Dynamics of ions during development of parametric instability of langmuir waves
Nonlinear regimes of one-dimensional parametric instabilities of long-wave plasma waves are considered for the cases when the average field energy density is less (Zakharov’s model) or greater (Silin’s model) than the plasma thermal energy. The process of generation of short-wave plasma waves and pe...
Gespeichert in:
| Datum: | 2013 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/112160 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Dynamics of ions during development of parametric instability of langmuir waves / E.V. Belkin, A.V. Kirichok, V.M. Kuklin, A.V. Pryjmak, A.G. Zagorodny // Вопросы атомной науки и техники. — 2013. — № 4. — С. 260-266. — Бібліогр.: 37 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-112160 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1121602025-02-23T18:02:53Z Dynamics of ions during development of parametric instability of langmuir waves Динаміка іонів при розвитку параметричної нестійкості ленгмюрівських хвиль Динамика ионов при развитии параметрической неустойчивости ленгмюровских волн Belkin, E.V. Kirichok, A.V. Kuklin, V.M. Pryjmak, A.V. Zagorodny, A.G. Нелинейные процессы в плазменных средах Nonlinear regimes of one-dimensional parametric instabilities of long-wave plasma waves are considered for the cases when the average field energy density is less (Zakharov’s model) or greater (Silin’s model) than the plasma thermal energy. The process of generation of short-wave plasma waves and perturbations of ion density is found to be similar in both cases. It is shown that the ion energy after the instability is saturated proves to be of the order of the ratio of linear growth rate to the frequency in the case when the initial field energy exceeds the plasma thermal energy. In the opposite case of hot plasma, the ions acquire a part of initial field energy equal to the ratio of initial field energy to the plasma thermal energy. The trajectory crossing of ions in the vicinity of density cavities is a reason of instability quenching in both cases. Розглянуто нелінійні режими розвитку одновимірних параметричних нестійкостей довгохвильових ленгмюрівських хвиль у випадках, коли енергія поля менша (модель Захарова) і більша (модель Сіліна) за теплову енергію плазми. Процес генерації короткохвильового спектра плазмових хвиль і збурень іонної густини виявляється подібним в обох моделях опису параметричних нестійкостей. Показано, що енергія іонів при насиченні нестійкостей виявляється дорівнює за порядком відношенню лінійного інкремента до частоти у випадку, коли початкова енергія поля помітно перевищує теплову енергію плазми. В умовах гарячої плазми іонам передається частка енергії, що дорівнює половині відношення початкової енергії поля до теплової енергії плазми. Перетин траєкторій іонів поблизу каверн густини є причиною зриву нестійкості в обох випадках. Рассмотрены нелинейные режимы развития одномерных параметрических неустойчивостей длинноволновых ленгмюровских волн в случаях, когда энергия поля меньше (модель Захарова) и больше (модель Силина) тепловой энергии плазмы. Процесс генерации коротковолнового спектра плазменных волн и возмущений ионной плотности оказывается подобным в обеих моделях описания параметрических неустойчивостей. Показано, что энергия ионов при насыщении неустойчивостей оказывается порядка отношения линейного инкремента к частоте в случае, когда начальная энергия поля заметно превышает тепловую энергию плазмы. В условиях горячей плазмы ионам передается доля энергии, равная половине отношения начальной энергии поля к тепловой энергии плазмы. Пересечение траекторий ионов вблизи каверн плотности является причиной срыва неустойчивости в обоих случаях. 2013 Article Dynamics of ions during development of parametric instability of langmuir waves / E.V. Belkin, A.V. Kirichok, V.M. Kuklin, A.V. Pryjmak, A.G. Zagorodny // Вопросы атомной науки и техники. — 2013. — № 4. — С. 260-266. — Бібліогр.: 37 назв. — англ. 1562-6016 PACS: 52.35.Mw https://nasplib.isofts.kiev.ua/handle/123456789/112160 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Нелинейные процессы в плазменных средах Нелинейные процессы в плазменных средах |
| spellingShingle |
Нелинейные процессы в плазменных средах Нелинейные процессы в плазменных средах Belkin, E.V. Kirichok, A.V. Kuklin, V.M. Pryjmak, A.V. Zagorodny, A.G. Dynamics of ions during development of parametric instability of langmuir waves Вопросы атомной науки и техники |
| description |
Nonlinear regimes of one-dimensional parametric instabilities of long-wave plasma waves are considered for the cases when the average field energy density is less (Zakharov’s model) or greater (Silin’s model) than the plasma thermal energy. The process of generation of short-wave plasma waves and perturbations of ion density is found to be similar in both cases. It is shown that the ion energy after the instability is saturated proves to be of the order of the ratio of linear growth rate to the frequency in the case when the initial field energy exceeds the plasma thermal energy. In the opposite case of hot plasma, the ions acquire a part of initial field energy equal to the ratio of initial field energy to the plasma thermal energy. The trajectory crossing of ions in the vicinity of density cavities is a reason of instability quenching in both cases. |
| format |
Article |
| author |
Belkin, E.V. Kirichok, A.V. Kuklin, V.M. Pryjmak, A.V. Zagorodny, A.G. |
| author_facet |
Belkin, E.V. Kirichok, A.V. Kuklin, V.M. Pryjmak, A.V. Zagorodny, A.G. |
| author_sort |
Belkin, E.V. |
| title |
Dynamics of ions during development of parametric instability of langmuir waves |
| title_short |
Dynamics of ions during development of parametric instability of langmuir waves |
| title_full |
Dynamics of ions during development of parametric instability of langmuir waves |
| title_fullStr |
Dynamics of ions during development of parametric instability of langmuir waves |
| title_full_unstemmed |
Dynamics of ions during development of parametric instability of langmuir waves |
| title_sort |
dynamics of ions during development of parametric instability of langmuir waves |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2013 |
| topic_facet |
Нелинейные процессы в плазменных средах |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/112160 |
| citation_txt |
Dynamics of ions during development of parametric instability of langmuir waves / E.V. Belkin, A.V. Kirichok, V.M. Kuklin, A.V. Pryjmak, A.G. Zagorodny // Вопросы атомной науки и техники. — 2013. — № 4. — С. 260-266. — Бібліогр.: 37 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT belkinev dynamicsofionsduringdevelopmentofparametricinstabilityoflangmuirwaves AT kirichokav dynamicsofionsduringdevelopmentofparametricinstabilityoflangmuirwaves AT kuklinvm dynamicsofionsduringdevelopmentofparametricinstabilityoflangmuirwaves AT pryjmakav dynamicsofionsduringdevelopmentofparametricinstabilityoflangmuirwaves AT zagorodnyag dynamicsofionsduringdevelopmentofparametricinstabilityoflangmuirwaves AT belkinev dinamíkaíonívprirozvitkuparametričnoínestíjkostílengmûrívsʹkihhvilʹ AT kirichokav dinamíkaíonívprirozvitkuparametričnoínestíjkostílengmûrívsʹkihhvilʹ AT kuklinvm dinamíkaíonívprirozvitkuparametričnoínestíjkostílengmûrívsʹkihhvilʹ AT pryjmakav dinamíkaíonívprirozvitkuparametričnoínestíjkostílengmûrívsʹkihhvilʹ AT zagorodnyag dinamíkaíonívprirozvitkuparametričnoínestíjkostílengmûrívsʹkihhvilʹ AT belkinev dinamikaionovprirazvitiiparametričeskojneustojčivostilengmûrovskihvoln AT kirichokav dinamikaionovprirazvitiiparametričeskojneustojčivostilengmûrovskihvoln AT kuklinvm dinamikaionovprirazvitiiparametričeskojneustojčivostilengmûrovskihvoln AT pryjmakav dinamikaionovprirazvitiiparametričeskojneustojčivostilengmûrovskihvoln AT zagorodnyag dinamikaionovprirazvitiiparametričeskojneustojčivostilengmûrovskihvoln |
| first_indexed |
2025-11-24T06:10:56Z |
| last_indexed |
2025-11-24T06:10:56Z |
| _version_ |
1849651003598569472 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2013. №4(86) 260
DYNAMICS OF IONS DURING DEVELOPMENT OF PARAMETRIC
INSTABILITY OF LANGMUIR WAVES
E.V. Belkin*, A.V. Kirichok*, V.M. Kuklin*, A.V. Pryjmak*, A.G. Zagorodny**
*Kharkov National University, Institute for High Technologies, Kharkov, Ukraine;
**Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
E-mail: kuklinvm1@rambler.ru
Nonlinear regimes of one-dimensional parametric instabilities of long-wave plasma waves are considered for the
cases when the average field energy density is less (Zakharov’s model) or greater (Silin’s model) than the plasma
thermal energy. The process of generation of short-wave plasma waves and perturbations of ion density is found to
be similar in both cases. It is shown that the ion energy after the instability is saturated proves to be of the order of
the ratio of linear growth rate to the frequency in the case when the initial field energy exceeds the plasma thermal
energy. In the opposite case of hot plasma, the ions acquire a part of initial field energy equal to the ratio of initial
field energy to the plasma thermal energy. The trajectory crossing of ions in the vicinity of density cavities is a rea-
son of instability quenching in both cases.
PACS: 52.35.Mw
INTRODUCTION
The interest in parametric instability of intense
Langmuir waves, which can be easily excited in the
plasma by various sources[1 - 9], was stipulated, in par-
ticular, by the new possibilities in heating of electrons
and ions in plasma. The correct methods for description
of parametric instability of long-waveplasma waves was
developed in the pioneering works of V.P. Silin [10]
and V.E. Zakharov [11]. In early one-dimensional nu-
merical experiments on parametric decay of plasma
oscillations [12], the theoretical concepts were con-
firmed [10] (see also [13, 14] and review [15]). How-
ever, the greatest interest has been expressed by ex-
perimenters in the mechanism of dissipation of wave
energy discovered by V.E. Zakharov. The analytical
studies, laboratory-based experiments and numerical
simulations performed at an early stage of studying
these phenomena have confirmed [16-18] the fact that in
some cases a significant part of the pump field energy
transfers during the instability development into the
energy of short-wave Langmuir oscillations attended
with bursts of fast particles [16 - 27].
In this paper, we attempt to compare the models of
Silin and Zakharov by the example of one-dimensional
description. The choice of one-dimensional approach, as
was noted by J. Dawson [28], often keeps the main fea-
tures of the processes, but simplify their description and
leads to a fuller understanding of what the important
phenomena are. The ion heating is of particular interest,
so we use the kinetic description of ions in this work
because of account of inertial effects can be significant
at the nonlinear stage of the process [29].
1. GENERALIZED SILIN’S EQUATIONS
When the intensity of external long-wave field is
much greater than the temperature of electrons in plas-
ma 2
0 0| | /4 eW E n Tπ= >> , it is reasonable to explore the
approach presented by V.P. Silin [30]
0 ,
v v e v
u E v
t x m x
α α α α
α α
α
∂ ∂ ∂
+ − = −
∂ ∂ ∂
(1)
0 0
( ) ,n n v n vu n
t x x x
α α α α α
α α
∂ ∂ ∂ ∂
+ + = −
∂ ∂ ∂ ∂
(2)
4 .E e n
x β β
β
π∂
=
∂ ∑
(3)
Let set the wavelength of the external electric field
infinite
0 0 0
0 0
(| | exp{ }
| | exp{ }) / 2.
E i E i t i
E i t i
ω φ
ω φ
= − + −
− − −
(4)
The particles oscillates under the action of this field
with velocity 0 0 0( | | / ) cosu e mα α α ω= − Ε ⋅ Φ .
Substituting into Eq.(1) the electric field obtained
from Eq.(3) 04 ( ) /n in enE ie n n k nπ= − − , we find
0 0
0
0
4n
n т
n m m
m
v e i
u ik n v e n
t k n m
ik m v v
α α
α α β β
βα
α α
π
−
∂
+ ⋅ ⋅ + ⋅ =
∂ ⋅
= − ⋅ ⋅
∑
∑
(5)
Let use the following variables
exp{ sin }n n ne n iaα α α αν = ⋅ ⋅ − ⋅ Φ , (6)
exp{ sin }n n nv iaα α αθ = ⋅ − ⋅ Φ , (7)
2
0 0 0/na ne k E mα α α ω= ⋅ , (8)
where 0tω φΦ = + . After this, Eqs.(1)-(2) take the form
0 0 0
n
n n m m
m
ik n e n ik n
t
α
α α α α α
ν
θ ν θ−
∂
+ ⋅ ⋅ = − ⋅ ⋅ ⋅
∂ ∑
(9)
0
0
4
exp{ ( )sin }
.
n
n n n
n m m
m
e i
i a a
t k n m
ik m
α α
β β α
βα
α α
θ π
ν
θ θ−
∂
+ ⋅ − Φ =
∂ ⋅
= − ⋅ ⋅
∑
∑
(10)
It is clear that 2
0 0 0( / )in en e na a n ek E m aω− ≈ ⋅ = ,
where, 2
04 /pe ee n mω π= , 2
04 /i e n MπΩ = ,
im M≡ and 0nk nk= defines a set of wave numbers.
Equations (9)-(10) for electrons becomes
0 0 0
en
en en m em
m
ik n en ik n
t
ν
θ ν θ−
∂
− ⋅ ⋅ = − ⋅ ⋅ ⋅
∂ ∑
(11)
0
0
4 ( exp{ sin })
.
en
en in n
e
en m em
m
ei ia
t k n m
ik m
θ π ν ν
θ θ−
∂
− + ⋅ ⋅ Φ =
∂ ⋅
= − ⋅ ⋅∑
(12)
Then, we use
ISSN 1562-6016. ВАНТ. 2013. №4(86) 261
0
0 0 0
( ) (0) (1)
0
2 2( 1) (2) ( 2)
exp{ ) i ts
en n n n
s
i t i t i t
n n n
u is t u u e
u e u e u e
ω
ω ω ω
ν ω
− −− −
= ⋅ ⋅ = + ⋅ +
+ ⋅ + ⋅ + ⋅
∑
(13)
0
0 0 0
( ) (0) (1)
0
2 2( 1) (2) ( 2)
exp{ ) i ts
en n n n
s
i t i t i t
n n n
v is t v v e
v e v e v e
ω
ω ω ω
θ ω
− −− −
= ⋅ ⋅ = + ⋅ +
+ ⋅ + ⋅ + ⋅
∑
(14)
and well known expansion
exp{ sin } ( ) exp{ }m
m
ia J a im
∞
=−∞
⋅ Φ = ⋅ Φ∑ , (15)
where ( )mJ x is the Bessel function, and
0 0( ) ( )J x J x= − ,
1 1 1( ) ( ) ( )J x J x J x−= − − = − , 2 2 2( ) ( ) ( )J x J x J x−= = − [31].
Below, we find the non-resonance terms for perturba-
tion of density (0) (2) ( 2), ,n n nu u u −
and velocity
(0) (2) ( 2), ,n n nv v v − in the oscillating reference frame [32 - 34]:
(0) ( 1) ( 1) ( 1) (1)0
0
(1) ( 1)
( 1) (1)
0
( )[ )
1 [ ] ,
n n m m n m m
m
n
k
v n m v v v v
v vv v
i x x
ω
ω
+ − −
− −
−
−
= − ⋅ − ⋅ =
∂ ∂
= −
∂ ∂
∑
(16)
2 2
(0) (1) ( 1)0
0
2
(1) ( 1)
0 2
( )
4
( ) [ ] ,
4
e
n in n n m m
m
e
in n n
k n m
u J a v v
e
m
J a v v
e x
ν
π
ν
π
−
−
−
⋅
= − ⋅ + ⋅ ⋅ =
∂
= − ⋅ −
∂
∑
(17)
( 2) 2 ( 1) ( 1)0 0
2
0 0 0
( 1)
2 ( 1)0
2
0 0 0
2
( )
3
2 1( ) [ ] ,
3
i
n in n n m m
m
i
in n n
k
v J a e mv v
k n en
vJ a e v
k n en i x
φ
φ
ω
ν
ω
ω
ν
ω
± ± ± ±
± −
±
± ±
±
±
= ⋅ ⋅
⋅
± ∂
= ⋅
⋅ ∂
∑m
m
(18)
2
( 2) 2 ( 1) ( 1)0 0
2 2
( 1)
2 ( 1)0
2 2
1 ( )
3
1 ( ) [ ] .
3
i
n in n s n s
spe
i
in n n
pe
k n enu J a e sv v
en vJ a e v
x x
φ
φ
ν
ω
ν
ω
± ± ± ±
± −
±
± ±
±
⋅
= ⋅ − ⋅
∂ ∂
= ⋅ +
∂ ∂
∑
(19)
The obtained equations should be supplemented by
equations for resonant values
2( 1)
1( 1)
0
0
2 (0) ( 1) ( 1) (0)
0 0
(0) ( 1) ( 1) (0)
0 0
( 1) ( 2) ( 2) ( 1)
0 0 0
( )
2 { }
2
[ ]
( ) [ ]
[ [ ],
i
in pe nn
n
n m m n m m
m
n m m n m m
m
n m m n m m
m m
i J a eu
i i u
t
k n en m v v v v
ik n i u v u v
k n en mv v u v
φν ω
ω
ω
ω
ω
±±
±±
± ±
− −
± ±
− −
± ±
− −
⋅∂
± Δ
∂
= ⋅ ⋅ + ⋅ −
− ⋅ ⋅ ± ⋅ + ⋅ +
+ ⋅ ± ⋅
∑
∑
∑ ∑m m
m m
(20)
where 2 2
0 0( ) / 2peω ω ωΔ = − . Authors of [32 - 34] have
used the following representation
( 1) ( 1) ( 1)
0 0 0 0/ / 4n n nu k n en v ik n Eω π± ± ±= ± ⋅ = ⋅ . In this case,
gathering in the r.h.s. of Eq.(20) the terms responsible
for electronic non-linearity we rewrite this equation for
short-wave perturbations as follows
2( 1)
1( 1)
0
0
2
( 1) 2 ( 1)0
2 0
0
0 0 0
( )
2 { }
2
[ ( ) ( )]
( / ) .
i
pe nn
n in
iin m
m n m m n m
m
J a eu
i i u i
t
n
u J a e u J a
en m
k n en I
φ
φ
ω
ω ν
ω
ω ν
ω
±±
±±
± ±−
± − −
⋅∂
± Δ ⋅ +
∂
⋅ + =
= ⋅ ⋅
∑ m
m m
(21)
Obviously, that the electronic non-linearity (r.h.s. of
Eq. (21)) is equal to zero as well as in [35]. Than the
Eq. (21) can be rewritten [32 - 34] as
2( 1)
1( 1)
0
( 1) 20
2
0
( 1)
0
( )
2
[ ( )
2
( )].
i
pe nn
n in
iin m
m n m
m
m n m
J a eu
i u i
t
n
i u J a e
en m
u J a
φ
φ
ω
ν
ω
ω ν
±±
±±
±−
± −
±
−
⋅∂
Δ ⋅ =
∂
± ⋅ ⋅ +
+ ⋅
∑ m
m m
(22)
If the electric field will be presented in the form [35]
0 0
0 0
( )
0
(1) ( 1)
2 2(2) ( 2)
exp{ )
1 ( )
2
,
s
n n n
s
i t i t
n n
i t i t
n n
E E is t E
E e E e
E e E e
ω ω
ω ω
ω
−−
−−
= ⋅ ⋅ = +
+ ⋅ + ⋅ +
+ ⋅ + ⋅
∑
(23)
than ( 1) ( 1) ( 1)
0/ 2 4 /n n nE E iu k nπ± ± ±→ = − , and the Eq.(22)
takes the form
( 1)
( 1)
1
0
( 1) 20
2
0
( 1)
0
8
( ) exp( )
2
[ ( )
2
( )].
pe inn
n n
i
in m m n m
m
m n m
E
i E J a i
t k n
i E J a e
en
E J a
φ
πω ν
φ
ω
ν
±
±
±
±
− ± −
±
−
∂
Δ ⋅ ± =
∂
± ⋅ ⋅ +
+ ⋅
∑ m
m m
(24)
Going to the representation of pumping wave 0E
corresponding to fixed velocity of oscillations
0 0 0( / ) cosu e E mα α α ω= − ⋅ ⋅ Φ , we find 0 0E iE→ − and
* *
0 0E iE→ . The equation for 0E can be written as [32 -
34]
, ( 1) 20 0
2
0 0
( 1)
0
8
[ ( )
2
( )]
i m i
m m
m
m m
E i
u J a e
t en k m
u J a
φνπ ω − −
−
+
−
∂
= ⋅ ⋅ +
∂
+ ⋅
∑ (25)
or expressing the perturbations of density through the
components of electric field
( 1) 20 0
, 2
0
( 1)
0
[ ( )
2
( )].
i
i m m m
m
m m
E
E J a e
t en
E J a
φω
ν −
−
+
∂
= − ⋅ ⋅ +
∂
+ ⋅
∑ (26)
The slowly varying in time electric field [30]
0
(1) ( 1)
1 1
2 (1) ( 1)
0
0
(1) (1) 2 ( 1) ( 1) 22
0
4( )( { exp{ sin } )
[ ( ) ( ) ]
( )
( )
( ) 1 [ ]},
n en n in
i i
n n n n
n n m m
m
i in
n m m n m m
m
iE ia
k n
u J a e u J a e
n J a u u
en n m m
nJ a
u u e u u e
en m
φ φ
φ φ
π ν ν
− −
−
−
−
− − −
− −
= − 〈 ⋅ − ⋅ Φ 〉 + =
= ⋅ + ⋅ ⋅ −
⋅
− −
−
− ⋅ ⋅ + ⋅
∑
∑
(27)
can be represented in another form
(1) ( 1)
1 1
(1) ( 1)0
0
0
(1) (1) 20 2
0
( 1) ( 1) 2
1 [ ( ) ( ) ]
2
( )
16
( )
( )[
16
],
i i
n n n n n
n n m m
m
in
n m m
m
i
n m m m
E E J a e E J a e
ink
J a E E
en
ik J a
n m E E e
en
E E e
φ φ
φ
φ
π
π
− −
−
−
−
−
−
− −
−
= ⋅ + ⋅ ⋅ −
− ⋅ −
− − ⋅ +
+ ⋅
∑
∑
(28)
ISSN 1562-6016. ВАНТ. 2013. №4(86) 262
that permits description of ions by particle-in-cell me-
thod. Their equations of motion can be written as fol-
lows
2
02 exp{ }s
n s
n
d x e E ik nx
Mdt
= ⋅∑ ,
(29)
and the ion density can be defined as
0
0
/
0
0 0 0 0
/
exp[ ( , )] .
2
k
in s s
k
k
n n ink x x t dx
π
ππ −
= ⋅ − ⋅ ⋅∫
(30)
Note that the use of particle-in-cell method for de-
scription of ion dynamics allows, what is more, to im-
prove the computational stability [29].
The use of Eqs. (9) - (10), where the right-hand sides
can be neglected in view of their smallness, permits the
hydro dynamical description of ions. The equation for
ion density at this takes the form [32 - 34]:
2
2 2 2
0 22
(1) ( 1)
1 1
2 (1) ( 1)
0
0
(1) (1) 2 ( 1) ( 1) 22
0
2{ [1 ( ) ( )]
3
[ ( ) ( ) ]
( )
( )
( ) 1 [ ]}.
in
i in n n
i i
n n n n
n n m m
m
i in
n m m n m m
m
J a J a
t
u J a e u J a e
n J a u u
en n m m
nJ a
u u e u u e
en m
φ φ
φ φ
ν
ν
− −
−
−
−
− − −
− −
∂
= −Ω − + +
∂
+ ⋅ + ⋅ ⋅ −
⋅
− −
−
− ⋅ ⋅ + ⋅
∑
∑
(31)
Or after neglecting small terms
2
(1) ( 1)0
1 12
2 2
(1) ( 1)0
02
0
2
(1) (1) 20 2
2
0
( 1) ( 1) 2
[ ( ) ( ) ]
8
( )
64
( )
( )[
64
]}.
i iin
n n n n
n n m m
m
in
n m m
m
i
n m m
ik n
E J a e E J a e
t
n k
J a E E
en
nk J a
n m E E e
en
E E e
φ φ
φ
φ
ν
π
π
π
− −
−
−
−
−
−
− −
−
∂
= + ⋅ −
∂
+ ⋅ ⋅ +
+ ⋅ − ⋅ +
+ ⋅
∑
∑
(32)
One can verify that the complex conjugate of
Eq.(3.24) with the lower sign becomes (the dummy in-
dex in sums can be inverted m m→− )
*( 1)*
, 1( 1)*
0
* (1)* 20
, 2
0
( 1)*
0
4 ( )
[( ( )
2
( )] 0.
pe i n n in
n
i
i m n m m n
m
m m n
J aE
i E e
t k n
i E J a e
en
E J a
φ
φ
πω ν
ω
ν
−
−−−
−
− − − −
−
− −
∂
− Δ − ⋅ −
∂
− ⋅ ⋅ +
+ ⋅ =
∑
(33)
At the same time this equation for positive indexes
can be written as
(1)
(1)
1
0
( 1) 20
2
0
(1)
0
4
( ) ]}
[ ( )
2
( )] 0.
pe in in
n n
i
in m m n m
m
m n m
E
i E J a e
t k n
i E J a e
en
E J a
φ
φ
πω ν
ω
ν
±
−
− −
−
∂
− Δ − ⋅ −
∂
− ⋅ ⋅ +
+ ⋅ =
∑
(34)
а) It is clear that for ( 1) (1)( )*n nE E−
− = and
, ,( )*i n i nν ν− = Eqs. (3.31) and (3.32) are identical. Just
as, it is easy to verify that ( 1) (1)( )*n nE E−
−= and
, ,( )*i n i nν ν −= , i.e. the perturbations of ion charges pos-
sess the symmetry , ,( )*i n i nn n− = . At this, for correct
description of the instability it is sufficiently to use the
high-frequency components (1)
nE , (1)
nE− and (1)
0E , as well
as perturbations of ion charge ,i nν for positive values of
index n . Other variables can be expressed through
them. So, we can stop using the superscript. In this case
we can rewrite Eqs. (3.23), (3.28)
1
0
* 20
2
0
0
4
( ) e
[ ( )
2
( )] 0,
pe in in
n n
i
in m m n m
m
m n m
E
i E J a
t k n
i E J a e
en
E J a
φ
φ
πω ν
ω
ν − − −
−
∂
− Δ − ⋅ −
∂
− ⋅ +
+ ⋅ =
∑
(35)
2
2 2 2
0 22
*0
1
2 2
*0
02
0
2
20 2
2
0
* * 2
2{ [1 ( ) ( )]
3
( )[ ]
8
( )
64
( )
( )[
64
]}.
in
i in n n
i i
n n n
n n m m
m
in
n m m
m
i
m n m
J a J a
t
ik n
J a E e E e
n k
J a E E
en
nk J a
n m E E e
en
E E e
φ φ
φ
φ
ν
ν
π
π
π
−
−
− −
−
−
− −
∂
= −Ω − +
∂
+ ⋅ − ⋅ −
+ ⋅ ⋅ +
+ ⋅ − ⋅ ⋅ +
+ ⋅
∑
∑
(36)
In addition, when the particle-in-cell method is used,
one can use the motion equation (30) and expression for
ion density (31)with slowly varying electric field
2 2
0 2
0
*
1
*0
0
0
20 2
0
* * 2
4 2( ) [1 ( ) ( )]
3
1 ( )[ ]
2
( )
16
( )
( )[
16
].
n in n n
i i
n n n
n n m m
m
in
n m m
m
i
m n m
iE J a J a
k n
J a E e E e
ink
J a E E
en
ik J a
n m E E e
en
E E e
φ φ
φ
φ
π ν
π
π
−
−
− −
−
−
− −
= − − + +
+ ⋅ − ⋅ −
− ⋅ −
− − ⋅ ⋅ +
+ ⋅
∑
∑
(37)
These equations should be supplemented by the equ-
ation for pumping field 0E
* 20 0
, 2
0
0
[ ( )
2
( )].
i
i m m m
m
m m
E
E J a e
t en
E J a
φω
ν − −
∂
= − ⋅ ⋅ +
∂
+ ⋅
∑
(38)
Note that the values corresponding to subscripts with
different signs are independent that results in spatial
distortion of integral perturbations not only owing to
variation of amplitudes but also because of spatial dis-
placement of different components of the wave packet.
b) In the case , , ,( )*i n i n i nn n n− = = , i.e. when the pertur-
bations of ion density don’t change their location, the
high-frequency electric field also remains spatially sym-
metrical (1) (1) ( 1) ( 1)( )* ( )*n n n nE E E E− −
− −= = = . Then, the vari-
ables (1)
nE and ,i nn are sufficient for description of the
process, that is stipulated by strong relation between val-
ues with different signs. The structure of the field and
density in this case, such as in the case of Zakharov’s
model (that will be presented later), represents the mo-
tionless spatial formation which amplitude increases and
half-width decreases, at least in some region.
c) Growing in time perturbations of ion density of
the type , ,( )*i n i nn n− = − are not realized.
ISSN 1562-6016. ВАНТ. 2013. №4(86) 263
2. ZAKHAROV'S EQUATIONS
When 1na << and 1( ) / 2n nJ a a≈ , 0 ( ) 1nJ a ≈ ,
2
2 ( ) / 8n nJ a a≈ , the equations (35) - (38) are identical to
equations derived in [35] under condition [37]
2
0 0| | /4 eW E n Tπ= << within the detuning
2 2 2 2 2 2 2
0 0 0 0 0( ) / 2 ( ) / 2pe pe Tek n vω ω ω ω ω ω− → − + and
replacement 0 0E iE→− and * *
0 0E iE→ .
2 2 2 2 2
0 0
0
0
0
00
2
{ } 0
2
pe Ten
n
in in m m
m
k n vE
i E
t
i n E n E
n
ω ω
ω
ω
−
≠
− +∂
− −
∂
− ⋅ + =∑
(39)
2 2 2
* * *0
0 02
0,
{ }.
16
in
n n n m m
m n
n k n
E E E E E E
Mt π − − −
≠
∂
= − + +
∂ ∑
(40)
We also give the expression for slowly varying
electric field with account of the pump wave
* *0
0 02
*
0,
(
4
),
n n n
p
n m m
m n
ik ne
E E E E E
m
E E
ω −
− −
≠
= − + +
+ ∑
(41)
that makes possible the description of ions with the use
of particle-in-cell method and Eqs. (28) and (29). The
amplitude of the pump wave 0E can be found from
equation
0 0
,
0
0.
2 i m m
m
E
i n E
t n
ω
−
∂
− ⋅ =
∂ ∑
(42)
3. LINEAR THEORY
We restrict our consideration to the most interesting
case of the long-wave pumping. The dispersion equation
for the high-temperature case in supersonic limit
2 2 2 2 2
0/in in sn n t k c n∂ ∂ >> follows from linear approxima-
tion of Zakharov’s equations (2.32) and (2.33) with the
use of representation 1 /E E t i− ∂ ∂ = Ω :
2 2 2{ } 0.A−Ω Ω − Δ + Δ ⋅ = (43)
In Zakharov’s model, the normalized to the Lang-
muir frequency correction / peδ ω= Ω , in general,
should be written in the form
2 4
2 2 ,
2 4
Bδ Δ Δ
= ± + Δ
(44)
where
2
0
0
| |1 .
2 4
e
e
m E
B
M n Tπ
=
(45)
Since the value 4 2 1/ 2 2( 4 )BΔ + Δ − Δ increases mono-
tonically with Δ , having no a distinct maximum, the
instability increment for small 2 BΔ << , 2 Bδ ≈ −Δ
and 2| | Bδ < is equal
1/2 1/42 2 2 2
0 0
2
0
| |1Im | | .
2 42
Te e
pe
epe
k n v E m
n T M
ω
πω
⎛ ⎞ ⎛ ⎞
Ω = Ω ≈ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
(46)
For the case of large 2 BΔ >> , 2 BΩ ≈ − , it has the
form
1/22
0
0
| |1Im | | .
2 4
e
pe
e
E m
n T M
ω
π
⎛ ⎞
Ω = Ω ≈ ⎜ ⎟
⎝ ⎠
(47)
This means that the increment increases with the
wave-number of perturbations, reaching the maximum
(47).
In Silin's model, the growth rate normalized to the
plasma frequency reaches the value
1/3
1/3 2/3
13 3
( )
2 2
e
n
mi iA J a
M
δ ⎛ ⎞= ± ⋅ = ± ⎜ ⎟
⎝ ⎠
(48)
for the detuning value 3 / 2AΔ = or which the same for
( )1/3 2/3
12 ( )
me nm M J aΔ =
The perturbations with wave-number 0m mk k n= for
which 1.84
mna = , the Bessel function has a maximum
and the growth rate reaches the maximal value
1/3
max 0.44 em
i
M
δ ⎛ ⎞= ± ⎜ ⎟
⎝ ⎠
. (49)
With the development of the instability, the pump
wave amplitude decreases and the increment maximum
moves to shorter wavelengths.
It is significant that the values of the maximal
growth rate of parametric instability increase with de-
creasing of perturbation amplitudes. Moreover, Zak-
harov’s model shows that decrease in the amplitude of
the pump field results in decrease in the growth rates
within the entire unstable region, while Silin’s model
demonstrates that similar process shifts the maximum
growth rate in the short-wave band, without reducing its
value (49). Thus, the process of energy transfer to the
short-wave part of the spectrum in the two models is
largely determined by the linear mechanism of perturba-
tion growth.
4. SIMULATION RESULTS
Consider the case when ion density perturbations are
spatially symmetric and 0nΦ = . In addition, there is no
spatial shift between perturbations of different scales
during instability development. It can be shown that the
energy transfer from long-wave plasma wave to elec-
trons and ions will be most effective in this case. For
low initial amplitude values (low noise level), the main
energy of the growing instability spectrum have been
concentrated in short-wave region at the close of the
linear stage of the process. The perturbations in this
spectrum region have a maximum growth rate and have
significantly kept ahead the neighbor modes during the
linear stage of the instability development. The range of
instability is found to berelativelynarrow. Therefore,
severallong-livedsmall-scaledensity perturbations may
arise on the length of the pumping wave. These cavities
arise during all linear stage of the process due to phase
synchronization of high-frequency modes. The phe-
nomenon of phase synchronization of growing modes at
the linear stage of the process was mentioned in earlier
works [33]. For large initial mode amplitude RF spec-
trum(i.e. at high levels of Langmuir noise), the number
of density cavities arising on the length of the pumping
wave decreases to only one or two [29]. Herewith, the
ISSN 1562-6016. ВАНТ. 2013. №4(86) 264
spectra of the high-frequency field perturbations and ion
density perturbations broaden.
We used the following parameters for simulation.
The number of simulated ion particles
0 2.500...5000s S< ≤ = , N n N− < < , 50...100N = ,
2
0 0 0(0) (0) / 0.06e pea ek E m ω= = , 0 / 2s sk xξ π= ,
tτ δ= , 0 0/ | | 0s sd d vτ τξ τ = == = ,
2
0 | | (0) / 0.0001...0.0025n e peek n e m ω = , 1Δ = ,
3/ 10em M −= and 0/ 0.1eW n T = for Zakharov’s model.
The ions acquire kinetic energy in the potential wells
of the secaverns. At the nonlinear stage of the instabil-
ity, the trajectories of ions cross each other, the ion den-
sity perturbations are smoothed out and their amplitude
increases. Relationship between ionic perturbations an-
dhigh-frequency field is weakened and the instability
saturates. The amplitude of the pumping wave is stabi-
lized after some oscillation at a rather low level (Fig. 1).
Fig. 1. Evolution of amplitude of the pumping wave
(a – Zakharov's model; b – Silin's model)
Fig. 2. Evolution of the value 2( / )ss
d dtξ∑
(a – Zakharov's model; b – Silin's model)
The main energy is now contained in the short-wave
Langmuir spectrum. Some small part of the initial en-
ergy is converted into kinetic energy of the ions (Fig. 2).
The kinetic energy of ions positioned on a length of
the pumping wave can be expressed through the esti-
mated value of the sum of the squared dimensionless
velocity ( )2
s
s
I d dξ τ= ∑
and the number of simulated
particles S
2 2 2
0
0 2
0 00
42 1 2
2 2
sdx Mn
n M I
k dt kk S
π δπ π⎛ ⎞⋅ 〈 〉 = ⋅⎜ ⎟
⎝ ⎠
, (50)
where 2( )sdx dt〈 〉 is the ensemble average. The ratio of
the ion kinetic energy to the initial energy of intense
long-wavelength Langmuir waves can be written as
2
2
0 0
0 0
2 2
2
0 0
2 2[ ] /{(| | /4 ) }
4 ,
s
kin
dx
n M E
k dt k
I M
W ma S
π ππ
π δ
⎛ ⎞〈 〉 ⋅ =⎜ ⎟
⎝ ⎠
Ε
= =
(51)
where kinΕ is the density of the ion kinetic energy,
2
0 0| | /4W E π= is the initial energy density of long-
wavelength Langmuir waves. When the ion density per-
turbations are spatially symmetric and 0nΦ = , the si-
mulation shows that the maximum possible value
21.2 10sI −⋅ for 5000S = and 14,5 10sI −⋅ for
2.500S = are reached during the instability develop-
ment for Silin’s and Zakharov’s models correspond-
ingly. The ratio of time scales for these two models is
equal to 1/6 1/ 2
01.6( / ) ( / ) 0.16e em M W n T = . Taking this
into account, it is easy to see the energy of ions are of
the same order in both models.
The ratio of ion kinetic energy to the initial energy
of long-wave oscillations occurs equal to
3 1/3
0/ 3.6 10 ( / )kin eW M m−Ε ⋅ for Silin’s model and
2
0 0 0/ 1.2 10 /kin eW W n T−Ε ⋅ for Zakharov’s model. This
means that in Silin’s model the ions derive a portion of
field energy of the order of maxδ . This effect was pre-
dicted in [19] and confirmed in [29]. A portion of trans-
ferred energy in Zakharov’s model is of the order of
0 0/ eW n T .
Fig. 3. Evolution of speed distribution function
half-width for simulated particles
(a – Zakharov's model; b – Silin's model)
In Zakharov’s model only a fraction of a percent of
the initial energy can be transferred to the ions during
development of the long-wave parametric instability of
plasma waves. Nevertheless, the stabilization of the
instability and its saturation are mostly determined by
the trapping of ions to the potential wells of caverns in
both models. During the trapping, the mixing of ions
and the destruction of cavities occur that evidenced by
the sharp increase in the ion density.
If the speed distribution of ions was Maxwellian, the
half-width of such distribution (Fig. 3) would have been
associated with the thermal velocity by the relation
1,18 Tv v= .
ISSN 1562-6016. ВАНТ. 2013. №4(86) 265
Fig. 4. Distribution function of the value 2( / )sd dtξ
(a – Zakharov's model; b – Silin's model)
However, the simulation shows that the half-width
reaches at the nonlinear stage of the process the value of
0,005v = for Zakharov’s model and 0,006v = for Si-
lin’s model. In addition, if the speed distribution of ions
was Maxwellian, the value of 2 20.72M TI S v S v= ⋅ ≈ ⋅ ,
will be of the order of 0,22 for Zaharov’s model and
30,73 10−⋅ for Silin’s model, while the simulation gives
the value two times greater in Zakharov’s model and an
order greater in Silin’s model. In the hot plasma the
speed distribution of ions is close to the normal and one
can say about the ion temperature. In Silin’s model the
difference in more than 15 times is caused by the exis-
tence of a large group of fast ions (Fig. 4) that was ob-
served in the experiments [36].
In conclusion, we note that the process of parametric
instability for Silin’s and Zakharov’s models are similar
mostly due to the similarity of the systems of equations
[37].
REFERENCES
1. V.P. Silin, A.A. Ruhadze. The electromagnetic
properties of plasma and plasmalike media. М.:
«Atomizdat», 1961, 244 p.
2. N.G. Basov, O.N. Krohin. Plasma heating condition
by optical generator radiation // JETP. 1964, v. 46,
№ 1, p. 171-175.
3. J.M. Dawson On the production of plasma by giant
pulse lasers // Phys. Fluids. 1964, v. 7, № 7, p. 981-
987.
4. P.P. Paschinin, A.M. Prokhorov. Dence high-
temperature plasma production by laser heating of
the special gas target // JETP. 1971, v. 60, № 5,
p. 1630-1636.
5. V.A.Buts, A.N.Lebedev, V.I. Kurilko. The Theory
of Coherent Radiation by Intense Electron Beams.
Springer-Verlag Berlin Heidelberg. 2006, 322 р.
6. Ja.B. Fainberg. Plasma electronic // Ukr. Phys J.
1978, v. 23, № 11, p. 1885-1901; The some of
Plasma Electronic Problems // Fizika Plasmy. 1985,
v. 11, № 11, p. 1398-1410.
7. M.V. Kuzelev, A.A. Ruhadze. Dense electron beam
electrodynamic in Plasma. М.: «Nauka», 1990.
8. V.D. Shapiro, V.I. Schevchenko. Wave-particle
interaction in nonequilibrium media // Izv. Vysov.
Radiophis. 1976, v. 19, № 5-6, p. 787-791.
9. A.N. Kondratenko, V.M. Kuklin. Plasma electronic
principles. М.: «Energoatomizdat», 1988, 320 р.
10. V.P. Silin. Parametric resonance in plasma // JETP.
1965, v. 48, № 6, p. 1679-1691.
11. V.E. Zakharov. Weak-turbulence spectrum in a
plasma without a magnetic field // Sov. Phys. JETP.
1967, v. 24(2), p. 455-459. The Instability of Waves
in Nonlinear Dispersive Media // Sov. Phys. JETP.
1967, v. 24, p. 740; Collapse of Langmuir Waves //
Sov. Phys. JETP. 1972, v. 35(5), p. 908-914.
12. W.L. Kruer, P.K. Kaw, J.M. Dawson, C. Oberman.
Anomalous high-frequency resistivity and heating of
a plasma // Phys. Rev. Lett. 1970, v. 24, № 8, p. 987-
990.
13. Yu.M. Aliev, V.P. Silin. Oscillations theory of
plasma, which situated in HF electromagnetic field.
// JETP. 1965, v. 48, № З, p. 901-912.
14. L.M. Gorbunov, V.P. Silin. On the plasma instability
in strong HF field // JETP. 1965, v. 49, № 6,
p. 1973-1981.
15. V.P. Silin. Anomalous nonlinear dissipation HF ra-
dio-waves in plasma. // Uspech. Fiz. Nauk. 1972,
v. 108, № 4, p. 625-654.
16. W.L. Kruer. Heating of underdense plasma by in-
tense lasers // Phys. Fluids. 1973, v. 16, № 9,
p. 1548-1550.
17. A.A. Ivanov, M.G. Nikulin. Nonlinear interaction
large amplitude Langmuir waves in collisionless
plasma // JETP. 1973, v. 65, № 1, p. 168-174.
18. H.C. Kim, R.L. Stenzel, A.Y. Wong. Development
of "Cavitons" and Trapping of rf Field. II // Phys.
Rev. Lett. 1974, v. 33, p. 886-889.
19. N.E. Andreev, V.P. Silin, G.L. Stenchikov. On satu-
ration of plasma parametrical instability in strong
electric field // Sov. Plasma Physics. 1977, v. 3,
№ 5, p. 1088-1096.
20. L.M. Kovriznych. The modulation instability and
nonlinear waves in cold plasma // Fizika Plasmy.
1977, v. 3, № 5, p. 1097-1105.
21. N.S. Buchelnikova, E.P. Matochkin. Instability and
damping 1D Langmuir waves: Reprint № 79-115,
АN USSR, Inst. Nuclear Phys. 1979, 20 p.
22. S.V. Antipov et al. Quasi-soliton oscillations, allo-
cated in density ‘hollow’ of magnetized plasma //
Pis’ma JETP. 1976, v. 23, № 11, p. 613-616.
23. R.Z. Sagdeev, V.D. Shapiro, V.I. Schevchenko.
Strong Wave dissipation in inhomogeneous plasma
and ultrastrong plasma turbulence // Fizika plasmy.
1980, v. 6, № 3, p. 377-386 (in Russian).
24. A.Y. Wong and P.Y. Cheung. Three-Dimensional
Self-Collapse of Langmuir Waves // Phys. Rev. Lett.
1984, v. 52, p. 1222-1228.
25. P.Y. Cheung, A.Y. Wong. Nonlinear evolution of
electron electron-beam-plasma interaction // Phys.
Fluids. 1985, v. 28, № 5, p. 1538-1548.
26. D.M. Karfidov, A.M. Rubenchik, et al. The excita-
tion of strong Langmuir turbulence in plasma by
electron beam // JETP. 1990, v. 98, № 5(11),
p. 1592-1599.
27. V.E. Zakharov et al. 3D Langmuir collapse kinetics
// JETP. 1989, v. 96, №2, p. 591-603.
28. J.M. Dawson. Some Investigations of Plasma Insta-
bilities in One-Dimensional Plasmas. Princeton,
N.J.: Princeton University Plasma Physics Labora-
tory, 1962, p. 45.
ISSN 1562-6016. ВАНТ. 2013. №4(86) 266
29. V.V. Chernousenko, V.M. Kuklin, I.P. Panchenko.
The structure in nonequilibrium media. In book: The
integrability and kinetic equations for solitons / AN
USSR, ITPh. Kiev: «Nauk. Dumka», 1990, 472 p.
30. V.P. Silin. Parametric Influences of high-energy
Radiation on Plasma. Мoscow: «Nauka», 1973.
31. H.B. Dwight. Tables of integrals and other mathe-
matical data. (4 ed). NY. The Macmillan com. 1961,
230 p.
32. V.M. Kuklin. Instability of intensive longitudinal os-
cillations and structures in plasma // Proc. Contr. Pa-
pers. Int. Conf. on Plasma Physics. Kiev, apr.6-12,
1987, v. 4, p. 101-104; On new representation of
well-known physical phenomena // Journal of
Kharkоv National University. 2012, № 1017, physical
series “Nuclei, Particles, Fields”, іss. 3/55, p. 19-27.
33. V.M. Kuklin, S.M. Sevidov. On Nonlinear Theory
of stability of cold plasma intensive // Fizika Plaz-
my. 1988, v. 14, № 10, p. 1180-1185 (in Russian).
34. V.M. Kuklin, I.P. Panchenko, S.M. Sevidov. Inten-
sive Langmuir wave instability in cold plasma //
Raiotech and electron. 1988, v. 33, № 10, p. 2135-
2140.
35. E.A. Kuznetsov. On averaged description of Lang-
muir waves in plasma // Sov. Plasma Physics. 1976,
v. 2, № 2, p. 327-333.
36. G.M. Batanov et al. The large amplitude Langmuir
waves and particle acceleration in plasma micro-
wave discharge // Sov. Plasma Physics. 1986, v. 12,
№ 5, p. 552-565.
37. V.M. Kuklin. Similarity of 1D Parametric Instability
description of Langmuir waves // Journal of
Kharkоv National University. Physical series «Nu-
clei, Particles, Fields». 2013, № 1041, іss. 2(58),
p. 20-30.
Article received 16.04.2013
ДИНАМИКА ИОНОВ ПРИ РАЗВИТИИ ПАРАМЕТРИЧЕСКОЙ НЕУСТОЙЧИВОСТИ
ЛЕНГМЮРОВСКИХ ВОЛН
Е.В. Белкин, А.В. Киричок, В.М. Куклин, А.В. Приймак, А.Г. Загородний
Рассмотрены нелинейные режимы развития одномерных параметрических неустойчивостей длинновол-
новых ленгмюровских волн в случаях, когда энергия поля меньше (модель Захарова) и больше (модель Си-
лина) тепловой энергии плазмы. Процесс генерации коротковолнового спектра плазменных волн и возму-
щений ионной плотности оказывается подобным в обеих моделях описания параметрических неустойчиво-
стей. Показано, что энергия ионов при насыщении неустойчивостей оказывается порядка отношения линей-
ного инкремента к частоте в случае, когда начальная энергия поля заметно превышает тепловую энергию
плазмы. В условиях горячей плазмы ионам передается доля энергии, равная половине отношения начальной
энергии поля к тепловой энергии плазмы. Пересечение траекторий ионов вблизи каверн плотности является
причиной срыва неустойчивости в обоих случаях.
ДИНАМІКА ІОНІВ ПРИ РОЗВИТКУ ПАРАМЕТРИЧНОЇ НЕСТІЙКОСТІ
ЛЕНГМЮРІВСЬКИХ ХВИЛЬ
Є.В. Бєлкін, О.В. Киричок, В.М. Куклін, О.В. Приймак, О.Г. Загородній
Розглянуто нелінійні режими розвитку одновимірних параметричних нестійкостей довгохвильових лен-
гмюрівських хвиль у випадках, коли енергія поля менша (модель Захарова) і більша (модель Сіліна) за теп-
лову енергію плазми. Процес генерації короткохвильового спектра плазмових хвиль і збурень іонної густи-
ни виявляється подібним в обох моделях опису параметричних нестійкостей. Показано, що енергія іонів при
насиченні нестійкостей виявляється дорівнює за порядком відношенню лінійного інкремента до частоти у
випадку, коли початкова енергія поля помітно перевищує теплову енергію плазми. В умовах гарячої плазми
іонам передається частка енергії, що дорівнює половині відношення початкової енергії поля до теплової ене-
ргії плазми. Перетин траєкторій іонів поблизу каверн густини є причиною зриву нестійкості в обох випад-
ках.
|