Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation
The research methods are described and the principal characteristics of the generated oscillations are studied. We study the plasma discharge, initiated by microwave radiation with stochastically jumping phase (MWRSJP) in a coaxial waveguide at the optimal mode of the beam-plasma generator. Present...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2015 |
| Автори: | , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/112197 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation / V.I. Karas, А.F. Alisov, V.I. Golota, А.М. Yegorov, I.V. Karas, S.V. Karelin, I.А. Zagrebelny // Вопросы атомной науки и техники. — 2015. — № 4. — С. 197-201. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-112197 |
|---|---|
| record_format |
dspace |
| spelling |
Karas, V.I. Alisov, А.F. Golota, V.I. Yegorov, А.М. Karas, I.V. Karelin, S.V. Zagrebelny, I.А. 2017-01-17T20:34:16Z 2017-01-17T20:34:16Z 2015 Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation / V.I. Karas, А.F. Alisov, V.I. Golota, А.М. Yegorov, I.V. Karas, S.V. Karelin, I.А. Zagrebelny // Вопросы атомной науки и техники. — 2015. — № 4. — С. 197-201. — Бібліогр.: 18 назв. — англ. 1562-6016 PACS: 52.80.Pi, 52.65.-y, 52.65.Ff, 52.70. Ds, 52.70.Kz, 84.40Fe https://nasplib.isofts.kiev.ua/handle/123456789/112197 The research methods are described and the principal characteristics of the generated oscillations are studied. We study the plasma discharge, initiated by microwave radiation with stochastically jumping phase (MWRSJP) in a coaxial waveguide at the optimal mode of the beam-plasma generator. Present results continue the line of the previous research. In this paper the plasma parameters of a microwave discharge at its stable maintenance in air by MWRSJP, and the pressure range at which required power is minimal are measured. We experimentally examine also optical characteristics of the discharge plasma in a wide range of air pressure. Описано методи дослідження і вивчені основні характеристики генерованих коливань. Вивчєно плазму розряду, ініційованого мікрохвильовим випромінюванням зі стохастичними стрибками фази (MХВССФ) у коаксіальному хвилеводі в оптимальному режимі роботи пучково-плазмового генератора. Знайдено параметри плазми мікрохвильового розряду при його стабільному підтриманні в повітрі МХВССФ та діапазон тисків, при якому споживана потужність мінімальна. Експериментально досліджено також оптичні характеристики плазми розряду в широкому діапазоні тисків повітря. Описаны методы исследования и изучены основные характеристики генерируемых колебаний. Изучена плазма разряда, инициированного микроволновым излучением со стохастическими скачками фазы (MВИССФ) в коаксиальном волноводе в оптимальном режиме работы пучково-плазменного генератора. Найдены параметры плазмы микроволнового разряда при его стабильном поддержании в воздухе МВИССФ и диапазон давлений, при котором потребляемая мощность минимальна. Экспериментально исследованы также оптические характеристики плазмы разряда в широком диапазоне давлений воздуха. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Плазменно-пучковый разряд, газовый разряд и плазмохимия Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation Дослідження мікрохвильових характеристик і параметрів плазми розряду низького тиску, ініційованого в коаксіальному хвилеводі стохастичним випромінюванням Исследования микроволновых характеристик и параметров плазмы разряда низкого давления, инициированного в коаксиальном волноводе стохастическим излучением Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation |
| spellingShingle |
Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation Karas, V.I. Alisov, А.F. Golota, V.I. Yegorov, А.М. Karas, I.V. Karelin, S.V. Zagrebelny, I.А. Плазменно-пучковый разряд, газовый разряд и плазмохимия |
| title_short |
Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation |
| title_full |
Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation |
| title_fullStr |
Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation |
| title_full_unstemmed |
Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation |
| title_sort |
studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation |
| author |
Karas, V.I. Alisov, А.F. Golota, V.I. Yegorov, А.М. Karas, I.V. Karelin, S.V. Zagrebelny, I.А. |
| author_facet |
Karas, V.I. Alisov, А.F. Golota, V.I. Yegorov, А.М. Karas, I.V. Karelin, S.V. Zagrebelny, I.А. |
| topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
| topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
| publishDate |
2015 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Дослідження мікрохвильових характеристик і параметрів плазми розряду низького тиску, ініційованого в коаксіальному хвилеводі стохастичним випромінюванням Исследования микроволновых характеристик и параметров плазмы разряда низкого давления, инициированного в коаксиальном волноводе стохастическим излучением |
| description |
The research methods are described and the principal characteristics of the generated oscillations are studied. We study the plasma discharge, initiated by microwave radiation with stochastically jumping phase (MWRSJP) in a coaxial waveguide at the optimal mode of the beam-plasma generator. Present results continue the line of the previous research. In this paper the plasma parameters of a microwave discharge at its stable maintenance in air by MWRSJP, and the pressure range at which required power is minimal are measured. We experimentally examine also optical characteristics of the discharge plasma in a wide range of air pressure.
Описано методи дослідження і вивчені основні характеристики генерованих коливань. Вивчєно плазму розряду, ініційованого мікрохвильовим випромінюванням зі стохастичними стрибками фази (MХВССФ) у коаксіальному хвилеводі в оптимальному режимі роботи пучково-плазмового генератора. Знайдено параметри плазми мікрохвильового розряду при його стабільному підтриманні в повітрі МХВССФ та діапазон тисків, при якому споживана потужність мінімальна. Експериментально досліджено також оптичні характеристики плазми розряду в широкому діапазоні тисків повітря.
Описаны методы исследования и изучены основные характеристики генерируемых колебаний. Изучена плазма разряда, инициированного микроволновым излучением со стохастическими скачками фазы (MВИССФ) в коаксиальном волноводе в оптимальном режиме работы пучково-плазменного генератора. Найдены параметры плазмы микроволнового разряда при его стабильном поддержании в воздухе МВИССФ и диапазон давлений, при котором потребляемая мощность минимальна. Экспериментально исследованы также оптические характеристики плазмы разряда в широком диапазоне давлений воздуха.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/112197 |
| citation_txt |
Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation / V.I. Karas, А.F. Alisov, V.I. Golota, А.М. Yegorov, I.V. Karas, S.V. Karelin, I.А. Zagrebelny // Вопросы атомной науки и техники. — 2015. — № 4. — С. 197-201. — Бібліогр.: 18 назв. — англ. |
| work_keys_str_mv |
AT karasvi studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation AT alisovaf studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation AT golotavi studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation AT yegorovam studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation AT karasiv studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation AT karelinsv studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation AT zagrebelnyia studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation AT karasvi doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm AT alisovaf doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm AT golotavi doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm AT yegorovam doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm AT karasiv doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm AT karelinsv doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm AT zagrebelnyia doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm AT karasvi issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem AT alisovaf issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem AT golotavi issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem AT yegorovam issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem AT karasiv issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem AT karelinsv issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem AT zagrebelnyia issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem |
| first_indexed |
2025-11-25T20:43:26Z |
| last_indexed |
2025-11-25T20:43:26Z |
| _version_ |
1850530749838524416 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2015. №4(98) 197
STUDIES OF MICROWAVE CHARACTERISTICS AND PLASMA
PARAMETERS IN LOW PRESSURE DISCHARGE INITIATED
IN COAXIAL WAVEGUIDE BY STOCHASTIC RADIATION
V.I. Karas`1,2, А.F. Alisov1, V.I. Golota1, А.М. Yegorov1, I.V. Karas`1, S.V. Karelin1,
I.А. Zagrebelny1
1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2V.N. Karazin Kharkiv National University, Kharkov, Ukraine
E-mail: karas@kipt.kharkov.ua
The research methods are described and the principal characteristics of the generated oscillations are studied. We
study the plasma discharge, initiated by microwave radiation with stochastically jumping phase (MWRSJP) in a
coaxial waveguide at the optimal mode of the beam-plasma generator. Present results continue the line of the previ-
ous research. In this paper the plasma parameters of a microwave discharge at its stable maintenance in air by
MWRSJP, and the pressure range at which required power is minimal are measured. We experimentally examine
also optical characteristics of the discharge plasma in a wide range of air pressure.
PACS: 52.80.Pi, 52.65.-y, 52.65.Ff, 52.70. Ds, 52.70.Kz, 84.40Fe
INTRODUCTION
High-frequency (HF) heating is very important field
in connection with fundamental questions of plasma
physics and applications. This area of physics is inten-
sively investigated as theoretically and experimentally
(for example, see [1 - 3] and references therein). The
issues widely discussed in literature are connected with
additional plasma heating in tokamaks [1], the nature of
accelerated particles in space plasmas [2], gas discharge
physics [3]. Among the problems that attract attention
of scientific community is development of sources with
solar spectrum. This is utmost important problem from
the point of fundamental, as well as practical applica-
tion, and in this direction interesting achievements is
obtained (see, for example [4]). It is worth mentioning
that one of the difficulties associated with additional
plasma heating in tokamaks is a well-known depend-
ence of the Rutherford cross-section on velocity. As a
consequence, the probability of collisions decreases
with plasma temperature rising, thus creating obstacles
for further plasma heating. Another important challenge
in interaction of HF radiation with plasma is a barrier of
the radiation penetration into the overdense plasma. To
our knowledge, the most part of investigations in this
direction are made with help of HF generators of elec-
tromagnetic radiation with regular phase. Thus the new
opportunities that microwave radiation with jumping
phase provides in this area would be very important.
In this paper, we describe the results of the theoreti-
cal and experimental investigation of the plasma inter-
action with microwave radiation with jumping phase
that obtained with help of the unique beam-plasma gen-
erator (BPG) made in KIPT [5]. This study continues
research on behaviour of plasma discharge subjected to
microwave radiation with stochastically jumping phase
(MWRSJP) which started in [6 - 8].
It was shown in [6 - 8], both theoretically and exper-
imentally, that the phenomenon of anomalous penetra-
tion of microwave radiation into plasma, conditions for
gas breakdown and maintenance of a microwave gas
discharge, and collisionless electron heating in a micro-
wave field are related to jumps of the phase of micro-
wave radiation. In this case, in spite of the absence of
pair collisions or synchronism between plasma particles
and the propagating electromagnetic field, stochastic
microwave fields exchange their energy with charged
particles. In such fields, random phase jumps of micro-
wave oscillations play the role of collisions and the av-
erage energy acquired by a particle over the field period
is proportional to the frequency of phase jumps.
Gas breakdown and maintenance of a discharge in a
rarefied gas by a pulsed MWRSJP were studied theoret-
ically and experimentally in [10 - 18], as well as propa-
gation of this radiation within the plasma produced in
such a way. The conditions for ignition and mainte-
nance of a microwave discharge in air by MWRSJP
were found. The pressure range in which the power re-
quired for discharge ignition and its maintenance has its
minimum was determined [16 - 18]. It was shown that,
in the interval of pressures that have a level less than
optimal (about 50 Pa for argon), the minimum of
MWRSJP breakdown power depends weakly on the
working gas pressure owing to several reasons. These
reasons are efficient collisionless electron heating,
weakening of diffusion and, finally, decrease of elastic
and inelastic collisional losses. This allows one to ex-
tend the domain of discharge existence toward lower
pressures. The intensity of collisionless electron heating
increases with increasing rate of phase jumps in
MWRSJP. There is an optimal phase jump rate at which
the rate of gas ionization and, accordingly, the growth
rate of the electron and ion densities reach their maxi-
mum. The optimal phase jump rate is equal to the ioni-
zation frequency at electron energies close to the ioniza-
tion energy of the working gas.
In the present work, the effect of high power pulsed
decimeter MWRSJP action on a plasma, produced in a
coaxial waveguide filled with a rarefied gas, is investi-
gated with use of the above mentioned BPG [5], which
was upgraded for the given experimental conditions.
The goal of this work is to study the special features of
low pressure discharge initiated by MWRSJP und also
optical radiation spectra. For interpretation of the exper-
imental results on the ignition and maintenance of a
microwave discharge in air obtained with MWRSJP
BPG, a numerical code has been developed. This code
allows simulating the process of gas ionization by elec-
mailto:karas@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2015. №4(98) 198
trons heated in the MWRSJP field and studying the be-
haviour of plasma particles in such a field.
MEASUREMENT OF PLASMA
PARAMETERS IN A MICROWAVE
DISCHARGE
If there are microwave plasma electric field, in this
case, to determine its density are used double Langmuir
probes. This probe consists of two single probes, be-
tween which a voltage is applied and measured current
flowing there between. Because the plasma in this case
produces a stochastic microwave radiation which prop-
agates in the coaxial waveguide with a vacuum suction,
the area in which it have place, is under high microwave
capacity relative to the housing of the coaxial wave-
guide. In connection with this, probes lying in the re-
gion of plasma must be insulated from the coaxial
waveguide circuits and power measurement. Because
the generator is operating in a pulsed mode, and the
plasma is only during the microwave pulse, the pulse is
provided a method for measuring the plasma density,
flow chart to explain its operation is shown in Fig. 1.
Fig. 1. Block-diagram of the pulse method
for measuring the plasma density
Here R1, R2 = 15 Ohm; C1 = 0.5 µF × 100 V; C2 =
100 µF × 100 V. When the plasma is not a resistance in
the probe circuit is infinite and no current. In the event
of a coaxial waveguide of the plasma, its lifetime is
about 160 µs, there is a current and in the resistor R1
voltage pulse arises, which is repeated across the resis-
tor R2, so that the number of turns of the windings and
the resistors are equal. To this was designed and manu-
factured by a pulsed transformer with a transformation
ratio equal to one, each of the windings is terminated
with an active impedance resistor with denomination
15 Ohm. Wherein each of the inductive reactance of the
transformer windings greatly exceeds the resistance
connected in parallel with it. The current flowing
through the probe is measured by indirect method. For
stand-alone power supply circuit that supplies a constant
voltage to the probe connected low-resistance resistor
specific denomination, knowing where the voltage drop
was calculated pulse current. By changing the voltage
between the probes recorded the current flowing
through them. Previous so the current-voltage character-
istic allows us to calculate the density of the plasma
near the existing probes.
Fig. 2. A microwave signal from the first probe (the
low-frequency displacement of voltage concerning zero
is u3 = 9.1⋅10-3 V) (a), the microwave signal from the
second probe (the low-frequency displacement of volt-
age concerning zero is u3 = 2.4⋅10-3 V) (b) with external
voltage 0 V shifts the low frequency voltage difference
with respect to zero between the two probes and the
average his shift with respect to zero is respectively:
u3 =6.7⋅10-3, 5.75⋅10-3 V
Fig. 3. A microwave signal from the first probe (the
low-frequency displacement of voltage concerning zero
is u3 = 19.0⋅10-3 V) (a), the microwave signal from the
second probe (the low-frequency displacement of volt-
age concerning zero is u3 = 4.9⋅10-3 V) (b) with external
voltage 63 V shifts the low frequency voltage difference
with respect to zero between the two probes and the
average his shift with respect to zero is respectively:
u3 = 14.1⋅10-3, 11.95⋅10-3 V
a
b
a
b
ISSN 1562-6016. ВАНТ. 2015. №4(98) 199
Fig. 4. A microwave signal from the first probe (the
low-frequency displacement of voltage concerning zero
is u3 = 11.6⋅10-3 V) (a), the microwave signal from the
second probe (the low-frequency displacement of volt-
age concerning zero is u3 = 7.7⋅10-3 V) (b) with external
voltage 0 V shifts the low frequency voltage difference
with respect to zero between the two probes and the
average his shift with respect to zero is respectively:
u3 =3.9⋅10-3, 9.65⋅10-3 V
Fig. 5. A microwave signal from the first probe (the
low-frequency displacement of voltage concerning zero
is u3 = 10.4⋅10-3 V) (a), the microwave signal from the
second probe (the low-frequency displacement of volt-
age concerning zero is u3 = 9.1⋅10-3 V) (b) with external
voltage 37.6 V shifts the low frequency voltage differ-
ence with respect to zero between the two probes and
the average his shift with respect to zero is respectively:
u3 = 1.3⋅10-3, 9.75⋅10-3 V
The measurements were made using a four-channel
wideband (2.25 GHz) oscilloscope HP Agilent Infinium.
Figs. 2-5 show the results of processing the solid lines
by least squares method a signal from first probe (upper
figures) and filled squares point shot digital oscilloscope
HP Agilent Infinium, the lower figures show the solid
lines and filled squares, the results corresponding to the
signal from the second probe.
The experimental data are approximated with help
the least squares method. Approximating function for
the signals shown in Figs. 2, 3 was chosen as:
( ) ( )0 1 2 3 4 5 1 6sin sinE u u t u u u u u t u= + + + + . (1)
Approximating function for the signals shown in
Figs. 4, 5 was chosen as:
( )0 1 2 3sin .E u u t u u= + + (2)
Our calculations give plasma density values from
1⋅109 to 3⋅109 cm-3. It should be noted that there are a
current at zero voltage on the probe due to movement of
electrons in the weakly inhomogeneous high-frequency
fields by the force of high pressure (analogue behavior
of the pendulum suspension oscillating, Kapitsa first
investigated in 1951).
Fig. 6. Dependence of breakdown electric field in-
tensity for a microwave signals with a stochastically
jumping phase versus a pressure for air in the optimal
BPG mode (curves 1 − ■, 2 − *) in the non-optimal BPG
mode: air (curve 3 − •), argon (curve 4 − ▲), helium
(curve 5 − ▼), respectively, for the narrowband signals
From Fig. 6 (curves 1 and 2) we can see that the lev-
els of the electric field of 20 to 160 V/cm MWRSJP
responsible for igniting the discharge is stable at pres-
sures of gas (air) in the range from 1.5 to 3990 Pa. This
result clearly demonstrates the benefits of discharge
supported by microwave radiation with stochastic phase
jumps compared to the microwave discharge on the ba-
sis of regular waves. Thus we have the ability to create
the discharge at a pressure of about two orders of mag-
nitude lower than the pressure that is necessary to fulfill
the conditions of the minimum ignition power discharge
initiates a regular microwave. Namely, but because (see
[9]), the effectiveness of such a discharge is much high-
er due to the small contribution to the energy losses on
unnecessary elastic and inelastic collisions when work-
ing at low pressures. For comparison, the dependence of
the electric field of microwaves required to ignite the
discharge in the air (curve 3), argon (curve 4) and heli-
um (curve 5), which has been filled with coaxial wave-
guide on its pressure obtained during non-optimal mode
of BPG operation. It can be seen that the pressure range
in which the possible discharge ignition is much nar-
rower than at the optimum operation of BPG. This is
largely due to the difference in the average frequency of
the jump phase in these BPG modes.
a
b
a
b
ISSN 1562-6016. ВАНТ. 2015. №4(98) 200
Fig. 7. Dependents of the optical emission intensity
of the line 656.3 (curve 1, left scale) and high voltage
(curve 2, right-hand scale) versus a time for air pres-
sure 2.8 Pa at a power of 6 kW for optimal regime
of the BPG operation
Fig. 7 shows that the pulse of optical radiation lasts
almost as much as the last high voltage pulse. Micro-
wave power varies during the pulse 10 times. This sug-
gests that to maintain sufficient discharge of the electric
field is much smaller than for the ignition.
Fig. 8. Dependence of the intensity of optical radiation
on the main lines of the wavelength for the two values
of air pressure in the waveguide: 4.6 (solid lines) and
28 Pa (dashed lines) and at various powers
(the power (in kW) indicated after letter for the optimal
operation of the BPG
As can be seen from Fig. 8 spectrum of optical ra-
diation from the discharge varies with different air pres-
sures in the waveguide. Comparison of the intensities of
the brightest lines (line of atomic hydrogen and line of
the first positive system of nitrogen), are in the visible
spectrum, showing that at a pressure P = 4.6 Pa ratio
I656 / I486 = 4.2, and at a pressure P = 28 Pa ratio
I656 / I486 = 11.6. This means that at a low pressure line
486.1, which lies in a range of blue color appears much
better than the same line at a high pressure. Consequent-
ly, the observed color of the low pressure discharge
more blue, and a high pressure redder, it can be seen
with the naked eye in the experiment.
CONCLUSIONS
For the first time measured the plasma density in the
low pressure discharge of initiated MWRSJP by the
authors of the article developed the original technique of
using double Langmuir probes, separate DC power sup-
ply, high-frequency transformers, digital oscilloscope
and signal processing MWRSJP least squares method
using a special form of basic functions. As a result of
the experimental data (see Figs. 2-5) we fo-und that
plasma density is 1⋅109 to 3⋅109 cm-3 at 6 kW.
It should be noted that there are of current and zero
voltage on the probe due to movement of electrons in
the weakly inhomogeneous high-frequency fields by the
force of high pressure (analogue behavior of the pendu-
lum suspension oscillating, P.L. Kapitsa first investigat-
ed in 1951).
Some of the results may also be used in connection
with the additional plasma heating in fusion devices,
because the heating by microwave radiation of charged
particles with irregular phase collision less. Due to this,
the efficiency of heating by MWRSJP not decrease with
increasing temperature of the plasma, while generally
regular microwave heating possible without collisions
and becomes less and less efficient at higher tempera-
tures. Also, instead of a pulsed mode BCP, you can cre-
ate a generator of continuous operating mode, which is
very important for plasma heating in tokamaks and stel-
larators.
With the help of a monochromator MDR-12 with a
much better spectral resolution than the spectrometer
ICP-51 confirmed and refined previously obtained pre-
liminary results.
REFERENCES
1. S. Shiraiwa, J. Ko, O. Meneghini, R. Parker,
A. Schmidt, S. Scott, M. Greenwald, A.E. Hubbard,
J. Hughes, Y. Ma, Y. Podpaly, J.E. Rice,
G. Wallace, J.R. Wilson, S.M. Wolfe, and Alcator
C-Mod Group. Full wave effects on the lower hybrid
wave spectrum and driven current profile in tokamak
plasmas // Phys. Plasma. 2011, v. 18, p. 080705.
2. Kh.V. Malova, L.M. Zelenyi, O.V. Mingalev,
I.V. Mingalev, V.Yu. Popov, A.V. Artemyev,
A.A. Petrukovich. Current Sheet in a Non-
Maxwellian Collisionless Plasma: Self-Consistent
Theory, Simulation and Comparison with Spacecraft
Observations // Plasma Phys. Rep. 2010, v. 36,
p. 841-858.
3. H.S. Uhm, Y.C. Hong, and D.H. Shin. A microwave
plasma torch and its applications // Plasma Sources
Sci. Technol. 2006, v. 15, p. S26-S34.
4. J.T. Dolan, M.G. Ury, and D.A. MacLeean. Micro-
wave Powered Electrodeless Light Source // Proc.
VI Int. Symp. on Science and Technology of Light
Sources. Budapest, Hungary. 1992, p. 301-311.
5. А.К. Berezin, Ya.B. Fainberg, A.M. Artamoshkin,
I.A. Bez`yazychny, V.I. Kurilko, Yu.M. Lyapkalo,
and V.S. Us. Beam-Plasma Generator of Stochastic
Oscillations of Decimeter Wavelength Band //
Plasma Phys. Rep. 1994, v. 20, p. 703-709.
6. V.I. Karas', V.D. Levchenko. Penetration of a Mi-
crowave with a Stochastic Jumping Phase (MSJP)
into Overdense Plasmas and Electron Collisionless
Heating by It // Problems of Atomic Science and
Technology. Series “Plasma Electronics and New
Acceleration Methods”. 2003, v. 4, p. 133-136.
7. V.I. Karas`, Ya.B. Fainberg, A.F. Alisov,
A.M. Artamoshkin, R. Bingham, I.V. Gavrilenko,
V.D. Levchenko, M. Lontano, V.I. Mirny, I.F.
Potapenko, A.N. Starostin. Interaction of Microwave
Radiation Undergoing Stochastic Phase Jumps with
Plasmas or Gases // Plasma Phys. Rep. 2005, v. 31,
№ 5, p. 748-760.
8. V.I. Karas`, A.F. Alisov, A.M. Artamoshkin,
S.A. Berdin, V.I. Golota, A.M. Yegorov,
ISSN 1562-6016. ВАНТ. 2015. №4(98) 201
A.G. Zagorodny, I.A. Zagrebelny, V.I. Zasenko,
I.V. Karas’, I.F. Potapenko, A.N. Starostin. Low
Pressure Discharge Induced by Microwave Radia-
tion with a Stochastically Jumping Phase // Plasma
Phys. Rep. 2010, v. 36, № 8, p. 736-749.
9. Yu.P. Raiser. Fundamentals of Modern Gas-
Discharge Physics. Moscow: “Nauka”, 1980.
10. A.F. Alisov, A.M. Artamoshkin, O.V. Bolotov,
V.I. Golota, V.I. Karas`, I.V. Karas`, I.F. Potapenko,
A.M. Yegorov, I.A. Zagrebelny. Low pressure dis-
charge induced by microwave with stochastically
jumping phase // Int. Conf. on Plasma Physics EPC
ICPP. Stockholm, Sweden, 2012.
11. V.I. Karas`, V.I. Golota, A.M. Yegorov, I.F.
Potapenko, and A.G. Zagorodny. Microwave radia-
tion with stochastically jumping phase: generation
and application for low pressure discharge initiation
// Applied Radio Electronics. Scientific and Tech-
nical Journal. 2012, v. 11, № 4, p. 463-476.
12. V.I. Karas`, A.F. Alisov, A.M. Artamoshkin,
O.V. Bolotov, V.I. Golota, I.V. Karas`, A.M. Yego-
rov, I.A. Zagrebelny, I.F. Potapenko. Low pressure
discharge initiated by microwave radiation with sto-
chastically jumping phase // Problems of Atomic
Science and Technology”. Series “Plasma Physics”.
2012, № 6, p. 142-145.
13. V.I. Karas`, A.F. Alisov, A.M. Artamoshkin,
O.V. Bolotov, V.I. Golota, I.V. Karas`, A.M. Yegorov,
I.A. Zagrebelny, I.F. Potapenko. Optical radiation
special features from plasma of low pressure dis-
charge initiated by microwave radiation with sto-
chastic jumping phase // Problems of Atomic Science
and Technology. Series “Plasma Electronics and New
Acceleration Methods”. 2013, №. 4, p. 183-188.
14. V.I. Karas`, V.I. Golota, A.M. Yegorov, I.F.
Potapenko, A.G. Zagorodny. Microwave radiation
with stochastically jumping phase: generation and
application for low pressure discharge initiation //
Lighting engineering and electric energetics. 2013,
v. 2(34), p. 33-51.
15. V.I. Karas`, A.F. Alisov, A.M. Artamoshkin,
O.V. Bolotov, V.I. Golota, I.V. Karas`, A.M. Yegorov,
I.A. Zagrebelny I.F. Potapenko. Special Features of
Low-Pressure Discharge Initiated by Microwave
Radiation with Stochastic Jumping Phase // IEEE
Transaction on Plasma Science. 2013, v. 41, № 9,
p. 1458-1463.
16. V. Karas`, А. Аlisov, І. Karas`, O. Yegorov. Special
features of interaction between plasmas and micro-
wave radiation with stochastic jumping phase //
Proc. of VIth Ukrainian-Poland Science & Technol-
ogy Conference «Electronics and Information Tech-
nology (ЕLIT-2014). 2014, Lviv-Chinadievo,
Ukraine. p. 229-232.
17. V.I. Karas`, A.F. Alisov, O.V. Bolotov, V.I. Golota,
I.V. Karas`, A.M. Yegorov, A.G. Zagorodny,
V.I. Zasenko. Special features of interaction between
plasmas and microwave radiation with stochastic
jumping phase // Intern. Conference-School on
Plasma Physics and Controlled Fusion. Book of ab-
stracts. 2014, Kharkiv, Ukraine, p. 93.
18. V.I. Karas`, A.F. Alisov, V.I. Golota, A.M. Yegorov,
I.V. Karas`, A.G. Zagorodny, V.I. Zasenko, I.A. Za-
grebelny, L.A. Nazarenko, I.F. Potapenko. Devel-
opment special features of low pressure discharge
initiated by microwave radiation with stochastic
jumping phase // Proc. of Intern. Conf. MSS-14.
Mode conversion, coherent structure and turbu-
lence. 2014, Moscow, p. 203-208.
Article received 20.05.2015
ИССЛЕДОВАНИЯ МИКРОВОЛНОВЫХ ХАРАКТЕРИСТИК И ПАРАМЕТРОВ ПЛАЗМЫ РАЗРЯДА
НИЗКОГО ДАВЛЕНИЯ, ИНИЦИИРОВАННОГО В КОАКСИАЛЬНОМ ВОЛНОВОДЕ
СТОХАСТИЧЕСКИМ ИЗЛУЧЕНИЕМ
В.И. Kарась, А.Ф. Алисов, В.И. Голота, А.М. Егоров, И.В. Карась, С.В. Карелин, И.А. Загребельный
Описаны методы исследования и изучены основные характеристики генерируемых колебаний. Изучена
плазма разряда, инициированного микроволновым излучением со стохастическими скачками фазы
(MВИССФ) в коаксиальном волноводе в оптимальном режиме работы пучково-плазменного генератора.
Найдены параметры плазмы микроволнового разряда при его стабильном поддержании в воздухе МВИССФ
и диапазон давлений, при котором потребляемая мощность минимальна. Экспериментально исследованы
также оптические характеристики плазмы разряда в широком диапазоне давлений воздуха.
ДОСЛІДЖЕННЯ МІКРОХВИЛЬОВИХ ХАРАКТЕРИСТИК І ПАРАМЕТРІВ ПЛАЗМИ РОЗРЯДУ
НИЗЬКОГО ТИСКУ, ІНІЦІЙОВАНОГО В КОАКСІАЛЬНОМУ ХВИЛЕВОДІ СТОХАСТИЧНИМ
ВИПРОМІНЮВАННЯМ
В.І. Kарась, А.Ф. Алісов, В.І. Голота, О.М. Єгоров, І.В. Карась, С.В. Карелін, І.А. Загребельний
Описано методи дослідження і вивчені основні характеристики генерованих коливань. Вивчєно плазму
розряду, ініційованого мікрохвильовим випромінюванням зі стохастичними стрибками фази (MХВССФ) у
коаксіальному хвилеводі в оптимальному режимі роботи пучково-плазмового генератора. Знайдено параме-
три плазми мікрохвильового розряду при його стабільному підтриманні в повітрі МХВССФ та діапазон тис-
ків, при якому споживана потужність мінімальна. Експериментально досліджено також оптичні характерис-
тики плазми розряду в широкому діапазоні тисків повітря.
|