Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation

The research methods are described and the principal characteristics of the generated oscillations are studied. We study the plasma discharge, initiated by microwave radiation with stochastically jumping phase (MWRSJP) in a coaxial waveguide at the optimal mode of the beam-plasma generator. Present...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2015
Автори: Karas, V.I., Alisov, А.F., Golota, V.I., Yegorov, А.М., Karas, I.V., Karelin, S.V., Zagrebelny, I.А.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/112197
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation / V.I. Karas, А.F. Alisov, V.I. Golota, А.М. Yegorov, I.V. Karas, S.V. Karelin, I.А. Zagrebelny // Вопросы атомной науки и техники. — 2015. — № 4. — С. 197-201. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112197
record_format dspace
spelling Karas, V.I.
Alisov, А.F.
Golota, V.I.
Yegorov, А.М.
Karas, I.V.
Karelin, S.V.
Zagrebelny, I.А.
2017-01-17T20:34:16Z
2017-01-17T20:34:16Z
2015
Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation / V.I. Karas, А.F. Alisov, V.I. Golota, А.М. Yegorov, I.V. Karas, S.V. Karelin, I.А. Zagrebelny // Вопросы атомной науки и техники. — 2015. — № 4. — С. 197-201. — Бібліогр.: 18 назв. — англ.
1562-6016
PACS: 52.80.Pi, 52.65.-y, 52.65.Ff, 52.70. Ds, 52.70.Kz, 84.40Fe
https://nasplib.isofts.kiev.ua/handle/123456789/112197
The research methods are described and the principal characteristics of the generated oscillations are studied. We study the plasma discharge, initiated by microwave radiation with stochastically jumping phase (MWRSJP) in a coaxial waveguide at the optimal mode of the beam-plasma generator. Present results continue the line of the previous research. In this paper the plasma parameters of a microwave discharge at its stable maintenance in air by MWRSJP, and the pressure range at which required power is minimal are measured. We experimentally examine also optical characteristics of the discharge plasma in a wide range of air pressure.
Описано методи дослідження і вивчені основні характеристики генерованих коливань. Вивчєно плазму розряду, ініційованого мікрохвильовим випромінюванням зі стохастичними стрибками фази (MХВССФ) у коаксіальному хвилеводі в оптимальному режимі роботи пучково-плазмового генератора. Знайдено параметри плазми мікрохвильового розряду при його стабільному підтриманні в повітрі МХВССФ та діапазон тисків, при якому споживана потужність мінімальна. Експериментально досліджено також оптичні характеристики плазми розряду в широкому діапазоні тисків повітря.
Описаны методы исследования и изучены основные характеристики генерируемых колебаний. Изучена плазма разряда, инициированного микроволновым излучением со стохастическими скачками фазы (MВИССФ) в коаксиальном волноводе в оптимальном режиме работы пучково-плазменного генератора. Найдены параметры плазмы микроволнового разряда при его стабильном поддержании в воздухе МВИССФ и диапазон давлений, при котором потребляемая мощность минимальна. Экспериментально исследованы также оптические характеристики плазмы разряда в широком диапазоне давлений воздуха.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation
Дослідження мікрохвильових характеристик і параметрів плазми розряду низького тиску, ініційованого в коаксіальному хвилеводі стохастичним випромінюванням
Исследования микроволновых характеристик и параметров плазмы разряда низкого давления, инициированного в коаксиальном волноводе стохастическим излучением
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation
spellingShingle Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation
Karas, V.I.
Alisov, А.F.
Golota, V.I.
Yegorov, А.М.
Karas, I.V.
Karelin, S.V.
Zagrebelny, I.А.
Плазменно-пучковый разряд, газовый разряд и плазмохимия
title_short Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation
title_full Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation
title_fullStr Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation
title_full_unstemmed Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation
title_sort studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation
author Karas, V.I.
Alisov, А.F.
Golota, V.I.
Yegorov, А.М.
Karas, I.V.
Karelin, S.V.
Zagrebelny, I.А.
author_facet Karas, V.I.
Alisov, А.F.
Golota, V.I.
Yegorov, А.М.
Karas, I.V.
Karelin, S.V.
Zagrebelny, I.А.
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
publishDate 2015
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Дослідження мікрохвильових характеристик і параметрів плазми розряду низького тиску, ініційованого в коаксіальному хвилеводі стохастичним випромінюванням
Исследования микроволновых характеристик и параметров плазмы разряда низкого давления, инициированного в коаксиальном волноводе стохастическим излучением
description The research methods are described and the principal characteristics of the generated oscillations are studied. We study the plasma discharge, initiated by microwave radiation with stochastically jumping phase (MWRSJP) in a coaxial waveguide at the optimal mode of the beam-plasma generator. Present results continue the line of the previous research. In this paper the plasma parameters of a microwave discharge at its stable maintenance in air by MWRSJP, and the pressure range at which required power is minimal are measured. We experimentally examine also optical characteristics of the discharge plasma in a wide range of air pressure. Описано методи дослідження і вивчені основні характеристики генерованих коливань. Вивчєно плазму розряду, ініційованого мікрохвильовим випромінюванням зі стохастичними стрибками фази (MХВССФ) у коаксіальному хвилеводі в оптимальному режимі роботи пучково-плазмового генератора. Знайдено параметри плазми мікрохвильового розряду при його стабільному підтриманні в повітрі МХВССФ та діапазон тисків, при якому споживана потужність мінімальна. Експериментально досліджено також оптичні характеристики плазми розряду в широкому діапазоні тисків повітря. Описаны методы исследования и изучены основные характеристики генерируемых колебаний. Изучена плазма разряда, инициированного микроволновым излучением со стохастическими скачками фазы (MВИССФ) в коаксиальном волноводе в оптимальном режиме работы пучково-плазменного генератора. Найдены параметры плазмы микроволнового разряда при его стабильном поддержании в воздухе МВИССФ и диапазон давлений, при котором потребляемая мощность минимальна. Экспериментально исследованы также оптические характеристики плазмы разряда в широком диапазоне давлений воздуха.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/112197
citation_txt Studies of microwave characteristics and plasma parameters in low pressure discharge initiated in coaxial waveguide by stochastic radiation / V.I. Karas, А.F. Alisov, V.I. Golota, А.М. Yegorov, I.V. Karas, S.V. Karelin, I.А. Zagrebelny // Вопросы атомной науки и техники. — 2015. — № 4. — С. 197-201. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT karasvi studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation
AT alisovaf studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation
AT golotavi studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation
AT yegorovam studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation
AT karasiv studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation
AT karelinsv studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation
AT zagrebelnyia studiesofmicrowavecharacteristicsandplasmaparametersinlowpressuredischargeinitiatedincoaxialwaveguidebystochasticradiation
AT karasvi doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm
AT alisovaf doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm
AT golotavi doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm
AT yegorovam doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm
AT karasiv doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm
AT karelinsv doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm
AT zagrebelnyia doslídžennâmíkrohvilʹovihharakteristikíparametrívplazmirozrâdunizʹkogotiskuínícíiovanogovkoaksíalʹnomuhvilevodístohastičnimvipromínûvannâm
AT karasvi issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem
AT alisovaf issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem
AT golotavi issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem
AT yegorovam issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem
AT karasiv issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem
AT karelinsv issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem
AT zagrebelnyia issledovaniâmikrovolnovyhharakteristikiparametrovplazmyrazrâdanizkogodavleniâiniciirovannogovkoaksialʹnomvolnovodestohastičeskimizlučeniem
first_indexed 2025-11-25T20:43:26Z
last_indexed 2025-11-25T20:43:26Z
_version_ 1850530749838524416
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 197 STUDIES OF MICROWAVE CHARACTERISTICS AND PLASMA PARAMETERS IN LOW PRESSURE DISCHARGE INITIATED IN COAXIAL WAVEGUIDE BY STOCHASTIC RADIATION V.I. Karas`1,2, А.F. Alisov1, V.I. Golota1, А.М. Yegorov1, I.V. Karas`1, S.V. Karelin1, I.А. Zagrebelny1 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: karas@kipt.kharkov.ua The research methods are described and the principal characteristics of the generated oscillations are studied. We study the plasma discharge, initiated by microwave radiation with stochastically jumping phase (MWRSJP) in a coaxial waveguide at the optimal mode of the beam-plasma generator. Present results continue the line of the previ- ous research. In this paper the plasma parameters of a microwave discharge at its stable maintenance in air by MWRSJP, and the pressure range at which required power is minimal are measured. We experimentally examine also optical characteristics of the discharge plasma in a wide range of air pressure. PACS: 52.80.Pi, 52.65.-y, 52.65.Ff, 52.70. Ds, 52.70.Kz, 84.40Fe INTRODUCTION High-frequency (HF) heating is very important field in connection with fundamental questions of plasma physics and applications. This area of physics is inten- sively investigated as theoretically and experimentally (for example, see [1 - 3] and references therein). The issues widely discussed in literature are connected with additional plasma heating in tokamaks [1], the nature of accelerated particles in space plasmas [2], gas discharge physics [3]. Among the problems that attract attention of scientific community is development of sources with solar spectrum. This is utmost important problem from the point of fundamental, as well as practical applica- tion, and in this direction interesting achievements is obtained (see, for example [4]). It is worth mentioning that one of the difficulties associated with additional plasma heating in tokamaks is a well-known depend- ence of the Rutherford cross-section on velocity. As a consequence, the probability of collisions decreases with plasma temperature rising, thus creating obstacles for further plasma heating. Another important challenge in interaction of HF radiation with plasma is a barrier of the radiation penetration into the overdense plasma. To our knowledge, the most part of investigations in this direction are made with help of HF generators of elec- tromagnetic radiation with regular phase. Thus the new opportunities that microwave radiation with jumping phase provides in this area would be very important. In this paper, we describe the results of the theoreti- cal and experimental investigation of the plasma inter- action with microwave radiation with jumping phase that obtained with help of the unique beam-plasma gen- erator (BPG) made in KIPT [5]. This study continues research on behaviour of plasma discharge subjected to microwave radiation with stochastically jumping phase (MWRSJP) which started in [6 - 8]. It was shown in [6 - 8], both theoretically and exper- imentally, that the phenomenon of anomalous penetra- tion of microwave radiation into plasma, conditions for gas breakdown and maintenance of a microwave gas discharge, and collisionless electron heating in a micro- wave field are related to jumps of the phase of micro- wave radiation. In this case, in spite of the absence of pair collisions or synchronism between plasma particles and the propagating electromagnetic field, stochastic microwave fields exchange their energy with charged particles. In such fields, random phase jumps of micro- wave oscillations play the role of collisions and the av- erage energy acquired by a particle over the field period is proportional to the frequency of phase jumps. Gas breakdown and maintenance of a discharge in a rarefied gas by a pulsed MWRSJP were studied theoret- ically and experimentally in [10 - 18], as well as propa- gation of this radiation within the plasma produced in such a way. The conditions for ignition and mainte- nance of a microwave discharge in air by MWRSJP were found. The pressure range in which the power re- quired for discharge ignition and its maintenance has its minimum was determined [16 - 18]. It was shown that, in the interval of pressures that have a level less than optimal (about 50 Pa for argon), the minimum of MWRSJP breakdown power depends weakly on the working gas pressure owing to several reasons. These reasons are efficient collisionless electron heating, weakening of diffusion and, finally, decrease of elastic and inelastic collisional losses. This allows one to ex- tend the domain of discharge existence toward lower pressures. The intensity of collisionless electron heating increases with increasing rate of phase jumps in MWRSJP. There is an optimal phase jump rate at which the rate of gas ionization and, accordingly, the growth rate of the electron and ion densities reach their maxi- mum. The optimal phase jump rate is equal to the ioni- zation frequency at electron energies close to the ioniza- tion energy of the working gas. In the present work, the effect of high power pulsed decimeter MWRSJP action on a plasma, produced in a coaxial waveguide filled with a rarefied gas, is investi- gated with use of the above mentioned BPG [5], which was upgraded for the given experimental conditions. The goal of this work is to study the special features of low pressure discharge initiated by MWRSJP und also optical radiation spectra. For interpretation of the exper- imental results on the ignition and maintenance of a microwave discharge in air obtained with MWRSJP BPG, a numerical code has been developed. This code allows simulating the process of gas ionization by elec- mailto:karas@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2015. №4(98) 198 trons heated in the MWRSJP field and studying the be- haviour of plasma particles in such a field. MEASUREMENT OF PLASMA PARAMETERS IN A MICROWAVE DISCHARGE If there are microwave plasma electric field, in this case, to determine its density are used double Langmuir probes. This probe consists of two single probes, be- tween which a voltage is applied and measured current flowing there between. Because the plasma in this case produces a stochastic microwave radiation which prop- agates in the coaxial waveguide with a vacuum suction, the area in which it have place, is under high microwave capacity relative to the housing of the coaxial wave- guide. In connection with this, probes lying in the re- gion of plasma must be insulated from the coaxial waveguide circuits and power measurement. Because the generator is operating in a pulsed mode, and the plasma is only during the microwave pulse, the pulse is provided a method for measuring the plasma density, flow chart to explain its operation is shown in Fig. 1. Fig. 1. Block-diagram of the pulse method for measuring the plasma density Here R1, R2 = 15 Ohm; C1 = 0.5 µF × 100 V; C2 = 100 µF × 100 V. When the plasma is not a resistance in the probe circuit is infinite and no current. In the event of a coaxial waveguide of the plasma, its lifetime is about 160 µs, there is a current and in the resistor R1 voltage pulse arises, which is repeated across the resis- tor R2, so that the number of turns of the windings and the resistors are equal. To this was designed and manu- factured by a pulsed transformer with a transformation ratio equal to one, each of the windings is terminated with an active impedance resistor with denomination 15 Ohm. Wherein each of the inductive reactance of the transformer windings greatly exceeds the resistance connected in parallel with it. The current flowing through the probe is measured by indirect method. For stand-alone power supply circuit that supplies a constant voltage to the probe connected low-resistance resistor specific denomination, knowing where the voltage drop was calculated pulse current. By changing the voltage between the probes recorded the current flowing through them. Previous so the current-voltage character- istic allows us to calculate the density of the plasma near the existing probes. Fig. 2. A microwave signal from the first probe (the low-frequency displacement of voltage concerning zero is u3 = 9.1⋅10-3 V) (a), the microwave signal from the second probe (the low-frequency displacement of volt- age concerning zero is u3 = 2.4⋅10-3 V) (b) with external voltage 0 V shifts the low frequency voltage difference with respect to zero between the two probes and the average his shift with respect to zero is respectively: u3 =6.7⋅10-3, 5.75⋅10-3 V Fig. 3. A microwave signal from the first probe (the low-frequency displacement of voltage concerning zero is u3 = 19.0⋅10-3 V) (a), the microwave signal from the second probe (the low-frequency displacement of volt- age concerning zero is u3 = 4.9⋅10-3 V) (b) with external voltage 63 V shifts the low frequency voltage difference with respect to zero between the two probes and the average his shift with respect to zero is respectively: u3 = 14.1⋅10-3, 11.95⋅10-3 V a b a b ISSN 1562-6016. ВАНТ. 2015. №4(98) 199 Fig. 4. A microwave signal from the first probe (the low-frequency displacement of voltage concerning zero is u3 = 11.6⋅10-3 V) (a), the microwave signal from the second probe (the low-frequency displacement of volt- age concerning zero is u3 = 7.7⋅10-3 V) (b) with external voltage 0 V shifts the low frequency voltage difference with respect to zero between the two probes and the average his shift with respect to zero is respectively: u3 =3.9⋅10-3, 9.65⋅10-3 V Fig. 5. A microwave signal from the first probe (the low-frequency displacement of voltage concerning zero is u3 = 10.4⋅10-3 V) (a), the microwave signal from the second probe (the low-frequency displacement of volt- age concerning zero is u3 = 9.1⋅10-3 V) (b) with external voltage 37.6 V shifts the low frequency voltage differ- ence with respect to zero between the two probes and the average his shift with respect to zero is respectively: u3 = 1.3⋅10-3, 9.75⋅10-3 V The measurements were made using a four-channel wideband (2.25 GHz) oscilloscope HP Agilent Infinium. Figs. 2-5 show the results of processing the solid lines by least squares method a signal from first probe (upper figures) and filled squares point shot digital oscilloscope HP Agilent Infinium, the lower figures show the solid lines and filled squares, the results corresponding to the signal from the second probe. The experimental data are approximated with help the least squares method. Approximating function for the signals shown in Figs. 2, 3 was chosen as: ( ) ( )0 1 2 3 4 5 1 6sin sinE u u t u u u u u t u= + + + + . (1) Approximating function for the signals shown in Figs. 4, 5 was chosen as: ( )0 1 2 3sin .E u u t u u= + + (2) Our calculations give plasma density values from 1⋅109 to 3⋅109 cm-3. It should be noted that there are a current at zero voltage on the probe due to movement of electrons in the weakly inhomogeneous high-frequency fields by the force of high pressure (analogue behavior of the pendulum suspension oscillating, Kapitsa first investigated in 1951). Fig. 6. Dependence of breakdown electric field in- tensity for a microwave signals with a stochastically jumping phase versus a pressure for air in the optimal BPG mode (curves 1 − ■, 2 − *) in the non-optimal BPG mode: air (curve 3 − •), argon (curve 4 − ▲), helium (curve 5 − ▼), respectively, for the narrowband signals From Fig. 6 (curves 1 and 2) we can see that the lev- els of the electric field of 20 to 160 V/cm MWRSJP responsible for igniting the discharge is stable at pres- sures of gas (air) in the range from 1.5 to 3990 Pa. This result clearly demonstrates the benefits of discharge supported by microwave radiation with stochastic phase jumps compared to the microwave discharge on the ba- sis of regular waves. Thus we have the ability to create the discharge at a pressure of about two orders of mag- nitude lower than the pressure that is necessary to fulfill the conditions of the minimum ignition power discharge initiates a regular microwave. Namely, but because (see [9]), the effectiveness of such a discharge is much high- er due to the small contribution to the energy losses on unnecessary elastic and inelastic collisions when work- ing at low pressures. For comparison, the dependence of the electric field of microwaves required to ignite the discharge in the air (curve 3), argon (curve 4) and heli- um (curve 5), which has been filled with coaxial wave- guide on its pressure obtained during non-optimal mode of BPG operation. It can be seen that the pressure range in which the possible discharge ignition is much nar- rower than at the optimum operation of BPG. This is largely due to the difference in the average frequency of the jump phase in these BPG modes. a b a b ISSN 1562-6016. ВАНТ. 2015. №4(98) 200 Fig. 7. Dependents of the optical emission intensity of the line 656.3 (curve 1, left scale) and high voltage (curve 2, right-hand scale) versus a time for air pres- sure 2.8 Pa at a power of 6 kW for optimal regime of the BPG operation Fig. 7 shows that the pulse of optical radiation lasts almost as much as the last high voltage pulse. Micro- wave power varies during the pulse 10 times. This sug- gests that to maintain sufficient discharge of the electric field is much smaller than for the ignition. Fig. 8. Dependence of the intensity of optical radiation on the main lines of the wavelength for the two values of air pressure in the waveguide: 4.6 (solid lines) and 28 Pa (dashed lines) and at various powers (the power (in kW) indicated after letter for the optimal operation of the BPG As can be seen from Fig. 8 spectrum of optical ra- diation from the discharge varies with different air pres- sures in the waveguide. Comparison of the intensities of the brightest lines (line of atomic hydrogen and line of the first positive system of nitrogen), are in the visible spectrum, showing that at a pressure P = 4.6 Pa ratio I656 / I486 = 4.2, and at a pressure P = 28 Pa ratio I656 / I486 = 11.6. This means that at a low pressure line 486.1, which lies in a range of blue color appears much better than the same line at a high pressure. Consequent- ly, the observed color of the low pressure discharge more blue, and a high pressure redder, it can be seen with the naked eye in the experiment. CONCLUSIONS For the first time measured the plasma density in the low pressure discharge of initiated MWRSJP by the authors of the article developed the original technique of using double Langmuir probes, separate DC power sup- ply, high-frequency transformers, digital oscilloscope and signal processing MWRSJP least squares method using a special form of basic functions. As a result of the experimental data (see Figs. 2-5) we fo-und that plasma density is 1⋅109 to 3⋅109 cm-3 at 6 kW. It should be noted that there are of current and zero voltage on the probe due to movement of electrons in the weakly inhomogeneous high-frequency fields by the force of high pressure (analogue behavior of the pendu- lum suspension oscillating, P.L. Kapitsa first investigat- ed in 1951). Some of the results may also be used in connection with the additional plasma heating in fusion devices, because the heating by microwave radiation of charged particles with irregular phase collision less. Due to this, the efficiency of heating by MWRSJP not decrease with increasing temperature of the plasma, while generally regular microwave heating possible without collisions and becomes less and less efficient at higher tempera- tures. Also, instead of a pulsed mode BCP, you can cre- ate a generator of continuous operating mode, which is very important for plasma heating in tokamaks and stel- larators. With the help of a monochromator MDR-12 with a much better spectral resolution than the spectrometer ICP-51 confirmed and refined previously obtained pre- liminary results. REFERENCES 1. S. Shiraiwa, J. Ko, O. Meneghini, R. Parker, A. Schmidt, S. Scott, M. Greenwald, A.E. Hubbard, J. Hughes, Y. Ma, Y. Podpaly, J.E. Rice, G. Wallace, J.R. Wilson, S.M. Wolfe, and Alcator C-Mod Group. Full wave effects on the lower hybrid wave spectrum and driven current profile in tokamak plasmas // Phys. Plasma. 2011, v. 18, p. 080705. 2. Kh.V. Malova, L.M. Zelenyi, O.V. Mingalev, I.V. Mingalev, V.Yu. Popov, A.V. Artemyev, A.A. Petrukovich. Current Sheet in a Non- Maxwellian Collisionless Plasma: Self-Consistent Theory, Simulation and Comparison with Spacecraft Observations // Plasma Phys. Rep. 2010, v. 36, p. 841-858. 3. H.S. Uhm, Y.C. Hong, and D.H. Shin. A microwave plasma torch and its applications // Plasma Sources Sci. Technol. 2006, v. 15, p. S26-S34. 4. J.T. Dolan, M.G. Ury, and D.A. MacLeean. Micro- wave Powered Electrodeless Light Source // Proc. VI Int. Symp. on Science and Technology of Light Sources. Budapest, Hungary. 1992, p. 301-311. 5. А.К. Berezin, Ya.B. Fainberg, A.M. Artamoshkin, I.A. Bez`yazychny, V.I. Kurilko, Yu.M. Lyapkalo, and V.S. Us. Beam-Plasma Generator of Stochastic Oscillations of Decimeter Wavelength Band // Plasma Phys. Rep. 1994, v. 20, p. 703-709. 6. V.I. Karas', V.D. Levchenko. Penetration of a Mi- crowave with a Stochastic Jumping Phase (MSJP) into Overdense Plasmas and Electron Collisionless Heating by It // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Acceleration Methods”. 2003, v. 4, p. 133-136. 7. V.I. Karas`, Ya.B. Fainberg, A.F. Alisov, A.M. Artamoshkin, R. Bingham, I.V. Gavrilenko, V.D. Levchenko, M. Lontano, V.I. Mirny, I.F. Potapenko, A.N. Starostin. Interaction of Microwave Radiation Undergoing Stochastic Phase Jumps with Plasmas or Gases // Plasma Phys. Rep. 2005, v. 31, № 5, p. 748-760. 8. V.I. Karas`, A.F. Alisov, A.M. Artamoshkin, S.A. Berdin, V.I. Golota, A.M. Yegorov, ISSN 1562-6016. ВАНТ. 2015. №4(98) 201 A.G. Zagorodny, I.A. Zagrebelny, V.I. Zasenko, I.V. Karas’, I.F. Potapenko, A.N. Starostin. Low Pressure Discharge Induced by Microwave Radia- tion with a Stochastically Jumping Phase // Plasma Phys. Rep. 2010, v. 36, № 8, p. 736-749. 9. Yu.P. Raiser. Fundamentals of Modern Gas- Discharge Physics. Moscow: “Nauka”, 1980. 10. A.F. Alisov, A.M. Artamoshkin, O.V. Bolotov, V.I. Golota, V.I. Karas`, I.V. Karas`, I.F. Potapenko, A.M. Yegorov, I.A. Zagrebelny. Low pressure dis- charge induced by microwave with stochastically jumping phase // Int. Conf. on Plasma Physics EPC ICPP. Stockholm, Sweden, 2012. 11. V.I. Karas`, V.I. Golota, A.M. Yegorov, I.F. Potapenko, and A.G. Zagorodny. Microwave radia- tion with stochastically jumping phase: generation and application for low pressure discharge initiation // Applied Radio Electronics. Scientific and Tech- nical Journal. 2012, v. 11, № 4, p. 463-476. 12. V.I. Karas`, A.F. Alisov, A.M. Artamoshkin, O.V. Bolotov, V.I. Golota, I.V. Karas`, A.M. Yego- rov, I.A. Zagrebelny, I.F. Potapenko. Low pressure discharge initiated by microwave radiation with sto- chastically jumping phase // Problems of Atomic Science and Technology”. Series “Plasma Physics”. 2012, № 6, p. 142-145. 13. V.I. Karas`, A.F. Alisov, A.M. Artamoshkin, O.V. Bolotov, V.I. Golota, I.V. Karas`, A.M. Yegorov, I.A. Zagrebelny, I.F. Potapenko. Optical radiation special features from plasma of low pressure dis- charge initiated by microwave radiation with sto- chastic jumping phase // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Acceleration Methods”. 2013, №. 4, p. 183-188. 14. V.I. Karas`, V.I. Golota, A.M. Yegorov, I.F. Potapenko, A.G. Zagorodny. Microwave radiation with stochastically jumping phase: generation and application for low pressure discharge initiation // Lighting engineering and electric energetics. 2013, v. 2(34), p. 33-51. 15. V.I. Karas`, A.F. Alisov, A.M. Artamoshkin, O.V. Bolotov, V.I. Golota, I.V. Karas`, A.M. Yegorov, I.A. Zagrebelny I.F. Potapenko. Special Features of Low-Pressure Discharge Initiated by Microwave Radiation with Stochastic Jumping Phase // IEEE Transaction on Plasma Science. 2013, v. 41, № 9, p. 1458-1463. 16. V. Karas`, А. Аlisov, І. Karas`, O. Yegorov. Special features of interaction between plasmas and micro- wave radiation with stochastic jumping phase // Proc. of VIth Ukrainian-Poland Science & Technol- ogy Conference «Electronics and Information Tech- nology (ЕLIT-2014). 2014, Lviv-Chinadievo, Ukraine. p. 229-232. 17. V.I. Karas`, A.F. Alisov, O.V. Bolotov, V.I. Golota, I.V. Karas`, A.M. Yegorov, A.G. Zagorodny, V.I. Zasenko. Special features of interaction between plasmas and microwave radiation with stochastic jumping phase // Intern. Conference-School on Plasma Physics and Controlled Fusion. Book of ab- stracts. 2014, Kharkiv, Ukraine, p. 93. 18. V.I. Karas`, A.F. Alisov, V.I. Golota, A.M. Yegorov, I.V. Karas`, A.G. Zagorodny, V.I. Zasenko, I.A. Za- grebelny, L.A. Nazarenko, I.F. Potapenko. Devel- opment special features of low pressure discharge initiated by microwave radiation with stochastic jumping phase // Proc. of Intern. Conf. MSS-14. Mode conversion, coherent structure and turbu- lence. 2014, Moscow, p. 203-208. Article received 20.05.2015 ИССЛЕДОВАНИЯ МИКРОВОЛНОВЫХ ХАРАКТЕРИСТИК И ПАРАМЕТРОВ ПЛАЗМЫ РАЗРЯДА НИЗКОГО ДАВЛЕНИЯ, ИНИЦИИРОВАННОГО В КОАКСИАЛЬНОМ ВОЛНОВОДЕ СТОХАСТИЧЕСКИМ ИЗЛУЧЕНИЕМ В.И. Kарась, А.Ф. Алисов, В.И. Голота, А.М. Егоров, И.В. Карась, С.В. Карелин, И.А. Загребельный Описаны методы исследования и изучены основные характеристики генерируемых колебаний. Изучена плазма разряда, инициированного микроволновым излучением со стохастическими скачками фазы (MВИССФ) в коаксиальном волноводе в оптимальном режиме работы пучково-плазменного генератора. Найдены параметры плазмы микроволнового разряда при его стабильном поддержании в воздухе МВИССФ и диапазон давлений, при котором потребляемая мощность минимальна. Экспериментально исследованы также оптические характеристики плазмы разряда в широком диапазоне давлений воздуха. ДОСЛІДЖЕННЯ МІКРОХВИЛЬОВИХ ХАРАКТЕРИСТИК І ПАРАМЕТРІВ ПЛАЗМИ РОЗРЯДУ НИЗЬКОГО ТИСКУ, ІНІЦІЙОВАНОГО В КОАКСІАЛЬНОМУ ХВИЛЕВОДІ СТОХАСТИЧНИМ ВИПРОМІНЮВАННЯМ В.І. Kарась, А.Ф. Алісов, В.І. Голота, О.М. Єгоров, І.В. Карась, С.В. Карелін, І.А. Загребельний Описано методи дослідження і вивчені основні характеристики генерованих коливань. Вивчєно плазму розряду, ініційованого мікрохвильовим випромінюванням зі стохастичними стрибками фази (MХВССФ) у коаксіальному хвилеводі в оптимальному режимі роботи пучково-плазмового генератора. Знайдено параме- три плазми мікрохвильового розряду при його стабільному підтриманні в повітрі МХВССФ та діапазон тис- ків, при якому споживана потужність мінімальна. Експериментально досліджено також оптичні характерис- тики плазми розряду в широкому діапазоні тисків повітря.