Plasma system with rotational gliding arc between solid electrodes
Rotational gliding arc with solid electrodes has been studied at different flow of working gas (air). Plasma torch studies by emission spectroscopy method. Measurements have been made at various levels from the electrode surface along the entire flare height. Electronic temperature levels of plasma...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2013 |
| Hauptverfasser: | , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/112180 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Plasma system with rotational gliding arc between solid electrodes / O.V. Solomenko, O.A. Nedybaliuk, V.Ya. Chernyak, E.V. Martysh, I.I. Fedirchyk, I.V. Prysiazhnevych // Вопросы атомной науки и техники. — 2013. — № 4. — С. 213-216. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-112180 |
|---|---|
| record_format |
dspace |
| spelling |
Solomenko, O.V. Nedybaliuk, O.A. Chernyak, V.Ya. Martysh, E.V. Fedirchyk, I.I. Prysiazhnevych, I.V. 2017-01-17T20:07:49Z 2017-01-17T20:07:49Z 2013 Plasma system with rotational gliding arc between solid electrodes / O.V. Solomenko, O.A. Nedybaliuk, V.Ya. Chernyak, E.V. Martysh, I.I. Fedirchyk, I.V. Prysiazhnevych // Вопросы атомной науки и техники. — 2013. — № 4. — С. 213-216. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 50., 52., 52.50.Dg https://nasplib.isofts.kiev.ua/handle/123456789/112180 Rotational gliding arc with solid electrodes has been studied at different flow of working gas (air). Plasma torch studies by emission spectroscopy method. Measurements have been made at various levels from the electrode surface along the entire flare height. Electronic temperature levels of plasma component population have been determined. Current-voltage characteristics under different operating conditions were investigated. Досліджувалась обертова ковзна дуга з твердими електродами за різних потоків робочого газу (повітря). Проводилися дослідження плазмового факелa методом емісійної спектроскопії. Виміри проводились на різних рівнях від поверхні електроду вздовж усієї висоти факелa. Визначені температури заселення збуджених електронних рівнів компонент плазми. Досліджені вольт-амперні характеристики при різних режимах роботи. Исследовалась вращательная скользящая дуга с твердыми электродами при различных потоках рабочего газа (воздуха). Проводились исследования плазменного факела методом эмиссионной спектроскопии. Измерения проводились на разных уровнях от поверхности электрода вдоль всей высоты факела. Определены температуры заселения возбужденных электронных уровней компонент плазмы. Исследованы вольт- амперные характеристики при различных режимах работы. This work was partially supported by the Taras Shevchenko National University of Kyiv. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Плазменно-пучковый разряд, газовый разряд и плазмохимия Plasma system with rotational gliding arc between solid electrodes Плазмова система з обертовою ковзною дугою з твердими електродами Плазменная система с вращательной скользящей дугой с твердыми электродами Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Plasma system with rotational gliding arc between solid electrodes |
| spellingShingle |
Plasma system with rotational gliding arc between solid electrodes Solomenko, O.V. Nedybaliuk, O.A. Chernyak, V.Ya. Martysh, E.V. Fedirchyk, I.I. Prysiazhnevych, I.V. Плазменно-пучковый разряд, газовый разряд и плазмохимия |
| title_short |
Plasma system with rotational gliding arc between solid electrodes |
| title_full |
Plasma system with rotational gliding arc between solid electrodes |
| title_fullStr |
Plasma system with rotational gliding arc between solid electrodes |
| title_full_unstemmed |
Plasma system with rotational gliding arc between solid electrodes |
| title_sort |
plasma system with rotational gliding arc between solid electrodes |
| author |
Solomenko, O.V. Nedybaliuk, O.A. Chernyak, V.Ya. Martysh, E.V. Fedirchyk, I.I. Prysiazhnevych, I.V. |
| author_facet |
Solomenko, O.V. Nedybaliuk, O.A. Chernyak, V.Ya. Martysh, E.V. Fedirchyk, I.I. Prysiazhnevych, I.V. |
| topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
| topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
| publishDate |
2013 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Плазмова система з обертовою ковзною дугою з твердими електродами Плазменная система с вращательной скользящей дугой с твердыми электродами |
| description |
Rotational gliding arc with solid electrodes has been studied at different flow of working gas (air). Plasma torch studies by emission spectroscopy method. Measurements have been made at various levels from the electrode surface along the entire flare height. Electronic temperature levels of plasma component population have been determined. Current-voltage characteristics under different operating conditions were investigated.
Досліджувалась обертова ковзна дуга з твердими електродами за різних потоків робочого газу (повітря). Проводилися дослідження плазмового факелa методом емісійної спектроскопії. Виміри проводились на різних рівнях від поверхні електроду вздовж усієї висоти факелa. Визначені температури заселення збуджених електронних рівнів компонент плазми. Досліджені вольт-амперні характеристики при різних режимах роботи.
Исследовалась вращательная скользящая дуга с твердыми электродами при различных потоках рабочего газа (воздуха). Проводились исследования плазменного факела методом эмиссионной спектроскопии. Измерения проводились на разных уровнях от поверхности электрода вдоль всей высоты факела. Определены температуры заселения возбужденных электронных уровней компонент плазмы. Исследованы вольт- амперные характеристики при различных режимах работы.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/112180 |
| citation_txt |
Plasma system with rotational gliding arc between solid electrodes / O.V. Solomenko, O.A. Nedybaliuk, V.Ya. Chernyak, E.V. Martysh, I.I. Fedirchyk, I.V. Prysiazhnevych // Вопросы атомной науки и техники. — 2013. — № 4. — С. 213-216. — Бібліогр.: 9 назв. — англ. |
| work_keys_str_mv |
AT solomenkoov plasmasystemwithrotationalglidingarcbetweensolidelectrodes AT nedybaliukoa plasmasystemwithrotationalglidingarcbetweensolidelectrodes AT chernyakvya plasmasystemwithrotationalglidingarcbetweensolidelectrodes AT martyshev plasmasystemwithrotationalglidingarcbetweensolidelectrodes AT fedirchykii plasmasystemwithrotationalglidingarcbetweensolidelectrodes AT prysiazhnevychiv plasmasystemwithrotationalglidingarcbetweensolidelectrodes AT solomenkoov plazmovasistemazobertovoûkovznoûdugoûztverdimielektrodami AT nedybaliukoa plazmovasistemazobertovoûkovznoûdugoûztverdimielektrodami AT chernyakvya plazmovasistemazobertovoûkovznoûdugoûztverdimielektrodami AT martyshev plazmovasistemazobertovoûkovznoûdugoûztverdimielektrodami AT fedirchykii plazmovasistemazobertovoûkovznoûdugoûztverdimielektrodami AT prysiazhnevychiv plazmovasistemazobertovoûkovznoûdugoûztverdimielektrodami AT solomenkoov plazmennaâsistemasvraŝatelʹnoiskolʹzâŝeidugoistverdymiélektrodami AT nedybaliukoa plazmennaâsistemasvraŝatelʹnoiskolʹzâŝeidugoistverdymiélektrodami AT chernyakvya plazmennaâsistemasvraŝatelʹnoiskolʹzâŝeidugoistverdymiélektrodami AT martyshev plazmennaâsistemasvraŝatelʹnoiskolʹzâŝeidugoistverdymiélektrodami AT fedirchykii plazmennaâsistemasvraŝatelʹnoiskolʹzâŝeidugoistverdymiélektrodami AT prysiazhnevychiv plazmennaâsistemasvraŝatelʹnoiskolʹzâŝeidugoistverdymiélektrodami |
| first_indexed |
2025-11-24T18:33:58Z |
| last_indexed |
2025-11-24T18:33:58Z |
| _version_ |
1850486043831173120 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2013. №4(86) 213
PLASMA SYSTEM WITH ROTATIONAL GLIDING ARC BETWEEN
SOLID ELECTRODES
O.V. Solomenko, O.A. Nedybaliuk, V.Ya. Chernyak, E.V. Martysh, I.I. Fedirchyk,
I.V. Prysiazhnevych
Taras Shevchenko National University of Kiev, Radiophysical Faculty, Kiev, Ukraine
E-mail: chernyak_v@ukr.net
Rotational gliding arc with solid electrodes has been studied at different flow of working gas (air). Plasma torch
studies by emission spectroscopy method. Measurements have been made at various levels from the electrode sur-
face along the entire flare height. Electronic temperature levels of plasma component population have been deter-
mined. Current-voltage characteristics under different operating conditions were investigated.
PACS: 50., 52., 52.50.Dg
INTRODUCTION
Manufacturing and study of plasma systems that
would work under high pressure, generate non-
equilibrium plasma and have long operation life is an
important task for plasma technologies [1]. Today,
plasma generators with rotating sliding arcs best meet
these conditions. These generators are available in two
versions: RGArc with [2 - 4] and without [5 - 8] the
longitudinal motion plasma column.
Dynamic plasma system with RGArc without the
longitudinal motion plasma column with solid elec-
trodes is studied in this research. Electrodes are made of
copper and stainless steel. This system can be used as a
source of active particles, which are injected into the
reaction chamber. Since the arc slides over the metal
electrode under the influence of the gas flow, the opera-
tion life of such system should be much longer than in
the case when sliding and rotation are absent.
1. EXPERIMENTAL SETUP
Schematic view and photo of the experimental setup
are shown in Fig. 1. Discharge burns between two solid
electrodes, which are made of stainless steel (1) and
copper (2), and insulator (3) is between them. The
working gas flow is introduced tangentially to the lateral
wall of the cylindic chamber through the channel (4).
The plasma torch (5) is rotating under the influence of
the gas flow and gliding along the surface of the upper
electrode. The working gas was air. Set up construction
provided an additional channel for gas flow (6), but it
was not used in this work.
The current-voltage characteristics of the discharge
depending on the rate of airflow and mode (different
polarity of electrodes). The behaviour of rotating gliding
arc was investigated in dependence on the size of the
gas flow and discharge current with high-speed cam-
eras.
a b
Fig. 1. Schematic view (a) and photo (b) of the experimental setup
2. RESULTS AND DISCUSSION
The current-voltage characteristics of the discharge
are shown in Fig. 2 for two modes: stainless steel cath-
ode (see Fig. 2,a) and copper cathode (Fig. 3,b) at dif-
ferent air flows. Airflow rate was varied in the range
from 42 to 417 cm3/s.
It can be said, on the current-voltage characteristics
base, that increasing of the air flow rate leads to the
breakdown voltage increasing, when the cathode is
stainless steel one. But this voltage, within the error, is
only slightly modified, if air flow rate is more than
250 cm3/s. The increasing the air flow rate slightly up
the lower limit of the of currents range, when system
has a copper cathode (120…400 mA for the case of air
flow rate 42 cm3/s; 220…400 mA for the case of air
flow rate 417 cm3/s). Breakdown voltage, within the
error, changes slightly.
ISSN 1562-6016. ВАНТ. 2013. №4(86) 214
a) b)
Fig. 2. Current-voltage characteristics of discharge: stainless steel cathode (a), copper cathode (b) at various air
flow rates (from 42 cm3/s to 417 cm3/s)
The emission spectroscopy was used for plasma di-
agnostics. Emission spectra were registered by usage of
spectral device – spectrometer S-150-2-3648 USB. This
spectrometer allows registering the emission spectra in
the wavelength range 200…1000 nm. Temperatures of
excited electron levels population for various chemical
elements and their distribution along the plasma torch
were defined in dependence on the air flow rate value
and discharge current. This method is described in de-
tails in [9].
Typical emission spectra of plasma in rotational
gliding arc discharge are shown in Fig. 3: stainless steel
cathode (see Fig. 3,a); copper cathode (see Fig. 3,b).
a)
b)
Fig. 3. Typical emission spectra of plasma in rotational gliding arc discharge with solid electrodes for stainless
steel (a) and copper (b) cathode. G = 167 cm3/s; h = 0 mm; I = 340 mA; U = 0,8 kV
Spectra in both cases are mixtures, they contain
atomic lines, electrode materials Cr, Fe, and Cu multi-
plets, oxygen atoms O multiplets, and NO molecular
bands. The temperatures of excited electron levels popu-
lation (Te
*) plasma components such as Cr and O were
determined from these spectra. Determination of tem-
peratures of excited electron levels population (Te
*) for
oxygen atoms was carried by the Boltzmann diagram
method using three most intense multiplets (777.2 nm,
844 nm, 926 nm) and data from [3]. T*
e of Cr atoms has
been determined by the ratio of the intensity of two in-
tense multiplets (357.9 nm and 425.4 nm) by using
comparison of calculated and experimental spectra. De-
termination of other components temperatures has been
significantly more complex. It was caused by overlap-
ping of their spectra.
The plasma discharge was diagnosed at different
discharge currents and along the plasma torch height
(h). The range of air flow rate is 167…417 cm3/s. The
temperature (Te
*) dependences on the current level were
specified for Cr and O atoms at different air flow rates
and stainless steel cathode. They are shown at Fig. 4.
The error of Te
* definition is near 500 K, so we can say
that the components temperature depends weakly from
current.
a
a b
b
ISSN 1562-6016. ВАНТ. 2013. №4(86) 215
a) b)
Fig. 4. The temperature (T*
e) distribution for oxygen and chrome atoms under different air flows for oxygen (а)
and chrome atoms (b) as a function of discharge current
The temperature (Te
*) of Cr atoms increases with the
air flow in the range of air flow rate 167…333 cm3/s.
The temperature (Te
*) of O atoms, within the error, does
not change. It may be noted that the temperature of ex-
cited electron levels population at Cr atoms in
1.5…2 times higher than same temperature of oxygen
atoms. This can be explained by the peculiarities of
these chemical elements excitation.
Axial temperature (Te
*) distribution for oxygen and
chrome atoms under different air flows
(167…417 cm3/s) and stainless steel cathode is pre-
sented at Fig. 5.
a) b)
Fig. 5. The temperature (T*
e) distribution for oxygen (a) and chrome (b) atoms under different air flows along
the plasma torch height. Discharge current - 300 мА
The relationships mentioned above, show that tem-
perature (Te
*) of oxygen atoms is increased with height
of the plasma torch for low air flow rate (167 cm3/s).
Such dependence wasn’t observed for larger airflows.
An essential increasing in Te
* was observed at the
maximum flow (417 cm3/s) for Cr atoms along plasma
torch. Such trend wasn’t observed for smaller flows.
The maximum plasma torch height was lower and
fixation of emission spectra plasma was more difficult
in case of copper cathode. The temperature Te
*(O) is
3500 ± 500 K, within the error, does not change with
height of the plasma torch and the air flow rate (167 and
417 cm3/s). Te
*(Cr) is 7000 ± 500 K in a range of
heights (h = 0…5 mm) at low air flow (167 cm3/s). The
temperature Te
*(Cr) = 9000 ± 500 K at the beginning of
the torch (h = 0mm) and 8000 ± 500 K on height
h = 5 mm at the maximum airflow (417 cm3/s).
CONCLUSIONS
Elements of both electrodes (Cu and Fe, Cr) present
in the torch plasma. Also the spectra in small amounts
are multiplets of oxygen atoms and bands of NO mole-
cules.
When the cathode is stainless steel, temperature Cr
and O weakly changed from current. However, Te
* of
these components has strong dependence on air flow.
Observed strong increase Te
* for O in the case of
small air flow (167 cm3/s) height the plasma torch.
Along with being temperature throughout the plasma
torch height within the error limits does not change at
high airflow.
Axial distribution of Te
*(Cr) for small air flow does
not change within the error limits, but at high air flow
(417 cm3/s) it was detected change of Te
*(Cr) in height
the plasma torch.
b a
a b
ISSN 1562-6016. ВАНТ. 2013. №4(86) 216
ACKNOWLEDGEMENTS
This work was partially supported by the Taras
Shevchenko National University of Kyiv.
REFERENCES
1. A. Fridman, A. Chirokov and A. Gutsol. Non-
thermal atmospheric pressure discharges // J. Phys.
D: Appl. Phys. (38). 2005, R1–R24
2. C.S. Kalra, A.F. Gutsol, A.A. Fridman. Gliding arc
discharges as a source of intermediate plasma for
methane partial oxidation // IEEE Trans. Plasma Sci.
(33). 2005, № 1, p. 32-41.
3. A. Czernichowski. Conversion of waste Glycerol
into Synthesis Gas // 19th Int. Symp. on Plasma
Chem. (ISPC-19), Bochum, Germany, July 26-31.
2009, 4 p.
4. J.M. Cormier, I. Rusu. Syngas production via meth-
ane steam reforming with oxygen: plasma reactors
versus chemical reactors // J. Phys. D: Appl. Phys.
(34). 2001, p. 2798-2803.
5. J.M. Cormier, I. Rusu, A. Khacef. On the use of a
magnetic blow out glidarc reactor for the syngas
production by stem reforming // 16th International
symposium on plasma chemistry, Taormina. 2003.
6. V. Chernyak. Gas discharge plasma in dynamics
system as a noneqilibrium plasma sources // Proc.
3rd Czech-Russian Seminar on Electrophysical and
Thermophysical Processes in Low-temperature
Plasma, Brno, November 16-19. 1999, p. 94-99.
7. O.A. Nedybaliuk, V.Ya. Chernyak, E.V. Martysh,
T.E. Lisitchenko. System with plasma injector of
hydrocarbons with high viscosity // Proc. of the VIII
International Conference “Electronics and Applied
Physics”, October 24-27, 2012, Kyiv, Ukraine.
2012, p. 148-149.
8. O.A. Nedybaliuk, V.Ya. Chernyak, E.V. Martysh,
T.E. Lisitchenko, O.Yu. Vergun, S.G. Orlovska.
Plasma assisted combustion of paraffin mixture //
Problems of Atomic Science and Technology. Series
«Plasma Physics» (19). 2013, № 1, p. 219-221.
9. I.V. Prisyazhnevich, V.Ya. Chernyak, P.A. Korot-
kov, V.V. Naumov, I.L. Babich, Y.I. Slyusarenko,
V.V. Yukhymenko, V.A. Zrazhevskiy. Defenition of
the excitated electron levels ocupation in plasma
from the emition spectum of the transversal electric
arc // Bulletin of the University of Kiev. Series
«Physics & Mathematics» (1). 2005, p. 289-298.
Article received 16.05.2013.
ПЛАЗМЕННАЯ СИСТЕМА С ВРАЩАТЕЛЬНОЙ СКОЛЬЗЯЩЕЙ ДУГОЙ С ТВЕРДЫМИ
ЭЛЕКТРОДАМИ
Е.В. Соломенко, О.А. Недыбалюк, В.Я. Черняк, Е.В. Мартыш, И.И. Федирчик, И.В. Присяжневич
Исследовалась вращательная скользящая дуга с твердыми электродами при различных потоках рабочего
газа (воздуха). Проводились исследования плазменного факела методом эмиссионной спектроскопии. Изме-
рения проводились на разных уровнях от поверхности электрода вдоль всей высоты факела. Определены
температуры заселения возбужденных электронных уровней компонент плазмы. Исследованы вольт-
амперные характеристики при различных режимах работы.
ПЛАЗМОВА СИСТЕМА З ОБЕРТОВОЮ КОВЗНОЮ ДУГОЮ З ТВЕРДИМИ ЕЛЕКТРОДАМИ
О.В. Соломенко, О.А. Недибалюк, В.Я. Черняк, Є.В. Мартиш, І.І. Федірчик, І.В. Присяжневич
Досліджувалась обертова ковзна дуга з твердими електродами за різних потоків робочого газу (повітря).
Проводилися дослідження плазмового факелa методом емісійної спектроскопії. Виміри проводились на різ-
них рівнях від поверхні електроду вздовж усієї висоти факелa. Визначені температури заселення збуджених
електронних рівнів компонент плазми. Досліджені вольт-амперні характеристики при різних режимах роботи.
|