Plasma system with rotational gliding arc between solid electrodes

Rotational gliding arc with solid electrodes has been studied at different flow of working gas (air). Plasma torch studies by emission spectroscopy method. Measurements have been made at various levels from the electrode surface along the entire flare height. Electronic temperature levels of plasma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2013
Hauptverfasser: Solomenko, O.V., Nedybaliuk, O.A., Chernyak, V.Ya., Martysh, E.V., Fedirchyk, I.I., Prysiazhnevych, I.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/112180
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Plasma system with rotational gliding arc between solid electrodes / O.V. Solomenko, O.A. Nedybaliuk, V.Ya. Chernyak, E.V. Martysh, I.I. Fedirchyk, I.V. Prysiazhnevych // Вопросы атомной науки и техники. — 2013. — № 4. — С. 213-216. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112180
record_format dspace
spelling Solomenko, O.V.
Nedybaliuk, O.A.
Chernyak, V.Ya.
Martysh, E.V.
Fedirchyk, I.I.
Prysiazhnevych, I.V.
2017-01-17T20:07:49Z
2017-01-17T20:07:49Z
2013
Plasma system with rotational gliding arc between solid electrodes / O.V. Solomenko, O.A. Nedybaliuk, V.Ya. Chernyak, E.V. Martysh, I.I. Fedirchyk, I.V. Prysiazhnevych // Вопросы атомной науки и техники. — 2013. — № 4. — С. 213-216. — Бібліогр.: 9 назв. — англ.
1562-6016
PACS: 50., 52., 52.50.Dg
https://nasplib.isofts.kiev.ua/handle/123456789/112180
Rotational gliding arc with solid electrodes has been studied at different flow of working gas (air). Plasma torch studies by emission spectroscopy method. Measurements have been made at various levels from the electrode surface along the entire flare height. Electronic temperature levels of plasma component population have been determined. Current-voltage characteristics under different operating conditions were investigated.
Досліджувалась обертова ковзна дуга з твердими електродами за різних потоків робочого газу (повітря). Проводилися дослідження плазмового факелa методом емісійної спектроскопії. Виміри проводились на різних рівнях від поверхні електроду вздовж усієї висоти факелa. Визначені температури заселення збуджених електронних рівнів компонент плазми. Досліджені вольт-амперні характеристики при різних режимах роботи.
Исследовалась вращательная скользящая дуга с твердыми электродами при различных потоках рабочего газа (воздуха). Проводились исследования плазменного факела методом эмиссионной спектроскопии. Измерения проводились на разных уровнях от поверхности электрода вдоль всей высоты факела. Определены температуры заселения возбужденных электронных уровней компонент плазмы. Исследованы вольт- амперные характеристики при различных режимах работы.
This work was partially supported by the Taras Shevchenko National University of Kyiv.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Plasma system with rotational gliding arc between solid electrodes
Плазмова система з обертовою ковзною дугою з твердими електродами
Плазменная система с вращательной скользящей дугой с твердыми электродами
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Plasma system with rotational gliding arc between solid electrodes
spellingShingle Plasma system with rotational gliding arc between solid electrodes
Solomenko, O.V.
Nedybaliuk, O.A.
Chernyak, V.Ya.
Martysh, E.V.
Fedirchyk, I.I.
Prysiazhnevych, I.V.
Плазменно-пучковый разряд, газовый разряд и плазмохимия
title_short Plasma system with rotational gliding arc between solid electrodes
title_full Plasma system with rotational gliding arc between solid electrodes
title_fullStr Plasma system with rotational gliding arc between solid electrodes
title_full_unstemmed Plasma system with rotational gliding arc between solid electrodes
title_sort plasma system with rotational gliding arc between solid electrodes
author Solomenko, O.V.
Nedybaliuk, O.A.
Chernyak, V.Ya.
Martysh, E.V.
Fedirchyk, I.I.
Prysiazhnevych, I.V.
author_facet Solomenko, O.V.
Nedybaliuk, O.A.
Chernyak, V.Ya.
Martysh, E.V.
Fedirchyk, I.I.
Prysiazhnevych, I.V.
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
publishDate 2013
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Плазмова система з обертовою ковзною дугою з твердими електродами
Плазменная система с вращательной скользящей дугой с твердыми электродами
description Rotational gliding arc with solid electrodes has been studied at different flow of working gas (air). Plasma torch studies by emission spectroscopy method. Measurements have been made at various levels from the electrode surface along the entire flare height. Electronic temperature levels of plasma component population have been determined. Current-voltage characteristics under different operating conditions were investigated. Досліджувалась обертова ковзна дуга з твердими електродами за різних потоків робочого газу (повітря). Проводилися дослідження плазмового факелa методом емісійної спектроскопії. Виміри проводились на різних рівнях від поверхні електроду вздовж усієї висоти факелa. Визначені температури заселення збуджених електронних рівнів компонент плазми. Досліджені вольт-амперні характеристики при різних режимах роботи. Исследовалась вращательная скользящая дуга с твердыми электродами при различных потоках рабочего газа (воздуха). Проводились исследования плазменного факела методом эмиссионной спектроскопии. Измерения проводились на разных уровнях от поверхности электрода вдоль всей высоты факела. Определены температуры заселения возбужденных электронных уровней компонент плазмы. Исследованы вольт- амперные характеристики при различных режимах работы.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/112180
citation_txt Plasma system with rotational gliding arc between solid electrodes / O.V. Solomenko, O.A. Nedybaliuk, V.Ya. Chernyak, E.V. Martysh, I.I. Fedirchyk, I.V. Prysiazhnevych // Вопросы атомной науки и техники. — 2013. — № 4. — С. 213-216. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT solomenkoov plasmasystemwithrotationalglidingarcbetweensolidelectrodes
AT nedybaliukoa plasmasystemwithrotationalglidingarcbetweensolidelectrodes
AT chernyakvya plasmasystemwithrotationalglidingarcbetweensolidelectrodes
AT martyshev plasmasystemwithrotationalglidingarcbetweensolidelectrodes
AT fedirchykii plasmasystemwithrotationalglidingarcbetweensolidelectrodes
AT prysiazhnevychiv plasmasystemwithrotationalglidingarcbetweensolidelectrodes
AT solomenkoov plazmovasistemazobertovoûkovznoûdugoûztverdimielektrodami
AT nedybaliukoa plazmovasistemazobertovoûkovznoûdugoûztverdimielektrodami
AT chernyakvya plazmovasistemazobertovoûkovznoûdugoûztverdimielektrodami
AT martyshev plazmovasistemazobertovoûkovznoûdugoûztverdimielektrodami
AT fedirchykii plazmovasistemazobertovoûkovznoûdugoûztverdimielektrodami
AT prysiazhnevychiv plazmovasistemazobertovoûkovznoûdugoûztverdimielektrodami
AT solomenkoov plazmennaâsistemasvraŝatelʹnoiskolʹzâŝeidugoistverdymiélektrodami
AT nedybaliukoa plazmennaâsistemasvraŝatelʹnoiskolʹzâŝeidugoistverdymiélektrodami
AT chernyakvya plazmennaâsistemasvraŝatelʹnoiskolʹzâŝeidugoistverdymiélektrodami
AT martyshev plazmennaâsistemasvraŝatelʹnoiskolʹzâŝeidugoistverdymiélektrodami
AT fedirchykii plazmennaâsistemasvraŝatelʹnoiskolʹzâŝeidugoistverdymiélektrodami
AT prysiazhnevychiv plazmennaâsistemasvraŝatelʹnoiskolʹzâŝeidugoistverdymiélektrodami
first_indexed 2025-11-24T18:33:58Z
last_indexed 2025-11-24T18:33:58Z
_version_ 1850486043831173120
fulltext ISSN 1562-6016. ВАНТ. 2013. №4(86) 213 PLASMA SYSTEM WITH ROTATIONAL GLIDING ARC BETWEEN SOLID ELECTRODES O.V. Solomenko, O.A. Nedybaliuk, V.Ya. Chernyak, E.V. Martysh, I.I. Fedirchyk, I.V. Prysiazhnevych Taras Shevchenko National University of Kiev, Radiophysical Faculty, Kiev, Ukraine E-mail: chernyak_v@ukr.net Rotational gliding arc with solid electrodes has been studied at different flow of working gas (air). Plasma torch studies by emission spectroscopy method. Measurements have been made at various levels from the electrode sur- face along the entire flare height. Electronic temperature levels of plasma component population have been deter- mined. Current-voltage characteristics under different operating conditions were investigated. PACS: 50., 52., 52.50.Dg INTRODUCTION Manufacturing and study of plasma systems that would work under high pressure, generate non- equilibrium plasma and have long operation life is an important task for plasma technologies [1]. Today, plasma generators with rotating sliding arcs best meet these conditions. These generators are available in two versions: RGArc with [2 - 4] and without [5 - 8] the longitudinal motion plasma column. Dynamic plasma system with RGArc without the longitudinal motion plasma column with solid elec- trodes is studied in this research. Electrodes are made of copper and stainless steel. This system can be used as a source of active particles, which are injected into the reaction chamber. Since the arc slides over the metal electrode under the influence of the gas flow, the opera- tion life of such system should be much longer than in the case when sliding and rotation are absent. 1. EXPERIMENTAL SETUP Schematic view and photo of the experimental setup are shown in Fig. 1. Discharge burns between two solid electrodes, which are made of stainless steel (1) and copper (2), and insulator (3) is between them. The working gas flow is introduced tangentially to the lateral wall of the cylindic chamber through the channel (4). The plasma torch (5) is rotating under the influence of the gas flow and gliding along the surface of the upper electrode. The working gas was air. Set up construction provided an additional channel for gas flow (6), but it was not used in this work. The current-voltage characteristics of the discharge depending on the rate of airflow and mode (different polarity of electrodes). The behaviour of rotating gliding arc was investigated in dependence on the size of the gas flow and discharge current with high-speed cam- eras. a b Fig. 1. Schematic view (a) and photo (b) of the experimental setup 2. RESULTS AND DISCUSSION The current-voltage characteristics of the discharge are shown in Fig. 2 for two modes: stainless steel cath- ode (see Fig. 2,a) and copper cathode (Fig. 3,b) at dif- ferent air flows. Airflow rate was varied in the range from 42 to 417 cm3/s. It can be said, on the current-voltage characteristics base, that increasing of the air flow rate leads to the breakdown voltage increasing, when the cathode is stainless steel one. But this voltage, within the error, is only slightly modified, if air flow rate is more than 250 cm3/s. The increasing the air flow rate slightly up the lower limit of the of currents range, when system has a copper cathode (120…400 mA for the case of air flow rate 42 cm3/s; 220…400 mA for the case of air flow rate 417 cm3/s). Breakdown voltage, within the error, changes slightly. ISSN 1562-6016. ВАНТ. 2013. №4(86) 214 a) b) Fig. 2. Current-voltage characteristics of discharge: stainless steel cathode (a), copper cathode (b) at various air flow rates (from 42 cm3/s to 417 cm3/s) The emission spectroscopy was used for plasma di- agnostics. Emission spectra were registered by usage of spectral device – spectrometer S-150-2-3648 USB. This spectrometer allows registering the emission spectra in the wavelength range 200…1000 nm. Temperatures of excited electron levels population for various chemical elements and their distribution along the plasma torch were defined in dependence on the air flow rate value and discharge current. This method is described in de- tails in [9]. Typical emission spectra of plasma in rotational gliding arc discharge are shown in Fig. 3: stainless steel cathode (see Fig. 3,a); copper cathode (see Fig. 3,b). a) b) Fig. 3. Typical emission spectra of plasma in rotational gliding arc discharge with solid electrodes for stainless steel (a) and copper (b) cathode. G = 167 cm3/s; h = 0 mm; I = 340 mA; U = 0,8 kV Spectra in both cases are mixtures, they contain atomic lines, electrode materials Cr, Fe, and Cu multi- plets, oxygen atoms O multiplets, and NO molecular bands. The temperatures of excited electron levels popu- lation (Te *) plasma components such as Cr and O were determined from these spectra. Determination of tem- peratures of excited electron levels population (Te *) for oxygen atoms was carried by the Boltzmann diagram method using three most intense multiplets (777.2 nm, 844 nm, 926 nm) and data from [3]. T* e of Cr atoms has been determined by the ratio of the intensity of two in- tense multiplets (357.9 nm and 425.4 nm) by using comparison of calculated and experimental spectra. De- termination of other components temperatures has been significantly more complex. It was caused by overlap- ping of their spectra. The plasma discharge was diagnosed at different discharge currents and along the plasma torch height (h). The range of air flow rate is 167…417 cm3/s. The temperature (Te *) dependences on the current level were specified for Cr and O atoms at different air flow rates and stainless steel cathode. They are shown at Fig. 4. The error of Te * definition is near 500 K, so we can say that the components temperature depends weakly from current. a a b b ISSN 1562-6016. ВАНТ. 2013. №4(86) 215 a) b) Fig. 4. The temperature (T* e) distribution for oxygen and chrome atoms under different air flows for oxygen (а) and chrome atoms (b) as a function of discharge current The temperature (Te *) of Cr atoms increases with the air flow in the range of air flow rate 167…333 cm3/s. The temperature (Te *) of O atoms, within the error, does not change. It may be noted that the temperature of ex- cited electron levels population at Cr atoms in 1.5…2 times higher than same temperature of oxygen atoms. This can be explained by the peculiarities of these chemical elements excitation. Axial temperature (Te *) distribution for oxygen and chrome atoms under different air flows (167…417 cm3/s) and stainless steel cathode is pre- sented at Fig. 5. a) b) Fig. 5. The temperature (T* e) distribution for oxygen (a) and chrome (b) atoms under different air flows along the plasma torch height. Discharge current - 300 мА The relationships mentioned above, show that tem- perature (Te *) of oxygen atoms is increased with height of the plasma torch for low air flow rate (167 cm3/s). Such dependence wasn’t observed for larger airflows. An essential increasing in Te * was observed at the maximum flow (417 cm3/s) for Cr atoms along plasma torch. Such trend wasn’t observed for smaller flows. The maximum plasma torch height was lower and fixation of emission spectra plasma was more difficult in case of copper cathode. The temperature Te *(O) is 3500 ± 500 K, within the error, does not change with height of the plasma torch and the air flow rate (167 and 417 cm3/s). Te *(Cr) is 7000 ± 500 K in a range of heights (h = 0…5 mm) at low air flow (167 cm3/s). The temperature Te *(Cr) = 9000 ± 500 K at the beginning of the torch (h = 0mm) and 8000 ± 500 K on height h = 5 mm at the maximum airflow (417 cm3/s). CONCLUSIONS Elements of both electrodes (Cu and Fe, Cr) present in the torch plasma. Also the spectra in small amounts are multiplets of oxygen atoms and bands of NO mole- cules. When the cathode is stainless steel, temperature Cr and O weakly changed from current. However, Te * of these components has strong dependence on air flow. Observed strong increase Te * for O in the case of small air flow (167 cm3/s) height the plasma torch. Along with being temperature throughout the plasma torch height within the error limits does not change at high airflow. Axial distribution of Te *(Cr) for small air flow does not change within the error limits, but at high air flow (417 cm3/s) it was detected change of Te *(Cr) in height the plasma torch. b a a b ISSN 1562-6016. ВАНТ. 2013. №4(86) 216 ACKNOWLEDGEMENTS This work was partially supported by the Taras Shevchenko National University of Kyiv. REFERENCES 1. A. Fridman, A. Chirokov and A. Gutsol. Non- thermal atmospheric pressure discharges // J. Phys. D: Appl. Phys. (38). 2005, R1–R24 2. C.S. Kalra, A.F. Gutsol, A.A. Fridman. Gliding arc discharges as a source of intermediate plasma for methane partial oxidation // IEEE Trans. Plasma Sci. (33). 2005, № 1, p. 32-41. 3. A. Czernichowski. Conversion of waste Glycerol into Synthesis Gas // 19th Int. Symp. on Plasma Chem. (ISPC-19), Bochum, Germany, July 26-31. 2009, 4 p. 4. J.M. Cormier, I. Rusu. Syngas production via meth- ane steam reforming with oxygen: plasma reactors versus chemical reactors // J. Phys. D: Appl. Phys. (34). 2001, p. 2798-2803. 5. J.M. Cormier, I. Rusu, A. Khacef. On the use of a magnetic blow out glidarc reactor for the syngas production by stem reforming // 16th International symposium on plasma chemistry, Taormina. 2003. 6. V. Chernyak. Gas discharge plasma in dynamics system as a noneqilibrium plasma sources // Proc. 3rd Czech-Russian Seminar on Electrophysical and Thermophysical Processes in Low-temperature Plasma, Brno, November 16-19. 1999, p. 94-99. 7. O.A. Nedybaliuk, V.Ya. Chernyak, E.V. Martysh, T.E. Lisitchenko. System with plasma injector of hydrocarbons with high viscosity // Proc. of the VIII International Conference “Electronics and Applied Physics”, October 24-27, 2012, Kyiv, Ukraine. 2012, p. 148-149. 8. O.A. Nedybaliuk, V.Ya. Chernyak, E.V. Martysh, T.E. Lisitchenko, O.Yu. Vergun, S.G. Orlovska. Plasma assisted combustion of paraffin mixture // Problems of Atomic Science and Technology. Series «Plasma Physics» (19). 2013, № 1, p. 219-221. 9. I.V. Prisyazhnevich, V.Ya. Chernyak, P.A. Korot- kov, V.V. Naumov, I.L. Babich, Y.I. Slyusarenko, V.V. Yukhymenko, V.A. Zrazhevskiy. Defenition of the excitated electron levels ocupation in plasma from the emition spectum of the transversal electric arc // Bulletin of the University of Kiev. Series «Physics & Mathematics» (1). 2005, p. 289-298. Article received 16.05.2013. ПЛАЗМЕННАЯ СИСТЕМА С ВРАЩАТЕЛЬНОЙ СКОЛЬЗЯЩЕЙ ДУГОЙ С ТВЕРДЫМИ ЭЛЕКТРОДАМИ Е.В. Соломенко, О.А. Недыбалюк, В.Я. Черняк, Е.В. Мартыш, И.И. Федирчик, И.В. Присяжневич Исследовалась вращательная скользящая дуга с твердыми электродами при различных потоках рабочего газа (воздуха). Проводились исследования плазменного факела методом эмиссионной спектроскопии. Изме- рения проводились на разных уровнях от поверхности электрода вдоль всей высоты факела. Определены температуры заселения возбужденных электронных уровней компонент плазмы. Исследованы вольт- амперные характеристики при различных режимах работы. ПЛАЗМОВА СИСТЕМА З ОБЕРТОВОЮ КОВЗНОЮ ДУГОЮ З ТВЕРДИМИ ЕЛЕКТРОДАМИ О.В. Соломенко, О.А. Недибалюк, В.Я. Черняк, Є.В. Мартиш, І.І. Федірчик, І.В. Присяжневич Досліджувалась обертова ковзна дуга з твердими електродами за різних потоків робочого газу (повітря). Проводилися дослідження плазмового факелa методом емісійної спектроскопії. Виміри проводились на різ- них рівнях від поверхні електроду вздовж усієї висоти факелa. Визначені температури заселення збуджених електронних рівнів компонент плазми. Досліджені вольт-амперні характеристики при різних режимах роботи.