Ion microbeam formation for study of radiationinduced segregation at grain boundaries in construction materials

The approaches for creating focused ion beams with a high current density and near-uniform current distribution in a spot, that allows an uniform dose for further micro irradiation technique, were considered. A numerical simulation of the microbeam formation was performed taking into account the eff...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Romanenko, A.V., Ponomarov, A.A., Ponomarev, A.G.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/112202
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Ion microbeam formation for study of radiationinduced segregation at grain boundaries in construction materials / A.V. Romanenko, A.A. Ponomarov, A.G. Ponomarev // Вопросы атомной науки и техники. — 2015. — № 4. — С. 338-341. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112202
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1122022025-02-09T22:19:24Z Ion microbeam formation for study of radiationinduced segregation at grain boundaries in construction materials Формування іонного мікрозондa для дослідження радіаційно-стимульованої сегрегації на границях зерен у конструкційних матеріалах Формирование ионного микрозонда для исследования радиационно-стимулированной сегрегации на границах зерен в конструкционных материалах Romanenko, A.V. Ponomarov, A.A. Ponomarev, A.G. Приложения и технологии The approaches for creating focused ion beams with a high current density and near-uniform current distribution in a spot, that allows an uniform dose for further micro irradiation technique, were considered. A numerical simulation of the microbeam formation was performed taking into account the effect of nonuniform distribution of the ion beam. The calculation method for a deconvolution of the beam brightness distribution parameters was improved. Experiments to verify theoretical calculations were performed. Розглянуто спосіб формування сфокусованого іонного пучка з великою густиною струму і з розподілом струму в плямі, що близький до рівномірного, з метою внесення рівномірної дози при мікроопроміненні. Проведено чисельні розрахунки з формування мікрозонда з урахуванням впливу нерівномірного розподілу іонів у пучку. Поліпшено чисельний метод, який дозволяє відновлювати параметри розподілу яскравості пучка. Проведено експериментальні роботи для верифікації теоретичних розрахунків. Рассмотрен способ формирования сфокусированного ионного пучка с высокой плотностью тока и с распределением тока в пятне, близким к равномерному, с целью внесения равномерной дозы при микрооблучении. Проведены численные расчеты по формированию микрозонда с учетом влияния неравномерного распределения ионов в пучке. Улучшен численный метод, позволяющий восстанавливать параметры распределения яркости пучка. Проведены экспериментальные работы для верификации теоретических расчетов. This work is performed with the support of the task program of scientific research of department of nuclear physics and energy of NAS of Ukraine “Development of perspective areas of fundamental research in nuclear, radiation physics and nuclear energy” (State egistration № 0111U10610). 2015 Article Ion microbeam formation for study of radiationinduced segregation at grain boundaries in construction materials / A.V. Romanenko, A.A. Ponomarov, A.G. Ponomarev // Вопросы атомной науки и техники. — 2015. — № 4. — С. 338-341. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 29.17.-q https://nasplib.isofts.kiev.ua/handle/123456789/112202 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Приложения и технологии
Приложения и технологии
spellingShingle Приложения и технологии
Приложения и технологии
Romanenko, A.V.
Ponomarov, A.A.
Ponomarev, A.G.
Ion microbeam formation for study of radiationinduced segregation at grain boundaries in construction materials
Вопросы атомной науки и техники
description The approaches for creating focused ion beams with a high current density and near-uniform current distribution in a spot, that allows an uniform dose for further micro irradiation technique, were considered. A numerical simulation of the microbeam formation was performed taking into account the effect of nonuniform distribution of the ion beam. The calculation method for a deconvolution of the beam brightness distribution parameters was improved. Experiments to verify theoretical calculations were performed.
format Article
author Romanenko, A.V.
Ponomarov, A.A.
Ponomarev, A.G.
author_facet Romanenko, A.V.
Ponomarov, A.A.
Ponomarev, A.G.
author_sort Romanenko, A.V.
title Ion microbeam formation for study of radiationinduced segregation at grain boundaries in construction materials
title_short Ion microbeam formation for study of radiationinduced segregation at grain boundaries in construction materials
title_full Ion microbeam formation for study of radiationinduced segregation at grain boundaries in construction materials
title_fullStr Ion microbeam formation for study of radiationinduced segregation at grain boundaries in construction materials
title_full_unstemmed Ion microbeam formation for study of radiationinduced segregation at grain boundaries in construction materials
title_sort ion microbeam formation for study of radiationinduced segregation at grain boundaries in construction materials
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Приложения и технологии
url https://nasplib.isofts.kiev.ua/handle/123456789/112202
citation_txt Ion microbeam formation for study of radiationinduced segregation at grain boundaries in construction materials / A.V. Romanenko, A.A. Ponomarov, A.G. Ponomarev // Вопросы атомной науки и техники. — 2015. — № 4. — С. 338-341. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT romanenkoav ionmicrobeamformationforstudyofradiationinducedsegregationatgrainboundariesinconstructionmaterials
AT ponomarovaa ionmicrobeamformationforstudyofradiationinducedsegregationatgrainboundariesinconstructionmaterials
AT ponomarevag ionmicrobeamformationforstudyofradiationinducedsegregationatgrainboundariesinconstructionmaterials
AT romanenkoav formuvannâíonnogomíkrozondadlâdoslídžennâradíacíinostimulʹovanoísegregacíínagranicâhzerenukonstrukcíinihmateríalah
AT ponomarovaa formuvannâíonnogomíkrozondadlâdoslídžennâradíacíinostimulʹovanoísegregacíínagranicâhzerenukonstrukcíinihmateríalah
AT ponomarevag formuvannâíonnogomíkrozondadlâdoslídžennâradíacíinostimulʹovanoísegregacíínagranicâhzerenukonstrukcíinihmateríalah
AT romanenkoav formirovanieionnogomikrozondadlâissledovaniâradiacionnostimulirovannoisegregaciinagranicahzerenvkonstrukcionnyhmaterialah
AT ponomarovaa formirovanieionnogomikrozondadlâissledovaniâradiacionnostimulirovannoisegregaciinagranicahzerenvkonstrukcionnyhmaterialah
AT ponomarevag formirovanieionnogomikrozondadlâissledovaniâradiacionnostimulirovannoisegregaciinagranicahzerenvkonstrukcionnyhmaterialah
first_indexed 2025-12-01T08:38:21Z
last_indexed 2025-12-01T08:38:21Z
_version_ 1850294458308886528
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 338 ION MICROBEAM FORMATION FOR STUDY OF RADIATION- INDUCED SEGREGATION AT GRAIN BOUNDARIES IN CONSTRUCTION MATERIALS A.V. Romanenko, A.A. Ponomarov, A.G. Ponomarev Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine E-mail: romanenko@ipflab.sumy.ua The approaches for creating focused ion beams with a high current density and near-uniform current distribution in a spot, that allows an uniform dose for further micro irradiation technique, were considered. A numerical simula- tion of the microbeam formation was performed taking into account the effect of nonuniform distribution of the ion beam. The calculation method for a deconvolution of the beam brightness distribution parameters was improved. Experiments to verify theoretical calculations were performed. PACS: 29.17.-q INTRODUCTION Electrostatic accelerators are widely used in studies of material behavior under strong irradiation damages [1, 2]. Ion irradiation is highly relevant to simulate a neutron irradiation [3]. The main advantage of the neu- tron damage simulation by means of the ion irradiation consists in a fast dose rate production (100 dpa in a few hours for megaelectronvolt heavy ions). To decrease an irradiation time it is necessary to increase a current den- sity of ion beam. Focusing systems based on magnetic quadrupole lenses (MQL) can increase the current den- sity by three orders of magnitude [4]. Generally, a pro- file of focused beam in the target plane has a Gaussian shape [5]. Therefore, the scanning procedure is neces- sary to get a region with a uniform dose distribution over the entire area of irradiation that leads to a decrease of effective dose of irradiation. One of the tasks that require irradiation of mi- croareas is an investigation of impurity segregation on grain boundaries under irradiation (Fig. 1) [6]. Possibil- ity to irradiate a single selected grain provides a study- ing of segregation impurity and their moving along the grain boundary from the irradiated grain to non- irradiated one. Nuclear scanning microprobe is a unique tool for carrying out such experiments. It provides ion beams with high current density and permits to obtain a map of element distribution using the micro-PIXE tech- nique. Fig. 1. Micrograph of type 304 austenitic stainless steel [6], model of ion beam microirradiation Constant environmental conditions (vacuum) during irradiation and microanalysis, segregation formation analysis depending on irradiation dose at the early stage are ones of advantages of the nuclear microprobe appli- cation for these tasks. Introduction of the uniform dose is one of the main requirements for the irradiation. Therefore, creating the focused ion beams with uniform distribution in a spot is an actual problem that consists of two tasks. The first one is to define a charged particles distribution in the phase volume occupied by the beam at the entrance to a probe forming system (PFS). The sec- ond task is to find the conditions for beam formation on the target with uniform current density distribution. The present work is devoted to a solution of these tasks. 1. DECONVOLUTION OF THE BEAM BRIGHTNESS DISTRIBUTION PARAMETERS AT THE ENTRANCE TO PROBE-FORMING SYSTEM A method of the deconvolution of the beam bright- ness distribution parameters at the entrance to PFS based on the beam current distribution measurements was described in details in [4]. It was used to study an effect of a beam particles distribution on the microprobe resolution. Proposed method is applied for obtaining the brightness distribution in a small paraxial region. It as- sumes an overlapping of independently movable slit jaws of collimators relative to the geometrical axis, when a displacement of jaws can take on a negative value (the minimum values of -60 µm were used in work [4] to study a central part of the beam with the 200×200 µm size). However, a conventional design of the collimators doesn’t ensure the required overlapping for measuring the overall beam region. Therefore, the earlier developed method was modified in this work. Fig. 2. Scheme of current beam distribution measure- ment in the plane xOy at the microprobe channel Measurements were carried out at the IAP’s “SOKOL” electrostatic accelerator of the Van de Graaff type for a 1 MeV proton beam [7]. Fig. 2 shows a sche- ISSN 1562-6016. ВАНТ. 2015. №4(98) 339 matic arrangement of the object and angular collimators for the beam current distribution measurements. Both collimators are designed as two mutually perpendicular slits. At first, the collimators were positioned with some error with respect to the beam axis by measuring the maximum current for the collimator window dimensions of 100×100 µm. The direct current measurements were performed using a current integrator. The charged particles in most plasma ion sources have Maxwellian velocity distribution. In this case the particle phase density follows normal distribution. Since ion sources and electrostatic accelerators are axially symmetric, and the beam transportation optics has a very low level of aberrations, the brightness distri- bution in the four-dimensional phase space (x, y, x', y') can be represented as a product of two distributions in (x, x') and (y, y') planes b(x, y, x´, y´) = b0·bx(x, x´)·by(y, y´), (1) where 2 0 τ 2 2 τ τ 2 0 0 0 τ 2 τ ( )1( , ) exp 2(1 κ σ ( )( ) ( )2κ ; σ σ σ b ) τ τ τ ττ τ τ τ τ τ τ τ ′ ′   −′ = − − −  ′ ′ ′ ′− − − − +   τ = (x, y); b0 is the axial brightness; τ0, τ′0 are the colli- mator positioning errors; στ, στ′ are the standard devia- tions; κτ is a correlation coefficient between τ and τ′; b0, τ0 ,τ′0, στ, στ′, κτ, (τ = (x, y)) are the beam brightness dis- tribution parameters deconvolved from beam current measurements. The beam current that passed through the object and the angular collimators with the window dimensions presented in Fig. 2 is ∫ ∫ − − ⋅⋅⋅=Ω i i j j x x AX AX xxxijx ddb 2 1 2 1 )μ( )μ( , μν)ν ,( α)( µa , (2) where ax={αx, σx, x0, σ’x’, x’0, кx} is a vector of decon- volved parameters of the beam brightness distribution in the phase plane (x, x'); x1i, x2i are coordinates of the left and right jaws of the vertical slit of the object collimator respectively; Х1j, Х2j are coordinates of the left and right jaws of the vertical slit of the angular collimator respec- tively, ∫ ∫ − − −− ⋅⋅⋅= y y y y r r AR AR yx ddbb )( )( 0 ),( α µ µ µννµ is a normalization factor, ry = 500 µm, Ry = 500 µm; ry are constant coordi- nates of top and button jaws of the horizontal slit of the object collimator; Ry are constant coordinates of top and button jaws of the horizontal slit of the angular collima- tor; A is the distance between the object and the angular collimators; μ, ν are the integration parameters corre- sponding to the linear and angular phase coordinates respectively. For measuring the current distribution in the y direc- tion, one has to make the x↔y substitution in the ex- pression (2). In relation (2) quantity Ωx,ij(аx) determines a beam current passed through four-dimensional phase window which is predetermined by positions of the ob- ject and angular collimator jaws. The parameters’ vector аx is determined by Levenberg-Marquradt’s fitting method as a result of misalignment minimization ∑ =         ∆ Ω− = ),( 1),( 2 , ,,2 )( )(χ xx NM ji ijx xijxijx x I a a , (3) where аx is the parameters’ vector corresponded to the minimum of function )(χ 2 xa ; Ix,ij is the measured value of the beam current for a given four-dimensional phase window which is predetermined by jaws’ positions x1i, x2i, Х1j, Х2j, ry, Ry; Δx,ij is an error of the beam current measurement; Mx, Nx are numbers of window variations of the object and angular collimators. After the distribution parameters σx, x0, σx’, x’0, кx, σy, y0, σy’, y’0, кy were determined, the value of the axial brightness for each of the four-dimensional phase win- dow was defined by the relations .),( ),( ,),( ),( )μ( )μ( )μ( )μ( ,,0 )μ( )μ( )μ( )μ( ,,0 2 1 2 1 2 1 2 1     ⋅⋅×      ×⋅⋅=      ⋅⋅×      ×⋅⋅= ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ − − +− − + − − +− − + x x x x i i j j y y y y i i j j r r AR AR x y y AY AY yijyijy r r AR AR y x x AX AX xijxijx ddb ddbIb ddb ddbIb µννµ µννµ µννµ µννµ (4) The beam current in the electrostatic accelerator has temporal and spatial instability. The current instability of "SOKOL" accelerator is at the level of 16%. There- fore, the axial brightness is determined with an error in the form of rmsbbb 000 ∆±= , (5) where 0b is an average brightness value for the sum of window sizes calculated according to (4), Δb0rms is the standard deviation. At the beginning, the maximum value of coordinates of the slit jaws was set at the level of 500 μm, i.e. the sizes of the both collimators were 1 mm. Then, the sizes of the object collimator x11=500, x21=0 were set, and the current was measured at the every step of size changing of angular collimator slits. The slit step size was 200 μm. The set was as follows: X11=500 X21=0; X12=300 X22=0; X13=100 X23=100; X14=0 X24=300; X15=0 X25=500. After that the slit size of the object collimator was changed by 200 μm and the current was measured for the same set of angular collimator. The size set for the object collimator was similar one as for the angular collimator. Thus, at the end of the measurements we have obtained the current’s matrix with dimension of Mx=5, Nx=5. A similar procedure was carried out for horizontal slits. The obtained results are: b0=(6.7±1.1) pA/(μm2·mrad2); σх = 621 μm; хo = -49 μm; σх′ = 0.088 mrad; х′o = -0.016 mrad; κx = -0.4; σy = 667 μm; yo = -11 μm; σy′ = 0.098 mrad; y′o = 0.001 mrad; κy = -0.9. ISSN 1562-6016. ВАНТ. 2015. №4(98) 340 2. BEAM FOCUSING SIMULATION Formation of beams with a near-rectangular profile of current density distribution at the target is possible on condition that the ratio IFWHM/I0 is not less than 90%, where IFWHM is a current at a region of full width at half maximum (FWHM) in the beam profile, I0 is the total beam current at the target. Therefore, searching of ob- ject and angular collimators sizes which provide IFWHM/I0 > 90% condition was the aim of the calcula- tions. Simulation is based on a method of transportation 107 particles randomly distributed in the initial phase space [8]. In the present work we took into account the nonuniform distribution of particles at the PFS entrance (obtained in the previous section). The calculations were performed for 1 MeV proton beam with the maximum energy spread δmax=10-3. The focusing system is four quadrupole lenses powered as a separated "Russian quadruplet" and has demagnification factor of 23×23 and working distance of 24 cm. The total beam current over the range from 10 to 100 nA at the target was con- sidered. As a result, the values for collimators whereby current density distribution is close to rectangular were determined (Fig. 3). Fig. 3. Current density distribution at the target. Ratio IFWHM to I0 is 95%, I0 = 40 nA The direct on-line measurement of distribution pro- file is difficult to perform in practice. That is why we analyzed it by registration of secondary electron emis- sion (SEE) during scanning of semi-infinite plates in two directions traverse to the beam (Fig. 5,a). In order to analyze experimental results we had to compare them with theoretical ones. A simple program code was used to obtain a theoretical profile of SEE and to modulate a scanning procedure of a semi-infinite plate edge with specified current density distribution [9]. 3. EXPERIMENTAL The measurements were performed in a nuclear scanning microprobe using a proton beam with the ion energy 1 MeV. At the beginning, exact focusing of the beam was performed by scanning the probe over a cali- brated micrometric square copper mesh to obtain a stigmatic focusing. In this case, beam profile was repre- sented by Gaussian shape. The target was replaced by two crossed blades. Scan was carried out in the square region which includes crossing point of blades. A yield of secondary electrons was registered by SEE detector. Scheme of the experiment is represented in Fig. 4. Fig. 5,a shows the SEE map of these blades. Bright col- our of edges is caused by additional SEE from edges (Fig. 6). Then we set up theoretical calculated values of collimators to obtain a uniform distribution of the cur- rent density at the target. At the final, the edges of blades were scanned and values for SEE profiles were obtained and compared to theoretical ones (Fig. 5,b,c). Fig. 4. Scheme of the experimental scanning of two crossed blades by 1 MeV focused proton beam. Dash line shows the region that corresponds to Fig. 5,a a b c Fig. 5. Edges of the blades. а) SEE map. Lines show scanning directions. Comparison of theoretical (solid line) and experimental (dash line) SEE profiles for X (b) and Y (c) directions. Beam current was 40 nA As can be seen, theoretical and experimental SEE profiles are in good agreement at their central part. The difference at the beginning and at the end of the shapes is caused by non-rectangular shape of the sample edges. SEE profiles strongly depend on shape of the sample (see Fig. 6). ISSN 1562-6016. ВАНТ. 2015. №4(98) 341 Fig. 6. Effect of a sample edge on the SEE profile for a beam with IFWHM/I0= 100% For the better agreement on the sides it is necessary to put into the program the exact shape of the sample (with μm-level precision). Stray magnetic fields may have also influenced the experimental results. CONCLUSIONS The method of reconstruction of the beam brightness distribution in the object collimator plane was im- proved. New modified method enables to measure beam with maximum size which is only limited by the open- ing size of collimators. This is very important taking into account design of the collimators. This method al- lows deconvolution of the beam brightness distribution in full phase volume occupied by the beam. Numerical simulations have shown feasibility of for- mation of ion beams with current density distribution close to rectangular. The performed experimental work con- firmed the theoretical results. Some differences between theoretical and experimental results are caused by differ- ence between edges of the real sample and its model. ACKNOWLEDGEMENTS This work is performed with the support of the task program of scientific research of department of nuclear physics and energy of NAS of Ukraine “Development of perspective areas of fundamental research in nuclear, radiation physics and nuclear energy” (State registration № 0111U10610). REFERENCES 1. I.M. Nekluydov, B.V. Boris, V.V. Gan, G.D. Tol- stolutskay. Methodology of the radiation damage simulation of the solar battery converters by electron and proton accelerators // Problems of Atomic Sci- ence and Technology. Series «Physics of Radiation Effect and Radiation Materials Science» (83). 2003, v. 3, p. 62-65. 2. .V. Permyakov, V.V. Mel’nichenko, V.V. Bryk, V.N. Voyevodin, Yu.E. Kupriyanova. Facility for modeling the interactions effects of neutrons fluxes with materials of nuclear reactors // Problems of Atomic Science and Technology. Series «Physics of Radiation Effect and Radiation Materials Science» (90). 2014, v. 2, p. 180-186. 3. C. Abromeit. Aspects of simulation of neutron dam- age by ion irradiation // Journal of Nuclear Materi- als. 1994, v. 216, p. 78-96. 4. A.A. Ponomarov, V.I. Miroshnichenko, A.G. Ponomarev. Influence of the beam current density distribution on the spatial resolution of a nuclear mi- croprobe // Nucl. Instr. and Meth. in Phys. Res. B. 2009, v. 267, p. 2041-2045. 5. C.N.B. Udalagama, A.A. Bettiol, J.A. van Kan, E.J. Teo, F. Watt. The rapid secondary electron im- aging system of the proton beam writer at CIBA // Nucl. Instr. and Meth. B. 2007, v. 260, p. 390-395. 6. Parag Ahmedabadi, V. Kain, K. Arora, I. Samajdar, S.C. Sharma, P. Bhagwat. Radiation-induced segre- gation in desensitized type 304 austenitic stainless steel // Journal of Nuclear Materials. 2011, v. 416, p. 335-344. 7. V.E. Storizhko, A.G. Ponomarev, V.A. Rebrov, A.I. Chemeris, A.A. Drozdenko, A.B. Dudnik, V.I. Miroshnichenko, N.A. Sayko, P.A. Pavlenko, L.P. Peleshuk. The Sumy scanning nuclear micro- probe: Design features and first tests // Nucl. Instr. and Meth. in Phys. Res. B. 2007, v. 260, p. 49-54. 8. A.G. Ponomarev, V.I. Miroshnichenko, V.E. Storizhko. Optimum collimator shape and maximum emittance for submicron focusing of ion beams. Determination of the probe-forming system resolution limit // Nucl. Instr. and Meth. A. 2003, v. 506, p. 20-25. 9. D.V. Magilin, A.G. Ponomarev, V.A. Rebrov, N.A. Sayko, K.I. Melnik, V.I. Miroshnichenko, V.Y. Storizhko. Performance of the Sumy nuclear microprobe with the integrated probe-forming sys- tem // Nucl. Instr. and Meth. in Phys. Res. B. 2009, v. 267, p. 2046-2049. Article received 30.04.2015 ФОРМИРОВАНИЕ ИОННОГО МИКРОЗОНДА ДЛЯ ИССЛЕДОВАНИЯ РАДИАЦИОННО- СТИМУЛИРОВАННОЙ СЕГРЕГАЦИИ НА ГРАНИЦАХ ЗЕРЕН В КОНСТРУКЦИОННЫХ МАТЕРИАЛАХ А.В. Романенко, А.А. Пономарёв, А.Г. Пономарёв Рассмотрен способ формирования сфокусированного ионного пучка с высокой плотностью тока и с распределением тока в пятне, близким к равномерному, с целью внесения равномерной дозы при микрооблучении. Проведены числен- ные расчеты по формированию микрозонда с учетом влияния неравномерного распределения ионов в пучке. Улучшен численный метод, позволяющий восстанавливать параметры распределения яркости пучка. Проведены эксперименталь- ные работы для верификации теоретических расчетов. ФОРМУВАННЯ ІОННОГО МІКРОЗОНДA ДЛЯ ДОСЛІДЖЕННЯ РАДІАЦІЙНО-СТИМУЛЬОВАНОЇ СЕГРЕГАЦІЇ НА ГРАНИЦЯХ ЗЕРЕН У КОНСТРУКЦІЙНИХ МАТЕРІАЛАХ О.В. Романенко, А.О. Пономарьов, О.Г. Пономарьов Розглянуто спосіб формування сфокусованого іонного пучка з великою густиною струму і з розподілом струму в плямі, що близький до рівномірного, з метою внесення рівномірної дози при мікроопроміненні. Проведено чисельні розрахунки з формування мікрозонда з урахуванням впливу нерівномірного розподілу іонів у пучку. Поліпшено чисель- ний метод, який дозволяє відновлювати параметри розподілу яскравості пучка. Проведено експериментальні роботи для верифікації теоретичних розрахунків. http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2014_2.html http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2014_2.html http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2014_2.html http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2014_2.html INTRODUCTION 1. DECONVOLUTION OF THE BEAM BRIGHTNESS DISTRIBUTION PARAMETERS AT THE ENTRANCE TO PROBE-FORMING SYSTEM 2. BEAM FOCUSING SIMULATION 3. EXPERIMENTAL CONCLUSIONS ACKNOWLEDGEMENTS REFERENCES ФОРМИРОВАНИЕ ИОННОГО МИКРОЗОНДА ДЛЯ ИССЛЕДОВАНИЯ РАДИАЦИОННО-СТИМУЛИРОВАННОЙ СЕГРЕГАЦИИ НА ГРАНИЦАХ ЗЕРЕН В КОНСТРУКЦИОННЫХ МАТЕРИАЛАХ ФОРМУВАННЯ ІОННОГО МІКРОЗОНДA ДЛЯ ДОСЛІДЖЕННЯ РАДІАЦІЙНО-СТИМУЛЬОВАНОЇ СЕГРЕГАЦІЇ НА ГРАНИЦЯХ ЗЕРЕН У КОНСТРУКЦІЙНИХ МАТЕРІАЛАХ