Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes

Glow characteristics of capacitive radio frequency discharge with isolated electrodes in low-current α and highcurrent γ modes are determined experimentally. It is shown that transition from α mode to γ mode occurs through a phase of coexistence of both modes in different parts of the discharge gap....

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2013
Main Authors: Bazhenov, V.Yu., Tsiolko, V.V., Piun, V.M., Chaplinskiy, R.Yu., Kuzmichev, A.I.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/112185
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes / V.Yu. Bazhenov, V.V. Tsiolko, V.M. Piun, R.Yu. Chaplinskiy, A.I. Kuzmichev // Вопросы атомной науки и техники. — 2013. — № 4. — С. 171-175. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112185
record_format dspace
spelling Bazhenov, V.Yu.
Tsiolko, V.V.
Piun, V.M.
Chaplinskiy, R.Yu.
Kuzmichev, A.I.
2017-01-17T20:17:34Z
2017-01-17T20:17:34Z
2013
Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes / V.Yu. Bazhenov, V.V. Tsiolko, V.M. Piun, R.Yu. Chaplinskiy, A.I. Kuzmichev // Вопросы атомной науки и техники. — 2013. — № 4. — С. 171-175. — Бібліогр.: 14 назв. — англ.
1562-6016
PACS: 52.80.Pi, 61.30.Hn, 81.65.-b
https://nasplib.isofts.kiev.ua/handle/123456789/112185
Glow characteristics of capacitive radio frequency discharge with isolated electrodes in low-current α and highcurrent γ modes are determined experimentally. It is shown that transition from α mode to γ mode occurs through a phase of coexistence of both modes in different parts of the discharge gap.
Експериментально встановлено характеристики горіння ємнісного високочастотного розряду з ізольованими електродами в аргоні атмосферного тиску в слабострумовому (α) та сильнострумовому (γ) режимах. Показано, що перехід з режиму α в режим γ відбувається через фазу одночасного існування двох режимів в різних частинах розрядного проміжку.
Экспериментально установлены характеристики горения емкостного высокочастотного разряда с изолированными электродами в слаботочном (α) и сильноточном (γ) режимах. Показано, что переход из режима α в режим γ происходит через фазу одновременного существования двух режимов в разных частях разрядного промежутка.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes
Особливості режимів горіння ємнісного високочастотного розряду з ізольованими електродами в аргоні атмосферного тиску
Особенности режимов горения емкостного высокочастотного разряда с изолированными электродами в аргоне атмосферного давления
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes
spellingShingle Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes
Bazhenov, V.Yu.
Tsiolko, V.V.
Piun, V.M.
Chaplinskiy, R.Yu.
Kuzmichev, A.I.
Плазменно-пучковый разряд, газовый разряд и плазмохимия
title_short Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes
title_full Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes
title_fullStr Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes
title_full_unstemmed Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes
title_sort peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes
author Bazhenov, V.Yu.
Tsiolko, V.V.
Piun, V.M.
Chaplinskiy, R.Yu.
Kuzmichev, A.I.
author_facet Bazhenov, V.Yu.
Tsiolko, V.V.
Piun, V.M.
Chaplinskiy, R.Yu.
Kuzmichev, A.I.
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
publishDate 2013
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Особливості режимів горіння ємнісного високочастотного розряду з ізольованими електродами в аргоні атмосферного тиску
Особенности режимов горения емкостного высокочастотного разряда с изолированными электродами в аргоне атмосферного давления
description Glow characteristics of capacitive radio frequency discharge with isolated electrodes in low-current α and highcurrent γ modes are determined experimentally. It is shown that transition from α mode to γ mode occurs through a phase of coexistence of both modes in different parts of the discharge gap. Експериментально встановлено характеристики горіння ємнісного високочастотного розряду з ізольованими електродами в аргоні атмосферного тиску в слабострумовому (α) та сильнострумовому (γ) режимах. Показано, що перехід з режиму α в режим γ відбувається через фазу одночасного існування двох режимів в різних частинах розрядного проміжку. Экспериментально установлены характеристики горения емкостного высокочастотного разряда с изолированными электродами в слаботочном (α) и сильноточном (γ) режимах. Показано, что переход из режима α в режим γ происходит через фазу одновременного существования двух режимов в разных частях разрядного промежутка.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/112185
citation_txt Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes / V.Yu. Bazhenov, V.V. Tsiolko, V.M. Piun, R.Yu. Chaplinskiy, A.I. Kuzmichev // Вопросы атомной науки и техники. — 2013. — № 4. — С. 171-175. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT bazhenovvyu peculiaritiesofglowmodesofargonatmosphericpressureradiofrequencycapacitivedischargewithisolatedelectrodes
AT tsiolkovv peculiaritiesofglowmodesofargonatmosphericpressureradiofrequencycapacitivedischargewithisolatedelectrodes
AT piunvm peculiaritiesofglowmodesofargonatmosphericpressureradiofrequencycapacitivedischargewithisolatedelectrodes
AT chaplinskiyryu peculiaritiesofglowmodesofargonatmosphericpressureradiofrequencycapacitivedischargewithisolatedelectrodes
AT kuzmichevai peculiaritiesofglowmodesofargonatmosphericpressureradiofrequencycapacitivedischargewithisolatedelectrodes
AT bazhenovvyu osoblivostírežimívgorínnâêmnísnogovisokočastotnogorozrâduzízolʹovanimielektrodamivargoníatmosfernogotisku
AT tsiolkovv osoblivostírežimívgorínnâêmnísnogovisokočastotnogorozrâduzízolʹovanimielektrodamivargoníatmosfernogotisku
AT piunvm osoblivostírežimívgorínnâêmnísnogovisokočastotnogorozrâduzízolʹovanimielektrodamivargoníatmosfernogotisku
AT chaplinskiyryu osoblivostírežimívgorínnâêmnísnogovisokočastotnogorozrâduzízolʹovanimielektrodamivargoníatmosfernogotisku
AT kuzmichevai osoblivostírežimívgorínnâêmnísnogovisokočastotnogorozrâduzízolʹovanimielektrodamivargoníatmosfernogotisku
AT bazhenovvyu osobennostirežimovgoreniâemkostnogovysokočastotnogorazrâdasizolirovannymiélektrodamivargoneatmosfernogodavleniâ
AT tsiolkovv osobennostirežimovgoreniâemkostnogovysokočastotnogorazrâdasizolirovannymiélektrodamivargoneatmosfernogodavleniâ
AT piunvm osobennostirežimovgoreniâemkostnogovysokočastotnogorazrâdasizolirovannymiélektrodamivargoneatmosfernogodavleniâ
AT chaplinskiyryu osobennostirežimovgoreniâemkostnogovysokočastotnogorazrâdasizolirovannymiélektrodamivargoneatmosfernogodavleniâ
AT kuzmichevai osobennostirežimovgoreniâemkostnogovysokočastotnogorazrâdasizolirovannymiélektrodamivargoneatmosfernogodavleniâ
first_indexed 2025-11-24T04:14:19Z
last_indexed 2025-11-24T04:14:19Z
_version_ 1850841366910730240
fulltext ISSN 1562-6016. ВАНТ. 2013. №4(86) 171 PECULIARITIES OF GLOW MODES OF ARGON ATMOSPHERIC PRESSURE RADIO-FREQUENCY CAPACITIVE DISCHARGE WITH ISOLATED ELECTRODES V.Yu. Bazhenov1, V.V. Tsiolko1, V.M. Piun1, R.Yu. Chaplinskiy2, A.I. Kuzmichev2 1Institute of Physics NAS of Ukraine, Kiev, Ukraine; 2National Technical University of Ukraine “KPI”, Kiev, Ukraine E-mail: chapok86@ukr.net Glow characteristics of capacitive radio frequency discharge with isolated electrodes in low-current α and high- current γ modes are determined experimentally. It is shown that transition from α mode to γ mode occurs through a phase of coexistence of both modes in different parts of the discharge gap. PACS: 52.80.Pi, 61.30.Hn, 81.65.-b INTRODUCTION In past decade atmospheric pressure discharges were widely used in many applications, including steriliza- tion, surface treatment, exhaust purification, nanoscience [1 - 3]. It should be noted that among a variety of such discharges (dielectric barrier discharges (DBDs), plasma jets, microwave discharges, radio- frequency (RF) discharges) the last kind is of the utmost interest. Advantages of such discharges are low ignition voltage and ability to create dense uniform plasma in large volumes. Capacitively coupled plasmas in such discharges usually are generated between bare metal electrodes typically at 13.56 MHz. As in case of low pressure discharges, atmospheric pressure ones can exist in two modes – low-current α mode, and high-currentр γ one [4]. Transition from α to γ mode occurs in result of “breakdown” of space charge layers of the discharge in α mode, which leads to contraction of the discharge, and at subsequent voltage growth arcing may occur in some cases. Due to that, in spite of higher efficiency of γ-mode discharge owing to its higher current density, the discharge instability becomes principal drawback in its practical applications. In [5, 6] it was proposed to use dielectric barriers for stabilization of γ mode of RF discharge glow. Experi- mental and theoretical investigations of RF discharge with dielectric barriers in helium at atmospheric pres- sure confirmed possibility of stable operation of γ-mode discharge at high current values [7, 8]. However, in case of practical application of RF dis- charges, use of helium as main gas in different mixtures is not justified due to its high cost. In [9] for creation of layers for liquid crystal alignment, RF discharge with dielectric barriers in argon at atmospheric pressure was successfully used with operation in low-current α mode. The present paper represents results of experimental study of glow peculiarities of such discharge at its tran- sition from low-current α mode to high-current γ mode. 1. EXPERIMENTAL SET UP AND METHODS Block diagram of the experimental setup is pre- sented in Fig. 1. Discharge cell consisted of two flat copper electrodes, each having 50×41×0.05 mm dimen- sion, glued onto polycore (Al2O3) dielectric barriers 5 (60×48×1 mm). Discharge gap between barriers 5 had 1 mm thickness. Fig. 1. Scheme of experimental setup. 1 – camera; 2 – color filter; 3 – lens; 4 – discharge plasma; 5 – dielectric barriers; 6 – impedance matching unit; 7 – RF generator; 8 – gas feed regulation system For powering the discharge device, RF (13.56 MHz) generator 7 (MV-1.5, JSC “Selmi”, Sumy) was used with impedance matching unit 6. Voltage RMS value after the matching unit could be varied in a range of 0…1600 V. The power was supplied to the electrodes via capacitive dividers (C1-C2, C3-C4) for setting de- sired ratio of RF voltage values between the discharge electrodes. Volume rate of argon feed υ was set in a range of 0.5…18 l/min by means of gas feed regulation system 8. For studies of electrical characteristics of the dis- charge, capacitive bridge technique was implemented using the circuit shown in Fig. 1, with capacitors C1-C4 serving as the bridge components, and the discharge cell included as a diagonal element of the bridge. At that, kinetics of 3 RF oscillation periods for values of three voltages (Uin, Uh and Ul) were recorded by means of digital oscilloscope Tektronix TDS1012 and transferred to computer for subsequent processing. At first, current values through capacitors C1-C4 were calculated, and after that current values through the discharge cell from high-potential and low-potential sides were determined. It was found that in all cases of discharge cell use (that is, with discharge in different operating regimes, as well as without ignition of the discharge) high side cell cur- rent value was about 15% higher than low side one. At that, with discharge cell removed and shorted connec- tion instead of it, measured current values were equal. Examination of the discharge cell capacity by means of low-frequency metering device (with the cell located in its actual experimental arrangement) has shown that additionally to 18 pF capacity of the cell itself (includ- ing the gap and two insulators, each of the dielectric ISSN 1562-6016. ВАНТ. 2013. №4(86) 172 barrier introducing 180 pF capacity) there are leakage capacities of high side and low side electrodes with re- spect to grounded surrounding elements of the setup comprising 3 and 4 pF respectively (the vales measured with ±0.1 pF precision). Such situation obviously re- quired taking into account actual leakage capacities at RF frequencies for correct determination of the discharge characteristics. It was done by processing the data with mentioned leakage capacities taken as starting values, and subsequent iterations with variation of the values so that the discharge current values calculated from high and low side became equal. The technique was cali- brated for correct absolute value measurements by means of consequently connected RC circuits instead of the dis- charge cell with parameters simulating actual discharge operation. As a result, the technique allowed experimen- tal determination of principal electrical characteristics (voltage, current, total power, active power, efficient capacity and resistance) of the gas discharge itself, that is, at the gas space between dielectric barriers. Measurements of the discharge emission spectrum were performed by means of CCD-spectrometer SL40- 2-1024USB (SOLAR TII, Minsk, Republic of Belarus). Emission distribution across the discharge was studied by means of long focal length system, which was im- plemented on a basis of DSLR camera Canon 350D with its own lens removed and single lens with claimed focal length of 1 m and 25 mm aperture installed at spe- cial rigid mount (actual magnification of the system was determined experimentally by the image processing). At that the necessity of correct imaging of the whole depth of the discharge in the cell (about 5 cm) was taken into consideration. Particularly, for studied red region of the spectrum centered at about 650 nm, Rayleigh length criterion allowed maximum possible optical resolution at the discharge cell location of about 45 10 0.65⋅ ⋅ μm ≈180 μm, and used distance between the lens and the discharge cell of about 4 m provided approximate match with the diffraction divergence. Im- ages taken by the camera in RAW mode were converted to 16-bit bitmap files with linear law of intensity con- version so that they could be immediately used for ob- taining profiles of discharge intensity distribution. Re- sults presented in this paper were obtained with red fil- ter with cutoff wavelength of about 600 nm installed before the camera. Other zones of visible spectra (green and blue) accepted by the camera have demonstrated similar behavior of spatial intensity distributions, how- ever, with worse signal-to-noise ratio, as compared to red zone of visible spectrum. 2. EXPERIMENTAL RESULTS AND DISCUSSION 2.1. RESULTS OF THE ELECTRICAL MEASUREMENTS At conducting the researches, the following values were determined experimentally: RMS values of dis- charge current density Jd and voltage at the discharge gap between dielectric barriers Ug (gas voltage), mean active discharge power Wd, and effective (averaged over RF oscillation period) values of gas space capacity Cg and active resistance of the discharge plasma Rd. One can see from Fig. 2 that discharge ignition volt- age Uign is practically independent on volume rate of argon flow through the discharge gap. At the same time, discharge quenching voltage Uquen grows up from ≈ 60 to ≈ 110 V (that is, practically twice) at increase of ar- gon flow rate υ from 1 to 12 l/min. 0 2 4 6 8 10 12 0 50 100 500 550 600 Uquen Uign R M S ga s vo lta ge U g, V Ar flow rate, l/min Fig. 2. Dependencies of voltage of discharge ignition Uign and quenching Uquen on volume rate of argon flow υ. Each point at the plot represents data averaged over 15-20 measurements for each dataset Possible reason for such effect may be due to plasma generation in the discharge not only at the expense of ionization of argon atoms in ground state, but as well at the expense of ionization of the atoms in metastable states Ar(1p5) and Ar(1p3). In discharges on argon-containing mixtures specific portion of metastable argon atoms Q (that is, ratio of concentration of metastable argon atoms to that of the atoms in ground state) can reach values of 10-5…10-3 depending on discharge parameters and mix- ture content. Such quantity of metastable atoms can pro- vide essential influence on kinetics of processes in dis- charge plasmas, since ionization of argon atoms from their metastable states can occur with high enough effi- ciency. It is due both to lower energy threshold of such processes, and to higher values of their cross sections. Particularly, cross section of argon atom ionization from ground state reaches maximum value of ≈ 3·10-16 cm2 (at 100 eV) with the process threshold of 15.8 eV, and maximum cross section for ionization from metastable state 1s5 ≈ 8·10-16 cm2 (at ≈ 15 eV) with the threshold of ≈ 4 eV [10, 11]. In [12] it was shown that in low pressure discharge, depending on parameters, contribution of ioni- zation from metastable states can reach up to 20…25%. Contribution of metastable atoms to ionization increases with pressure growth. First of all, it is due to fact that decrease of electron energy with pressure growth leads to increase of contribution of “low energy” ionization from metastable states, as compared to “higher energy” ionization from ground state. Figs. 3-5 present measured dependencies of main discharge parameters on RMS gas voltage Ug. One can see from Fig. 3 that behavior of discharge power Wd dependence on Ug is similar for both values of argon flow rate – initial slow (practically linear) Wd increase after Ug ≈ 210 V is substituted by faster growth. Similar behavior is also demonstrated by dependen- cies of gas space capacity Cg (see Fig. 4) dependence on flow rate is absent; b) at low values of Ug the capacity values are practically independent on Ug and start abrupt growth at Ug ≥ ≈ 210 V. ISSN 1562-6016. ВАНТ. 2013. №4(86) 173 120 140 160 180 200 220 240 260 0 20 40 60 80 100 D is ch ar ge a ct iv e po w er W d, W RMS gas voltage Ug, V 1 l/min 6 l/min Fig. 3. Dependencies of active discharge power Wd on gas voltage Ug for different volume rates of argon flow Possible reason of such behavior of Cg dependence on Ug may consist in change of the discharge glow mode at increase of the voltage value above ≈ 210 V. At discharge glow in α mode, thicknesses of space charge layers (and, consequently, gas space capacity Cg) are practically independent on Ug. Breakdown of space charge layers in α-mode discharge at increase of voltage Ug above certain threshold (≈ 210 V in the above case) leads to abrupt decrease of thickness of the layers and, consequently, to rapid growth of gas space capacity Cg. Thus, rapid increase of Cg observed in the experiment gives evidence to transition (total or partial) of dis- charge glow from α mode to high-current γ mode. 120 140 160 180 200 220 240 260 40 50 60 70 G as s pa ce c ap ac ity C g, pF RMS gas voltage Ug, V 1 l/min 6 l/min Fig. 4. Dependencies of discharge gas space capacity Cg on gas voltage Ug for different volume rates of argon flow 120 140 160 180 200 220 240 260 50 60 70 80 90 100 110 Pl as m a re si st ac e R d, O hm RMS gas voltage U g , V 1 l/min 6 l/min Fig. 5. Dependencies of discharge plasma resistance Rd on gas voltage Ug for different volume rates of argon flow As it is shown above, both discharge power Wd, and gas space capacity Cg are practically independent on volume argon flow rate at its variations in range 1…6 l/min. Other kind of behavior is demonstrated by dependence of discharge plasma active resistance Rd on Ug (see Fig. 5). Although these dependencies are qualitatively simi- lar, resistance Rd at flow rate of 6 l/min is about 15% higher than analogous value at lower flow rate in the whole range of Ug variation. Rd growth at flow rate in- crease gives indirect evidence to our assumption about the role of metastable argon atoms in the ionization processes in the discharge under study. Now let us consider current-voltage characteristics (CVC) of the discharge (Fig. 6). One can see that change of argon flow rate from 1 to 6 l/min almost have no influence on the discharge CVC. One can also see from the figure that at increase of discharge current den- sity from ≈ 20 to 45 mA/cm2, voltage at gas space Ug grows up practically linearly from ≈ 120 до 220 V, and after that Ug growth is considerably reduced, so that at Jd increase from 45 toдо 65 mA/cm2 it reaches just ≈ 240 V. 20 30 40 50 60 70 120 160 200 240 R M S ga s vo lta ge U g, V RMS current density Jd, mA/cm2 1 l/min 6 l/min Fig .6. Dependencies of gas voltage Ug on discharge current density Jd for different volume rates of argon flow As in case of the discharge CVC, growing depend- ence of the discharge gas space capacity Cg on Jd exhib- its a bend at discharge current density of about 45 mA/cm2 (Fig. 7). However, in this case, rate of Cg growth at Jd ≥ 45 mA/cm2 increases. 20 30 40 50 60 70 40 45 50 55 60 65 70 G as s pa ce c ap ac ity C g, pF RMS current density Jd, mA/cm2 1l/min 6 l/min Fig. 7. Dependencies of the discharge gas space capac- ity Cg on discharge current density Jd for different volume rates of argon flow Increase of argon flow rate from 1 to 6 l/min leads to Rd increase in the whole range of Jd variations. How- ever, unlike the case of Rd dependence presented in Fig. 8, in this case for both flow rate values, discharge ISSN 1562-6016. ВАНТ. 2013. №4(86) 174 active resistance is practically independent on Jd when current density is higher than about 50 mA/cm2. 20 30 40 50 60 70 50 60 70 80 90 100 110 Pl as m a re si st an ce R d, O hm RMS current density Jd, mA/cm2 1 l/min 6 l/min Fig. 8. Dependencies of active resistance of the discharge plasma Rd on discharge current density Jd for different volume rates of argon flow Thus, presented results of measurements of electric characteristics of the discharge provide dual impression. On one side, abrupt growth of the discharge power Wd and gas space capacity Cg after increase of Ug and Jd above respective threshold values, undoubtedly give evidence to discharge transition from α mode to higher current γ mode. On another side, one can see from Fig. 6 that in whole range of discharge current density variations, plasma exhibits positive differential conduc- tance. However, as it was shown in [6], RF discharge transition from α mode to γ mode should be accompa- nied by change of sign of plasma differential conductiv- ity. For clarifying this issue, we have performed re- searches of characteristics of the discharge plasma emission. 2.2. RESULTS OF THE OPTICAL MEASUREMENTS One can see from Fig. 9 that emission spectrum of RF discharge plasma in argon can be conditionally sub- divided into two portions – emission of argon UV-VIS continuum in wavelength range ≈ 350…650 nm and emission of atomic argon spectrum lines in range ≈ 700…900 nm (mainly, it is emission of transitions 2p10-1…1s2-5). The reason for appearance of emission of NOβ system is presence of air admixture coming from the walls of gas feeding tubes. For the first time, emission of argon UV-VIS con- tinuum in such wide range of spectrum (up to 650 nm) was discovered in [13] at study of pulsed discharge in argon at 4 bar pressure. (Emission spectrum of the con- tinuum due to photorecombination of atomic ions Ar+ shows sharp edge at about 460 nm). Authors of that paper supposed that on the analogy of atomic Ar+ ions, the electron could be captured by molecular Ar+ 2 ions and transferred into Ar* 2 energy levels with the emission of a photon: Ar+ 2 +e → Ar* 2 + hν. Estimation of the plasma density was done with the use of ratios of emission intensities of transitions 2p1-1s2, 750.4 nm; 2p3-1s4, 738.4 nm; 2p6-1s5, 763.5 nm by means of method proposed in [14], which has shown that plasma density in the discharge at Wd = 30 W and gas flow rate 6 l/min is ~ 1012 cm-3. 400 500 600 700 800 900 0,0 0,2 0,4 0,6 1 4 NOβ Ar 7 63 .5 Ar continuum Ar 8 11 .5 Ar 7 50 .4 Ar 7 38 .4 In te ns ity , a .u . Wavelength, nm Fig .9. Emission spectrum of the discharge plasma. Argon flow rate 6 l/min, Wd = 30 W Study of the discharge emission spatial distribution by means of long focal length optical setup described above have shown that the bend occurring in electrical characteristics of the discharge is accompanied by change of the emission profile in direction across the discharge gap – while at lower discharge power the dis- charge exhibited distinct dark regions near both isolator (Fig. 10, curve 1), at higher power values discharge emission had a tendency of filling the whole gap space. 0,5 1,0 1,5 2,0 2,5 0 2 4 6 8 10 12 14 21 In te ns ity , a .u . x, mm Fig. 10. Emission profiles across the discharge gap. The discharge glows in α (1) and γ (2) modes However, it occurred only in part of the gap under center of the electrodes. By investigating the emission profiles when viewing the cell at different angles in the gap plane (up to 300 with respect to the axis) it was found that the discharge changes only in a spot lying exactly under center of the electrodes where power sup- ply wires were soldered. For obtaining the discharge emission profile in the spot, calculation of intensity dis- tribution was done, at which measured profile corre- sponding to the gap center was modified by partial sub- traction of the profile measured outside of the spot, at that the part was defined by portion occupied by the spot along the line of view taken relatively to the whole discharge length (5 cm). Normalized resulted profile is shown in Fig. 10, curve 2. One can see two maxima spaced by about the size of the discharge gap thickness. Taking into account diffraction broadening of the im- age, one can state that the discharge emission occurs mainly in two regions located very close to the dielec- tric barriers, which gives undoubted evidence to dis- charge transition to γ mode in center portion of the cell. Uncontrolled variations of the size of this portion repre- ISSN 1562-6016. ВАНТ. 2013. №4(86) 175 sent a reason for increased spread of electrical parame- ters of the discharge when it was investigated at higher power values. Thus, the results of optical measurements have clari- fied the situation with the discharge transitions between glow modes. Indeed, the discharge switches from α to γ mode of glow after reaching threshold of the current density of about 45 mA/cm2. However, γ mode dis- charge glow coexists with α mode one, at that the last occupies major portion of the discharge volume. As a result, in spite of higher local current density in γ mode, averaged electrical characteristics only partially resem- ble the switch of the discharge glow modes. Particu- larly, differential plasma conductivity may locally change its sign, as it is expected accordingly to [6]. Re- alization of uniform discharge glow in γ mode should undoubtedly improve its operation efficiency. REFERENCES 1. R. Foest, E. Kindel, A. Ohl, M. Stieber, and K.D. Weltmann. Non-thermal atmospheric pressure discharges for surface modification // Plasma Phys. Control. Fusion. 2005, v. 47, p. B525-36. 2. M.G. Kong, G. Kroesen, G. Morfill, et al. Plasma medicine: an introductory review // New J. Phys. 2009, v. 11, p. 115012. 3. D. Janasek, J. Franzke, and A. Manz. Scaling and the design of miniaturized chemical-analysis sys- tems // Nature. 2006, v. 442, № 7101, p. 374-380. 4. X. Yang. Comparison of an atmospheric pressure, radio-frequency discharge operating in the α and γ modes // Plasma Sources Sci. Technol. 2005, v. 14, № 2, p. 314-320. 5. S.Y. Moon, W. Choe, B.K. Kang. A uniform glow discharge plasma source at atmospheric pressure // Appl. Phys. Let. 2004, v. 84, № 2, p. 188-190. 6. J.J. Shi, D.W. Liu, M.G. Kong. Plasma stability con- trol using dielectric barriers in radio-frequency at- mospheric pressure glow discharge // Appl. Phys. Let. 2006, v. 89, p. 081502. 7. J.J. Shi, D.W. Liu, M.G. Kong. Mitigation plasma constriction using dielectric barriers in radio- frequency atmospheric pressure glow discharges // Appl. Phys. Let. 2007, v. 90, p. 031505. 8. J.J. Shi, D.W. Liu, M.G. Kong. Effect of dielectric barriers in radio-frequency atmospheric glow dis- charges // IEEE Trans. Pl. Sci. 2007, v. 35, № 2, p. 137-142. 9. V.Yu. Bazhenov, R.Yu. Chaplinskiy, R.M. Kravchuk, et al. Treatment of polyimide films by an atmos- pheric pressure plasma of capacitive RF discharge for liquid crystal alignment // Problems of Atomic Science and Technology. Series “Plasma Physics” (19). 2013, № 1, p. 177-179. 10. P. McCallion, M.B. Shah and H.E. Gilbody. A crossed beam study of the multiple ionization of argon by electron impact // J. Phys. B: At. Mol. Opt. Phys. 1992, v. 25, p. 1061-1071. 11. M. Asgar Ali, P.M. Stone. Electron impact ioniza- tion of metastable rare gases: He, Ne and Ar // Int. J. Mass Spectr. 2008, v. 271, p. 51-57. 12. M.W. Kiehlbauch and D.B. Graves. Modeling argon inductively coupled plasmas: The electron energy distribution function and metastable kinetics // J. Appl. Phys. 2002, v. 91, № 6, p. 3539-3546. 13. A.B. Treshchalov and A. A. Lissovski. VUV–VIS spectroscopic diagnostics of a pulsed high-pressure discharge in argon // J. Phys. D: Appl. Phys. 2009, v. 42, 245203 (14 p.). 14. X.M. Zhu, Y.K. Pu, N. Balcon and R. Boswell. Measurement of the electron density in atmospheric- pressure low-temperature argon discharges by line- ratio method of optical emission spectroscopy // J. Phys. D: Appl. Phys. 2009, v. 42, 142003 (5 p.). Article received 08.04.2013. ОСОБЕННОСТИ РЕЖИМОВ ГОРЕНИЯ ЕМКОСТНОГО ВЫСОКОЧАСТОТНОГО РАЗРЯДА С ИЗОЛИРОВАННЫМИ ЭЛЕКТРОДАМИ В АРГОНЕ АТМОСФЕРНОГО ДАВЛЕНИЯ В.Ю. Баженов, В.В. Циолко, В.М. Пиун, Р.Ю. Чаплинский, А.И. Кузмичев Экспериментально установлены характеристики горения емкостного высокочастотного разряда с изоли- рованными электродами в слаботочном (α) и сильноточном (γ) режимах. Показано, что переход из режима α в режим γ происходит через фазу одновременного существования двух режимов в разных частях разрядного промежутка. ОСОБЛИВОСТІ РЕЖИМІВ ГОРІННЯ ЄМНІСНОГО ВИСОКОЧАСТОТНОГО РОЗРЯДУ З ІЗОЛЬОВАНИМИ ЕЛЕКТРОДАМИ В АРГОНІ АТМОСФЕРНОГО ТИСКУ В.Ю. Баженов, В.В. Ціолко, В.М. Піун, Р.Ю. Чаплінський, А.І. Кузмічов Експериментально встановлено характеристики горіння ємнісного високочастотного розряду з ізольова- ними електродами в аргоні атмосферного тиску в слабострумовому (α) та сильнострумовому (γ) режимах. Показано, що перехід з режиму α в режим γ відбувається через фазу одночасного існування двох режимів в різних частинах розрядного проміжку.