Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needle radius and applied voltage on streamer velocity

The results of numerical simulations of the propagation of a negative streamer in nitrogen in the uniform and strongly non-uniform electric fields are presented. It is shown that the propagation velocity of the streamer in a nonuniform electric field is always higher than its velocity in an uniform...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Плазменно-пучковый разряд, газовый разряд и плазмохимия
Дата:2013
Автори: Manuilenko, O.V., Golota, V.I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/112169
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needle radius and applied voltage on streamer velocity / O.V. Manuilenko, V.I. Golota // Вопросы атомной науки и техники. — 2013. — № 4. — С. 189-193. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112169
record_format dspace
spelling Manuilenko, O.V.
Golota, V.I.
2017-01-17T19:55:37Z
2017-01-17T19:55:37Z
2013
Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needle radius and applied voltage on streamer velocity / O.V. Manuilenko, V.I. Golota // Вопросы атомной науки и техники. — 2013. — № 4. — С. 189-193. — Бібліогр.: 8 назв. — англ.
1562-6016
PACS: 52.80.Mg, 52.80.Tn
https://nasplib.isofts.kiev.ua/handle/123456789/112169
The results of numerical simulations of the propagation of a negative streamer in nitrogen in the uniform and strongly non-uniform electric fields are presented. It is shown that the propagation velocity of the streamer in a nonuniform electric field is always higher than its velocity in an uniform field at given voltages on electrodes. It is shown that as the needle radius decreases, the velocity of the streamer increases. The growth of streamer velocity, with decrease of the needle radius, is stopped when the needle curvature radius reaches a certain critical size. It is shown that in the region of the strong nonlinearity, when the streamer dynamics is determined by the charge of the streamer head, its velocity as a function of the longitudinal coordinate is independent of the needle radius. It is shown that the velocity of the streamer increases with growth of the applied voltage.
Наведено результати числового моделювання поширення негативного стримера в азоті в однорідних і сильно неоднорідних електричних полях. Показано, що швидкість поширення стримера в неоднорідному полі завжди більша його швидкості в однорідному полі при однакових потенціалах на електродах. Показано, що при зменшенні радіуса голки швидкість стримера збільшується при заданій напрузі на електродах. Зростання швидкості стримера, із зменшенням радіуса голки, припиняється, коли радіус кривизни голки досягає деякого критичного розміру. Показано, що в області сильної нелінійності, коли динаміка поширення стримера визначається його об'ємним зарядом, його швидкість, як функція поздовжньої координати не залежить від радіуса голки. Показано, що швидкість стримера зростає з ростом напруги, що прикладена до електродів.
Приведены результаты численного моделирования распространения отрицательного стримера в азоте в однородных и сильно неоднородных электрических полях. Показано, что скорость распространения стримера в неоднородном поле всегда больше его скорости в однородном поле при одинаковых потенциалах на электродах. Показано, что при уменьшении радиуса иглы скорость стримера увеличивается при заданном напряжении на электродах. Рост скорости стримера, с уменьшением радиуса иглы, прекращается, когда радиус кривизны иглы достигает некоторого критического размера. Показано, что в области сильной нелинейности, когда динамика распространения стримера определяется его объемным зарядом, его скорость, как функция продольной координаты не зависит от радиуса иглы. Показано, что скорость стримера возрастает с ростом напряжения, приложенного к электродам.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needle radius and applied voltage on streamer velocity
Числове моделювання негативних стримерів у сильних неоднорідних електричних полях в азоті. Вплив радіуса голки і прикладеної напруги на швидкість стримера
Численное моделирование отрицательных стримеров в сильных неоднородных электрических полях в азоте. Влияние радиуса иглы и приложенного напряжения на скорость стримера
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needle radius and applied voltage on streamer velocity
spellingShingle Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needle radius and applied voltage on streamer velocity
Manuilenko, O.V.
Golota, V.I.
Плазменно-пучковый разряд, газовый разряд и плазмохимия
title_short Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needle radius and applied voltage on streamer velocity
title_full Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needle radius and applied voltage on streamer velocity
title_fullStr Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needle radius and applied voltage on streamer velocity
title_full_unstemmed Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needle radius and applied voltage on streamer velocity
title_sort numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. effect of needle radius and applied voltage on streamer velocity
author Manuilenko, O.V.
Golota, V.I.
author_facet Manuilenko, O.V.
Golota, V.I.
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
publishDate 2013
language English
container_title Плазменно-пучковый разряд, газовый разряд и плазмохимия
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Числове моделювання негативних стримерів у сильних неоднорідних електричних полях в азоті. Вплив радіуса голки і прикладеної напруги на швидкість стримера
Численное моделирование отрицательных стримеров в сильных неоднородных электрических полях в азоте. Влияние радиуса иглы и приложенного напряжения на скорость стримера
description The results of numerical simulations of the propagation of a negative streamer in nitrogen in the uniform and strongly non-uniform electric fields are presented. It is shown that the propagation velocity of the streamer in a nonuniform electric field is always higher than its velocity in an uniform field at given voltages on electrodes. It is shown that as the needle radius decreases, the velocity of the streamer increases. The growth of streamer velocity, with decrease of the needle radius, is stopped when the needle curvature radius reaches a certain critical size. It is shown that in the region of the strong nonlinearity, when the streamer dynamics is determined by the charge of the streamer head, its velocity as a function of the longitudinal coordinate is independent of the needle radius. It is shown that the velocity of the streamer increases with growth of the applied voltage. Наведено результати числового моделювання поширення негативного стримера в азоті в однорідних і сильно неоднорідних електричних полях. Показано, що швидкість поширення стримера в неоднорідному полі завжди більша його швидкості в однорідному полі при однакових потенціалах на електродах. Показано, що при зменшенні радіуса голки швидкість стримера збільшується при заданій напрузі на електродах. Зростання швидкості стримера, із зменшенням радіуса голки, припиняється, коли радіус кривизни голки досягає деякого критичного розміру. Показано, що в області сильної нелінійності, коли динаміка поширення стримера визначається його об'ємним зарядом, його швидкість, як функція поздовжньої координати не залежить від радіуса голки. Показано, що швидкість стримера зростає з ростом напруги, що прикладена до електродів. Приведены результаты численного моделирования распространения отрицательного стримера в азоте в однородных и сильно неоднородных электрических полях. Показано, что скорость распространения стримера в неоднородном поле всегда больше его скорости в однородном поле при одинаковых потенциалах на электродах. Показано, что при уменьшении радиуса иглы скорость стримера увеличивается при заданном напряжении на электродах. Рост скорости стримера, с уменьшением радиуса иглы, прекращается, когда радиус кривизны иглы достигает некоторого критического размера. Показано, что в области сильной нелинейности, когда динамика распространения стримера определяется его объемным зарядом, его скорость, как функция продольной координаты не зависит от радиуса иглы. Показано, что скорость стримера возрастает с ростом напряжения, приложенного к электродам.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/112169
citation_txt Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needle radius and applied voltage on streamer velocity / O.V. Manuilenko, V.I. Golota // Вопросы атомной науки и техники. — 2013. — № 4. — С. 189-193. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT manuilenkoov numericalsimulationofnegativestreamersinstrongnonuniformelectricfieldsinnitrogeneffectofneedleradiusandappliedvoltageonstreamervelocity
AT golotavi numericalsimulationofnegativestreamersinstrongnonuniformelectricfieldsinnitrogeneffectofneedleradiusandappliedvoltageonstreamervelocity
AT manuilenkoov čislovemodelûvannânegativnihstrimerívusilʹnihneodnorídnihelektričnihpolâhvazotívplivradíusagolkiíprikladenoínapruginašvidkístʹstrimera
AT golotavi čislovemodelûvannânegativnihstrimerívusilʹnihneodnorídnihelektričnihpolâhvazotívplivradíusagolkiíprikladenoínapruginašvidkístʹstrimera
AT manuilenkoov čislennoemodelirovanieotricatelʹnyhstrimerovvsilʹnyhneodnorodnyhélektričeskihpolâhvazotevliânieradiusaiglyipriložennogonaprâženiânaskorostʹstrimera
AT golotavi čislennoemodelirovanieotricatelʹnyhstrimerovvsilʹnyhneodnorodnyhélektričeskihpolâhvazotevliânieradiusaiglyipriložennogonaprâženiânaskorostʹstrimera
first_indexed 2025-11-26T02:58:33Z
last_indexed 2025-11-26T02:58:33Z
_version_ 1850609527173414912
fulltext ISSN 1562-6016. ВАНТ. 2013. №4(86) 189 NUMERICAL SIMULATION OF NEGATIVE STREAMERS IN STRONG NON-UNIFORM ELECTRIC FIELDS IN NITROGEN. EFFECT OF NEEDLE RADIUS AND APPLIED VOLTAGE ON STREAMER VELOCITY O.V. Manuilenko, V.I. Golota National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: ovm@kipt.kharkov.ua The results of numerical simulations of the propagation of a negative streamer in nitrogen in the uniform and strongly non-uniform electric fields are presented. It is shown that the propagation velocity of the streamer in a non- uniform electric field is always higher than its velocity in an uniform field at given voltages on electrodes. It is shown that as the needle radius decreases, the velocity of the streamer increases. The growth of streamer velocity, with decrease of the needle radius, is stopped when the needle curvature radius reaches a certain critical size. It is shown that in the region of the strong nonlinearity, when the streamer dynamics is determined by the charge of the streamer head, its velocity as a function of the longitudinal coordinate is independent of the needle radius. It is shown that the velocity of the streamer increases with growth of the applied voltage. PACS: 52.80.Mg, 52.80.Tn INTRODUCTION Papers [1 - 5] are devoted to the numerical modeling of the negative streamer in nitrogen within the drift - diffusion approximation. In these works, with the ex- ception of [5], the regular nonadaptive meshes to solve the continuity and Poisson equations are used. Streamer is a nonlinear structure with a sharp edge. Therefore, for its correct resolution in numerical simulations the expo- nential representation for the current density in the drift- diffusion approximation - the Scharfetter-Gummel algo- rithm [6], or numerical schemes with adaptation of a regular grid [5] were used. Regular meshes, as opposed to irregular grids, which are used in the finite element method, can not accurately describe the arbitrary boundaries of complex shape, such as the needle - to - plane. Therefore, the finite element method was used in our simulations. The computer simulations of the negative (anode - directed) streamers in nitrogen in the uniform (plane - to - plane geometry) and non-uniform (needle - to - plane geometry) fields are presented in [7, 8]. The effect of the needle radius on the negative streamer speed has been studied just for one electrode potential. It has been shown that the velocity of the negative streamer in a nonuniform electric field is higher than its velocity in a uniform field. It has been shown that as the radius of the needle decreases, the streamer velocity increases. The results of numerical simulations of negative streamer dynamics in nitrogen, using the finite element method (SUPG, CWDPG), are presented below. The computer simulations were performed for uniform and non-uniform electric fields. The effect of applied volt- ages at different radii of the needle on the streamer speed is investigated. 1. MODEL The set of equations describing the propagation of the negative (anode - directed) streamer in nitrogen is: ( ) izeeee e SnDEn t n =∇−−⋅∇+ ∂ ∂ r μ , (1) ( ) iziiii i SnDEn t n =∇−⋅∇+ ∂ ∂ r μ (2) ( )ie o nneV −=∇ ε 2 , VE −∇= r , (3) where en in are the number densities for electrons and positive ions, eμ , iμ are the electron and ion mobili- ties, eD , iD are the diffusion coefficients for electrons and ions. V is the potential of electric field, e is the electron charge, oε is the permittivity of free space. izS is the rate of charged particle generation due to colli- sional ionization: ( )EEEnS ooeeiz rr /exp|| −= αμ , (4) where oα is the ionization coefficient, oE is the threshold field for impact ionization. In the right hand sides of equations (1) and (2) other sources and sinks of charged particles, such as, photoionization and recom- bination, were not included. These sources and sinks are negligible, compared to the impact ionization, for pure nitrogen on the simulation time (streamer propagation time through the discharge gap). Expression (4) allows the introduction of a set of natu- ral scales: spatial scale ool α/1= , electric field scale oE , velocity scale oeo Ev μ= , time scale ooo vlt /= , diffusion scale ooo tlD /2= , and density scale ( )oooo leEn ⋅⋅= /ε . For nitrogen, under normal conditions, oE = 197600 V/cm, oα =4332 cm-1, eμ =460 cm2V-1s-1. Passing in (1) - (3) to dimensionless variables olrr /rr = , ottt /= , oee nnn /= , oii nnn /= , the following equa- tions can be obtained: ( ) ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −=∇−−⋅∇+ ∂ ∂ || 1exp|| ε εε r rr eee e nnDn t n , (5) ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= ∂ ∂ || 1exp|| ε ε r r e i n t n , (6) ρ−≡−=∇ ie nnV2 , V−∇=ε r . (7) ISSN 1562-6016. ВАНТ. 2013. №4(86) 190 Ions in (6) are further considered as immovable, since their mobility is several orders of magnitude smaller than the electron mobility, which allows ne- glecting their displacement for the simulation time. Fig. 1 shows the simulation domain, example of mesh for solution of (5) - (7) and the boundary condi- tions. Initially electrons and ions are located at the cath- ode with number densities: ( )σδ /exp 2rnn ie r −⋅== , δ =10-4, σ =100. The potential of the anode changed in simulations: 0V = {96, 128, 160, 192}, which corre- sponds for the plane - to - plane geometry approxi- mately to {74.1, 98.8, 123.5, 148.2} kVcm-1. Dimen- sionless diffusion coefficient is D = 0.1, which corre- sponds to 1800 cm2s-1. The other parameters are: zL =256, rL = 128, H = 40, needle radius is one of nR ={20, 40, 80, inf}. nR = inf means uniform electric fields, or plane - to - plane simulation domain. For the plane - to - plane computation domain nR + ndlH =0. Fig. 1. Simulation domain and boundary conditions 2. SIMULATION RESULTS Figs. 2, 3 show, for example, the computer simula- tion results of the avalanche - to - streamer transition, and the propagation of negative streamer through the discharge gap with the uniform (left column) and non - uniform (right column) electric fields. nR = 20. V0 = 128. Fig. 2 shows distribution of the space charge density );,( tzrρ in { }zr, at different times. Fig. 3 presents the distribution of the absolute value of the electric field );,( tzrε r at the same time points. The time points are chosen so that the streamer in the uni- form and non-uniform field advanced the same distance. For the uniform field these time points are =t {115, 175, 200}, and for the non-uniform field these time points are =t {50, 100, 125}. As can be seen from Figs. 2 and 3, in the inhomoge- neous field the streamer has a larger transverse dimen- sion, higher speed and smaller forming time. In both cases, the electric field is enhanced in front of the streamer head, and weakened behind it. Fig. 2. Space charge density );,( tzrρ . Left column - uniform electric field. Right column - non - uniform electric field Fig. 3. Absolute value of the electric field );,( tzrε r . Left column - uniform electric field. Right column - non - uniform electric field ISSN 1562-6016. ВАНТ. 2013. №4(86) 191 Fig. 4 shows the absolute value of the electric field |);,0(| tzr =ε r , and the space charge density );,0( tzr =ρ on the axis depending on the longitudinal coordinate z at different time points =t [0,130] with the step =dt 5. nR = 20 and 0V = 128. As can be seen from Fig. 4, the vacuum (Laplacian) electric field of the needle is quickly screened by the streamer. The electric field |);,0(| tzr =ε r , as well as the space charge density );,0( tzr =ρ , changes weakly when the streamer moves through the discharge gap. When the streamer head approaches the anode, this increases the local elec- tric field in front of the streamer head, and leads to the growing collisional ionization rate. This increases the densities of charged particles and the space charge den- sity );,0( tzr =ρ . It can be seen that the head of the negative streamer, as it moves towards the anode, is compressed in the longitudinal direction. Fig. 4. Electric field |);,0(| tzr =ε r and space charge density );,0( tzr =ρ on the axis at different times Fig. 5 (left column) shows the z-coordinates of the maximum of the electric field max|);,0(| tzr =ε r on the axis as the function of time for different values of the needle radii nR = {20, 40, 80, inf}, and the anode po- tentials 0V = {96, 128, 160, 192}. nR = inf means uni- form electric fields, or plane - to - plane computational domain. Fig. 5 (right column) shows the velocity of max|);,0(| tzr =ε r versus time, which is the negative streamer propagation velocity through the discharge gap - sV . As seen from Fig. 5, the streamer velocity in- creases as the needle radius decreases. This increase in the velocity goes up to a certain radius ( nR ~ 40), after which the growth of streamer speed is cut off. As can be seen from Fig. 5, the behavior of streamer velocity sV as a function of time has four characteristic regions: (1) the sharp drop at the beginning of the movement, (2) the motion with a nearly constant velocity, (3) the region of the first (low) acceleration, and (4) the region of the second (strong) acceleration. Fig. 5. Negative streamer dynamics for different radii of the needle nR ={20, 40,80, inf} and different applied voltages 0V = {96, 128, 160, 192}. Left - z-coordinate of the maximum of the electric field max|);,0(| tzr =ε r on the axis versus time. Right - streamer velocity )(tVs versus time For a plane - to - plane geometry, (1) and (2) repre- sent the initial stage of an electron avalanche develop- ment, when the space charge is small, and the external electric field is not distorted by the space charge. The region (3) corresponds to the nonlinear stage of streamer propagation, when the magnitude of the space charge is significantly different from zero, and the external elec- tric field is significantly distorted. The region (4) corre- sponds to the approach of the streamer to the anode, and to its exit through the anode from the simulation domain. Solution of the linearized equations (5) - (7) in one di- mension, for the velocity of the ionization wave can be presented by: ( )000 /1exp2 εεε −+= DVa , (8) where 0ε is the external electric field, D is the diffu- sion coefficient. aV is shown in Fig. 5 by a straight line. Fig. 5 shows that after a rather rapid transition process (region (1)) the streamer velocity sV approaches the asymptotic velocity aV (region (2)), which corresponds to the linear stage of the avalanche development. In the case of non - uniform fields, the region (2) can not be identified as the linear stage of the avalanche development, because the effect of space charge appears much earlier. This follows directly from the analysis of potential distribution on the axis, which differs signifi- cantly from the vacuum potential distribution in the re- gion (2) for each of the needle radii nR = {20, 40, 80} and applied voltages 0V = {96, 128, 160, 192}. Assum- ing that the speed of the streamer is determined by the electric field in the front of its head, it follows from the ISSN 1562-6016. ВАНТ. 2013. №4(86) 192 simulations that consttzr ≈= max|);,0(| ε r , and for max|);,0(| tzr =ε r in the region (2): 0V R nR max||εr E aV 96 R =20,40,80 0.78 1.074 128 R =20,40,80 1.2 1.657 160 R =20,40,80 1.53 2.094 192 R =20,40,80 1.88 2.545 In the table, nR max|| εr is the averaged over the needle radii electric field in the region (2), where the electric field max|);,0(| tzr =ε r and the speed of the streamer are slightly changed with time, nR nn eDV RR E a max 1 maxmax 2 ε εε r rr − += . (9) The velocity E aV is shown in Fig. 5. As can be seen from Fig. 5, the negative streamer speed is well de- scribed by the expression (9). Fig. 6 shows the velocity of the negative streamer sV versus longitudinal coordinate z. It is seen that in the strong non-linearity regions (regions (3), and (4)) the speed of the streamer sV as a function of longitudinal coordinate z is independent from the needle radius nR . This can be explained by the screening of electric field of the needle by the space charge of the streamer. Fig. 6. Velocity of the negative streamer sV versus longitudinal coordinate z for different needle radii nR ={20, 40, 80, inf}, and different applied voltages 0V = {96, 128} Fig. 7 shows the streamer velocity sV , for different applied voltages 0V = {96, 128, 160, 192} with the con- stant needle radius nR = {20, 40, 80, inf}. It is seen that as the applied voltage increases, the streamer velocity also increases. Fig. 8 shows the streamer mean velocity >< sV as a function of the needle radius nR ={20, 40, 80} for different applied voltages 0V = {96, 128, 160, 192}. Mean velocity is defined as trzs LV τ/>=< , where zL is the discharge gap length, trτ is the passage time of the streamer through the discharge gap. It can be seen that the >< sV increases as nR decreases at 0V =const. Fig. 7. Negative streamer dynamics for different applied voltages 0V = {96, 128, 160, 192} and different radii of the needle nR ={20, 40, 80, inf}. Streamer velocity )(tVs versus time Starting from some nR , the growth of streamer speed stops. It is also seen that >< sV increases with 0V . Fig. 8. The dependence of the negative streamer aver- age speed >< sV on the radius of the needle nR for different applied voltages 0V = {96, 128, 160, 192}. nR = {20, 40, 80} Fig. 9 shows the streamer mean velocity >< sV as a function of the applied voltages 0V ={96, 128, 160, 192} for different needle radii nR ={20, 40, 80, inf}. It can be seen that the >< sV increases linearly with applied voltage 0V . It is seen also that the mean streamer veloc- ity >< sV starting from certain nR , does not depend on the needle radius nR . Fig. 9. The dependence of the negative streamer average speed >< sV on the applied voltage 0V = {96, 128, 160, 192} for different radii of the needle nR ={20, 40, 80} ISSN 1562-6016. ВАНТ. 2013. №4(86) 193 CONCLUSIONS The results of numerical simulations of the propaga- tion of the negative streamer in nitrogen in the uniform and strongly non-uniform electric fields were presented. Computer simulations were performed by finite element method, which allows to accurately describe the boundaries of complicated shape. Simulations were done for different voltages, and for different radii of the needles. It was shown that the velocity of streamer propaga- tion in the non - uniform electric field is always higher than the velocity of streamer propagation in the uniform field at given voltages on the electrodes. It was shown that the behavior of streamer velocity versus time has four specific regions: (1) the sharp drop at the beginning of the movement, (2) the propagation with a constant velocity, (3) the region of the first (low) acceleration, and (4) the area of the second (strong) ac- celeration when the streamer head approaches the an- ode. It was shown that as the needle radius decreases, the velocity of the streamer increases. The growth of streamer velocity, with decreasing needle radius, is stopped when the needle curvature radius reaches a cer- tain critical size. It was shown that in the region of strong nonlinear- ity, namely, in the space charge dominated region, the streamer velocity as the function of longitudinal coordi- nate is independent from the needle radius. It was shown that the streamer velocity increases with growth of the applied voltage. REFERENCES 1. A.A. Kulikovsky. The structure of streamers in N2. I. fast method of space-charge dominated plasma simulation // J. Phys. D: Appl. Phys. 1994, v. 27, p. 2556-2563. 2. A.A. Kulikovsky. The structure of streamers in N2. II. Two-dimensional simulation // J. Phys. D: Appl. Phys. 1994, v. 27, p. 2564-2569. 3. A.A. Kulikovsky. Two-dimensional simulation of the positive streamer in N2 between parallel-plate electrodes // J. Phys. D: Appl. Phys. 1995, v. 28, p. 2483-2493. 4. M. Arrayás, U. Ebert, W. Hundsdorfer. Spontaneous branching of anode-directed streamers between planar electrodes // Phys. Rev. Lett. 2002, v. 88, p. 174502. 5. C. Montijn, W. Hundsdorfer, U. Ebert. An adaptive grid refinement strategy for the simulation of negative streamers // J. Comp. Phys. 2006, v. 219, p. 801-835. 6. A.A. Kulikovsky. A more accurate Scharfetter- Gummel algorithm of electron transport for semi- conductor and gas discharge simulation // J. Comp. Phys. 1994, v. 119, p. 149-155. 7. V.I. Golota, Yu.V. Dotsenko, V.I. Karas’, О.V. Manuilenko, А.S. Pismenetskii. Simulation of negative streamer in nitrogen // Problems of Atomic Science and Technology. Ser. «Plasma Electronics and New Meth. of Accel» (7). 2010, № 4, p. 176-180. 8. O.V. Manuilenko, V.I. Golota. Particularities of the negative streamer propagation in homogeneous and inhomogeneous electric fields // Problems of Atomic Science and Technology. Ser. «Plasma Physics» (83). 2013, № 1, p. 171-173. Article received 29.04.2013. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ОТРИЦАТЕЛЬНЫХ СТРИМЕРОВ В СИЛЬНЫХ НЕОДНОРОДНЫХ ЭЛЕКТРИЧЕСКИХ ПОЛЯХ В АЗОТЕ. ВЛИЯНИЕ РАДИУСА ИГЛЫ И ПРИЛОЖЕННОГО НАПРЯЖЕНИЯ НА СКОРОСТЬ СТРИМЕРА О.В. Мануйленко, В.И. Голота Приведены результаты численного моделирования распространения отрицательного стримера в азоте в однородных и сильно неоднородных электрических полях. Показано, что скорость распространения стриме- ра в неоднородном поле всегда больше его скорости в однородном поле при одинаковых потенциалах на электродах. Показано, что при уменьшении радиуса иглы скорость стримера увеличивается при заданном напряжении на электродах. Рост скорости стримера, с уменьшением радиуса иглы, прекращается, когда ра- диус кривизны иглы достигает некоторого критического размера. Показано, что в области сильной нелиней- ности, когда динамика распространения стримера определяется его объемным зарядом, его скорость, как функция продольной координаты не зависит от радиуса иглы. Показано, что скорость стримера возрастает с ростом напряжения, приложенного к электродам. ЧИСЛОВЕ МОДЕЛЮВАННЯ НЕГАТИВНИХ СТРИМЕРІВ У СИЛЬНИХ НЕОДНОРІДНИХ ЕЛЕКТРИЧНИХ ПОЛЯХ В АЗОТІ. ВПЛИВ РАДІУСА ГОЛКИ І ПРИКЛАДЕНОЇ НАПРУГИ НА ШВИДКІСТЬ СТРИМЕРА О.В. Мануйленко, В.І. Голота Наведено результати числового моделювання поширення негативного стримера в азоті в однорідних і сильно неоднорідних електричних полях. Показано, що швидкість поширення стримера в неоднорідному полі завжди більша його швидкості в однорідному полі при однакових потенціалах на електродах. Показано, що при зменшенні радіуса голки швидкість стримера збільшується при заданій напрузі на електродах. Зрос- тання швидкості стримера, із зменшенням радіуса голки, припиняється, коли радіус кривизни голки досягає деякого критичного розміру. Показано, що в області сильної нелінійності, коли динаміка поширення стри- мера визначається його об'ємним зарядом, його швидкість, як функція поздовжньої координати не залежить від радіуса голки. Показано, що швидкість стримера зростає з ростом напруги, що прикладена до електродів.