
where ( )22
0cos RqDD D+=ϑ .
From equation 0=+ yy vnv follows
Θ−+
+−
−=∆ sincoscos αϑϑϕ
Rq
r
D
rRY
D
, (5)
( ) ( )
( ) 122
22
0
11
1 +
−−
+= nD
ar
arqnrq models the safe fac-
tor of drift path, 1...7n = , a is the small tokamak ra-
dius [11]. Larmor radius Br is not taken into account
because of its smallness. (see also, eqs. (14), (15) in
[10])
The range of angles ϑ depends on pitch-angles α .
As can see from eq. (4), there are constraints on ac-
ceptable angles ϑ when ( )0cosϑα DDRqr< .
The shift δ of the drift trajectory is given by [7, 10]
( ) ( ) ( )eBmcrqr 2γδ = . (6)
Using this formula, one can model dependence of
δ on the radius r .
2.2. PARAMETERS FOR SYNCHROTRON
RADIATION FORMULAS
Available coordinates ( )ϕϑ,,r of the guiding center
of electron are given by (4), (5). At the point, the curva-
ture radius ( )ϕϑ,,rRD of the drift trajectory is calculat-
ed. Then, the radius BR is replaced by ( )ϑ,rRD in for-
mula (1). Further, the value ( )ϑ,rB of magnetic field is
found at this point.
The parameter aq can be written as
( ) ( )
γ
αϑϑ ,,2 rRrB
mc
eq Dffa = , (7)
where ϑδ cos11 20 r
q
RR
D
D
+−++= is the curvature
radius of drift trajectory in a first-order approximation.
To calculate the magnetic field at the point
=
2
,, πϑrPe the displacement in equatorial plane of
the drift torus with respect to magnetic torus is taken
into account, then ϑδδ cos222 rrrf −+= and
f
f r
r δϑϑ −
=
coscos . Therefore, the magnetic field val-
ue is expressed by
−
+=
0
0
cos1
R
rBB δϑ . (8)
In Fig. 3, the total radiated power is shown. Note
that the maximum (white color) and minimum (black
color) values differ by 16 times.
An inclination angle of the radiation spot is given by
(4) and is 02/ ϑπ + (measured in the poloidal plane in
such way as angle ϑ ). If the drift trajectory is wound in
opposite direction ( ϑe− direction), one obtains a mirror
image relative to axis 0y. In this case, the inclination
angle is 02/ ϑπ − .
Fig. 3. Total radiated power at the wavelength
λ=0.5 µm; R0=186 cm; δ=10 cm; r=10…30 cm;
D=186 cm; B0=2·104 G; α=0.12; E=40 MeV; q0=1;
n=2; a=45 cm
We can say that the figure ‘explains’ the experimen-
tally observed synchrotron spot [8] Fig. 12; [9] Fig. 6.
2.3. POLARIZATION VECTOR
As known, the direction of the larger axis of polari-
zation ellipse for synchrotron emission of relativistic
electrons moving on a circular orbit coincides with the
direction of particle’s acceleration [12]. Let χ be an
angle between the axis z0 and the electron acceleration
a . Taking into account the smallness of angle between
the line of sight and axis x0 , we find that
a
ay=χsin ,
a
az=χcos . The acceleration is found as the vector sum
of the acceleration due to movement along drift trajecto-
ry and the acceleration owing to Larmor rotation.
Then
( ) 2
1
coscos12cos21
sinsincoscos1
sin
aa
D
a
a
qbqb
q
qbbq
+Θ−−+
Θ+−Θ+−
=
ϑϑ
ϑϑ
χ , (9)
and
( )
( ) 2
1
coscos12cos21
sincos1sin
cos
aa
a
D
a
qbqb
q
q
bq
+Θ−−+
Θ−−Θ
=
ϑϑ
ϑ
χ ,(10)
where ( ) ( )ϑ,1 rRrq
rb
DD
= , ( ) ( )
−⋅=
rq
rqbb
D
D
1
1 .
To describe the polarization properties we use the
Stokes parameters VUQI ,,, . According ([12]
eq. (5.28))
λλ
πσ
d
dP
d
dPI +∝ ,
ISSN 1562-6016. ВАНТ. 2015. №4(98) 138
χ
λλ
πσ ~2cos
−∝
d
dP
d
dPQ ,
χ
λλ
πσ ~2sin
−∝
d
dP
d
dPU ,
where ( )πχ ,0~∈ is the angle between some arbitrary
fixed direction, axis z0 in our case, and the major axis
of the ellipse of polarization. The angle is measured
clockwise from the selected direction. The homogeneity
of the electron distribution function implies that 0=V .
2.4. ONE OR TWO EMISSION POINTS ?
It follows from (4) that each ϑ corresponds to two
values of Θ . Substituting them into (5) we get two val-
ues of the angleϕ . It turns out that electrons radiate
from two different places.
We add up Stokes parameters for these two emitting
points, 21 QQQ += , 21 UUU += . Expressions (9),
(10) are substituted for χ~sin , χ~cos in trigonometric
formulas for doubled angles.
Then the degree of polarization is defined as [12]
( )
I
UQ 22 +
=λπ , (11)
and angle χ~
Q
U
=χ~2tg . (12)
By definition, the angle χ~ describes the direction in
the picture plane in which the intensity of the polarized
components has maximum.
Using Eqs. (3)-(12) we will calculate the distribu-
tions of the total intensity I , degree of polarization π
and polarization directions χ~ in the synchrotron radia-
tion spot from a homogenous electron beam with radius
],[ maxmin rrr∈ . If ( )rδδ = , ( )00 δ+= RY is taken.
3. DISCUSSION
The monoenergetic distribution function and a given
pitch angle are supposed [7 - 10]. The distribution is
also homogenous in space.
The formula (1) of synchrotron radiation in curved
magnetic fields is valid for arbitrary values of parameter
aq .
The distribution of total intensity in the area of syn-
chrotron spot is shown in Fig. 3. The radiation point
coordinates are plotted in ( )zy, -plane. The color (gray
colormap) shows the radiation power (in arbitrary units)
at a given wavelength λ (in this case, the wavelength
mμ5.0=λ ). The parameters for calculations are taken
as in the middle-sized tokamaks [7 - 10].
The power emitted at a given spot point depends
strongly on the values of α and γ . In Fig. 3 we see
that the radiation is stronger in the area of larger mag-
netic fields (closer to axis z ) than in the area with
smaller magnetic field (further from axis z ).
This dependence may be the cause of the observed
heterogeneity in the synchrotron radiation spots ([8]
Fig. 12; [9] Fig. 6).
`
Fig. 4. Polarization of the synchrotron spot (poloidal
projection) at the wavelength λ=5 µm. Parameters:
B0=2⋅104 G, E=50 MeV, α=0.12, r=10…30 cm,
R0=180 cm, δ=10 cm, D=186 cm, q0=1, n=2, a=45 cm
Fig. 5. Polarization of the synchrotron spot with drift
trajectories shift R0+δ(r) at the wavelength λ=5 µm
the values of δ(r) are given by (6): q0=1, n=2,
a=45 cm. Other parameters as in Fig. 4
At different values of the given (experimental) pa-
rameters, the parameter aq often takes value near unity
that evidenced in favor of using Eqs. (1).
The directions of polarization in the synchrotron ra-
diation spot are shown in Fig. 4. The length of dashes is
proportional to the degree of polarization. Two models
have been taken to calculate the polarization. In the up-
per part of the figure, a case when the contribution to
ISSN 1562-6016. ВАНТ. 2015. №4(98) 139
the polarization comes from two emission points has
been considered. The degree of polarization varies from
0 to 72%. This range of values depends on α and γ. Po-
larization directions are orthogonal.
The lower part of the figure shows the case when the
radiation comes from a single point (as it discussed in
subsection 3.4). The absolute value of the degree of
polarization is almost unchanged. The degree of polari-
zation is about 70%. The directions of polarization be-
have differently than in the upper part of the figure.
In the case of small pitch angles α the polarization
directions are determined by accelerations of guiding
center, i. e. by the normal vector to the drift trajectory
(along axis y). For large α the polarization direction is
generated by centrifugal accelerations within Larmor
circle. This gives the direction along axis z.
In Fig. 5, as in [10], the displacement (6) of drift tra-
jectories is taken into account. As in Fig. 4, the upper
part of the figure shows the case with two radiating
points from the given direction, but the lower part
shows the case with contributions from a single point.
Upper parts in Figs. 4, 5 show polarization direc-
tions as well as areas of zero polarization. It should be
noted the change of polarization direction on 90°.
Assume that a similar cause may be responsible for
changing the direction of polarization in the emission of
pulsars.
Thus the synchrotron radiation is polarized and the
distribution pattern of polarization directions in the spot
and the degree of polarization can give additional data
for diagnostics of electron beams.
REFERENCES
1. K.S. Cheng, J.L. Zhang. General radiation formulae
for a relativistic charged particle moving in curved
magnetic field lined: The synchro-curvature radia-
tion mechanism // Astrophys. J. 1996, v. 463, № 1,
p. 271-283.
2. Ya.M. Sobolev. Drift trajectory and synchrotron radia-
tion of an ultrarelativistic electron moving in magnetic
field with curved force lines // Problems of Atomic Sci-
ence and Technology. Series “Plasma Electronics and
New Acceleration Methods”. 2000, № 1, p. 27-30.
http://vant.kipt.kharkov.ua/ARTICLE/VANT_2000_
1/article_2000_1_27.pdf
3. Ya.M. Sobolev. Influence of magnetic line curvature
on spectrum and polarization of synchrotron radia-
tion of a charged particle // Radio Physics and Radio
Astronomy. 2001, v. 6, № 4, p. 277-290.
http://journal.rian.kharkov.ua/index.php/ra/article/vi
ew/868/731
4. Ya.M. Sobolev. On the synchrotron radiation of ul-
trarelativistic electrons moving along curved spiral
trajectory // Problems of Atomic Science and Tech-
nology. Series “Plasma Electronics and New Accel-
eration Methods”. 2003, №4, p. 197-202.
http://vant.kipt.kharkov.ua/ARTICLE/VANT_2003_
4/article_2003_4_197.pdf
5. I.M. Pankratov. Towards analyses of runaway
electrons synchrotron radiation spectra // Plasma
Physics Reports. 1999, v. 25, № 2, p. 145-148.
6. Ya.M. Sobolev. Polarization of synchrotron radia-
tion from relativistic electrons moving within toroi-
dal magnetic fields // Problems of Atomic Science
and Technology. Series “Plasma Electronics and
New Acceleration Methods”. 2013, v. 4, p. 108-111.
http://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_
4/article_2013_4_108.pdf
7. I. Entrop, R. Jaspers, N.J. Lopes Cardozo, K.H. Finken.
Runaway snakes in TEXTOR-94 // Plasma Phys.
Control. Fusion. 1999, v. 41, p. 377-398.
8. Y. Shi, J. Fu, J. Li, Y. Yang, et al. Observation of
runaway electron beams by visible color camera in
the Experimental Advanced Superconducting To-
kamak // Rev. Sci. Instrum. 2010, v. 81, p. 033506.
9. A.C. England, Z.Y. Chen, D.C. Seo, et al. Runaway
Electron Suppression by ECRH and RMP in KSTAR //
Plasma Sci. Technol. 2013, v. 15, p. 119-122.
10. R.J. Zhou, I.M. Pankratov, L.Q. Hu, et al. Synchro-
tron radiation spectra and synchrotron radiation spot
shape of runaway electrons in Experimental Ad-
vanced Superconducting Tokamak // Physics of
Plasmas. 2014, v. 21, p. 063302.
11. J. Wesson. Tokamaks. Oxford: “Clarendon Press”.
2004, 762 p.
12. V.L. Ginzburg. Theoretical physics and astrophy-
esics. M.: “Nauka”, 1987, 488 p.
Article received 18.05.2015
СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ И ЕГО ПОЛЯРИЗАЦИЯ ОТ УБЕГАЮЩИХ ЭЛЕКТРОНОВ
В ТОРОИДАЛЬНОМ МАГНИТНОМ ПОЛЕ
Я.М. Соболев
Предлагаются формулы для описания синхротронного излучения (СИ) и его поляризации в тороидаль-
ных конфигурациях магнитного поля. Оценены излучаемая мощность и направления поляризации в пятне
синхротронного излучения убегающих электронов с параметрами, характерными для токамаков средних
размеров. Рассматриваются две модели формирования поляризации. Показано, что измерение поляризации
СИ может быть дополнительным средством для диагностики излучающих релятивистских электронов.
СИНХРОТРОННЕ ВИПРОМІНЮВАННЯ ТА ЙОГО ПОЛЯРИЗАЦІЯ ВІД УТІКАЮЧИХ
ЕЛЕКТРОНІВ У ТОРОЇДАЛЬНОМУ МАГНІТНОМУ ПОЛІ
Я.М. Соболєв
Пропонуються формули, які описують синхротронне випромінювання (СВ) та його поляризацію в торої-
дальній конфігурації магнітного поля. Дані оцінки потужності випромінювання і напрям поляризації у плямі
синхротронного випромінювання утікаючих електронів для токамаків середніх розмірів. Розглянуто дві по-
ляризаційні моделі. Показано, що вимірювання поляризації СВ може слугувати додатковим засобом для діа-
гностики релятивістських електронів.
http://vant.kipt.kharkov.ua/ARTICLE/VANT_2000_1/article_2000_1_27.pdf
http://vant.kipt.kharkov.ua/ARTICLE/VANT_2000_1/article_2000_1_27.pdf
http://vant.kipt.kharkov.ua/ARTICLE/VANT_2003_4/article_2003_4_197.pdf
http://vant.kipt.kharkov.ua/ARTICLE/VANT_2003_4/article_2003_4_197.pdf
Introduction
1. RADIATION FORMULAE IN CURVED MAGNETIC FIELDs
2. Toroidal magnetic fields and electron trajectories
2.1. Radiation points
2.2. parameters for synchrotron radiation formulas
2.3. Polarization vector
2.4. one or two emission points ?
3. discussion
references
СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ И ЕГО ПОЛЯРИЗАЦИЯ ОТ УБЕГАЮЩИХ ЭЛЕКТРОНОВ В ТОРОИДАЛЬНОМ МАГНИТНОМ ПОЛЕ
синхротроннЕ випромінювання ТА ЙОГО поляризація ВіД утікаючих електронів У тороЇдальному магнітному полі
|