Aluminum surface coating of copper using highcurrent electron beam

High-current electron beam irradiation has been applied for surface coating of copper with aluminum in ablative mode at the TEMP-A accelerator with energy of 350 keV, pulse length of 5 μs, and fluence 10…200 J/cm2. The aluminum-rich surface layer with average thickness around 25 μm, microhardness of...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2015
Автори: Donets, S.E., Klepikov, V.F., Lytvynenko, V.V., Lonin, Yu.F., Ponomarev, A.G., Starovoytov, R.I., Startsev, O.A., Uvarov, V.T.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/112210
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Aluminum surface coating of copper using highcurrent electron beam / S.E. Donets, V.F. Klepikov, V.V. Lytvynenko, Yu.F. Lonin, A.G. Ponomarev, R.I. Starovoytov, O.A. Startsev, V.T. Uvarov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 302-305. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112210
record_format dspace
spelling Donets, S.E.
Klepikov, V.F.
Lytvynenko, V.V.
Lonin, Yu.F.
Ponomarev, A.G.
Starovoytov, R.I.
Startsev, O.A.
Uvarov, V.T.
2017-01-18T19:31:50Z
2017-01-18T19:31:50Z
2015
Aluminum surface coating of copper using highcurrent electron beam / S.E. Donets, V.F. Klepikov, V.V. Lytvynenko, Yu.F. Lonin, A.G. Ponomarev, R.I. Starovoytov, O.A. Startsev, V.T. Uvarov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 302-305. — Бібліогр.: 7 назв. — англ.
1562-6016
PACS: 61.80.Fe, 81.40.Wx
https://nasplib.isofts.kiev.ua/handle/123456789/112210
High-current electron beam irradiation has been applied for surface coating of copper with aluminum in ablative mode at the TEMP-A accelerator with energy of 350 keV, pulse length of 5 μs, and fluence 10…200 J/cm2. The aluminum-rich surface layer with average thickness around 25 μm, microhardness of 6.7 GPa and elasticity modulus of 122 GPa was formed on the copper template.
Опромінення сильнострумовим електронним пучком застосовано для поверхневого нанесення алюмінію на мідь в абляційному режимі на прискорювачі ТЕМП-А з енергією 350 кеВ, тривалістю імпульсу 5 мкс, і флюенсом 10…200 Дж/cм2. На мідній підкладці сформувався поверхневий шар, збагачений алюмінієм, з середньою товщиною 25 мкм, мікротвердістю 6,7 ГПа і модулем пружності 122 ГПa.
Облучение сильноточным электронным пучком применено для поверхностного нанесения алюминия на медь в абляционном режиме на ускорителе ТЕМП-А с энергией 350 кэВ, длительностью импульса 5 мкс и флюенсом 10…200 Дж/см2. На медной подложке сформировался поверхностный слой, обогащённый алюминием, со средней толщиной 25 мкм, микротвёрдостью 6,7 ГПа и модулем упругости 122 ГПа.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Приложения и технологии
Aluminum surface coating of copper using highcurrent electron beam
Поверхневе нанесення алюмінію на мідь з використанням сильнострумового електронного пучка
Поверхностное нанесение алюминия на медь с применением сильноточного электронного пучка
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Aluminum surface coating of copper using highcurrent electron beam
spellingShingle Aluminum surface coating of copper using highcurrent electron beam
Donets, S.E.
Klepikov, V.F.
Lytvynenko, V.V.
Lonin, Yu.F.
Ponomarev, A.G.
Starovoytov, R.I.
Startsev, O.A.
Uvarov, V.T.
Приложения и технологии
title_short Aluminum surface coating of copper using highcurrent electron beam
title_full Aluminum surface coating of copper using highcurrent electron beam
title_fullStr Aluminum surface coating of copper using highcurrent electron beam
title_full_unstemmed Aluminum surface coating of copper using highcurrent electron beam
title_sort aluminum surface coating of copper using highcurrent electron beam
author Donets, S.E.
Klepikov, V.F.
Lytvynenko, V.V.
Lonin, Yu.F.
Ponomarev, A.G.
Starovoytov, R.I.
Startsev, O.A.
Uvarov, V.T.
author_facet Donets, S.E.
Klepikov, V.F.
Lytvynenko, V.V.
Lonin, Yu.F.
Ponomarev, A.G.
Starovoytov, R.I.
Startsev, O.A.
Uvarov, V.T.
topic Приложения и технологии
topic_facet Приложения и технологии
publishDate 2015
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Поверхневе нанесення алюмінію на мідь з використанням сильнострумового електронного пучка
Поверхностное нанесение алюминия на медь с применением сильноточного электронного пучка
description High-current electron beam irradiation has been applied for surface coating of copper with aluminum in ablative mode at the TEMP-A accelerator with energy of 350 keV, pulse length of 5 μs, and fluence 10…200 J/cm2. The aluminum-rich surface layer with average thickness around 25 μm, microhardness of 6.7 GPa and elasticity modulus of 122 GPa was formed on the copper template. Опромінення сильнострумовим електронним пучком застосовано для поверхневого нанесення алюмінію на мідь в абляційному режимі на прискорювачі ТЕМП-А з енергією 350 кеВ, тривалістю імпульсу 5 мкс, і флюенсом 10…200 Дж/cм2. На мідній підкладці сформувався поверхневий шар, збагачений алюмінієм, з середньою товщиною 25 мкм, мікротвердістю 6,7 ГПа і модулем пружності 122 ГПa. Облучение сильноточным электронным пучком применено для поверхностного нанесения алюминия на медь в абляционном режиме на ускорителе ТЕМП-А с энергией 350 кэВ, длительностью импульса 5 мкс и флюенсом 10…200 Дж/см2. На медной подложке сформировался поверхностный слой, обогащённый алюминием, со средней толщиной 25 мкм, микротвёрдостью 6,7 ГПа и модулем упругости 122 ГПа.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/112210
citation_txt Aluminum surface coating of copper using highcurrent electron beam / S.E. Donets, V.F. Klepikov, V.V. Lytvynenko, Yu.F. Lonin, A.G. Ponomarev, R.I. Starovoytov, O.A. Startsev, V.T. Uvarov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 302-305. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT donetsse aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam
AT klepikovvf aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam
AT lytvynenkovv aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam
AT loninyuf aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam
AT ponomarevag aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam
AT starovoytovri aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam
AT startsevoa aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam
AT uvarovvt aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam
AT donetsse poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka
AT klepikovvf poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka
AT lytvynenkovv poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka
AT loninyuf poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka
AT ponomarevag poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka
AT starovoytovri poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka
AT startsevoa poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka
AT uvarovvt poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka
AT donetsse poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka
AT klepikovvf poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka
AT lytvynenkovv poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka
AT loninyuf poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka
AT ponomarevag poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka
AT starovoytovri poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka
AT startsevoa poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka
AT uvarovvt poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka
first_indexed 2025-11-26T14:19:29Z
last_indexed 2025-11-26T14:19:29Z
_version_ 1850626118931972096
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 302 ALUMINUM SURFACE COATING OF COPPER USING HIGH- CURRENT ELECTRON BEAM S.E. Donets1, V.F. Klepikov1, V.V. Lytvynenko1, Yu.F. Lonin2, A.G. Ponomarev2, R.I. Starovoytov3, O.A. Startsev1, V.T. Uvarov2 1Institute of Electrophysics and Radiation Technologies, Kharkov, Ukraine; 2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 3V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: startsev-alex@ukr.net High-current electron beam irradiation has been applied for surface coating of copper with aluminum in ablative mode at the TEMP-A accelerator with energy of 350 keV, pulse length of 5 μs, and fluence 10…200 J/cm2. The aluminum-rich surface layer with average thickness around 25 µm, microhardness of 6.7 GPa and elasticity modulus of 122 GPa was formed on the copper template. PACS: 61.80.Fe, 81.40.Wx INTRODUCTION The high-current electron beams (HCEB) are less known as a technique for modification and testing of materials compared to the laser sources due to techno- logical complexity of the e-beam facilities, radiation protection, etc. Nevertheless, there were numerous in- vestigations on irradiation of solids by HCEB [1, 2] (and references cited therein). Intense e-beam exposure stimulates proceeding of simultaneous processes such as fast heating, melting, evaporation, ejection of plasma and neutral vapor from the surface, generation of de- formations and high dynamic stresses in the solid medi- um, etc [3 - 7]. In fact, the variety of these processes, called ablative processes, is defined by the electron en- ergy, specific beam power, impulse duration, and de- pend on the material characteristics. The induced fast heating and cooling rates, high stresses lead to signifi- cant changes in structural-phase state of the subsurface layers, modification of the structure-dependent proper- ties of different materials as described in [4, 6, 7]. In this paper, we only deal with the microsecond pulses [6] of e-beams, so, duration of exposure is far bigger than the characteristic electron-phonon relaxation time for the target medium. We operate with e-beams in nearly relativistic range (~0.35 MeV) in ablation mode, that enables deeper penetration of electrons into the bulk of material and provokes explosive melting with liquid splashing. It should be noted, that the low-energy e- beams have relatively shallow impact on the material surface, that is why they are usually replaced by the laser sources for such purpose. Microsecond e-beam pulses are the effective tech- nique for generating the directed vapor and liquid flaws as well as the bulk material fusing, thus creating new opportunities for the HCEB-assisted coating technolo- gies. The existing ones can be classified into two major types according to distance between the materials for deposition and the processing surface: (i) remote and (ii) nearby-placed (i.e. precoating before the following e- beam treatment). Another way to divide the methods based on the characteristics of physical processes during the HCEB-impact: (i) rapid melting and solidification, (ii) surface alloying of coatings into the bulk, (iii) sur- face fusing of coatings to the bulk [1]. The recent exper- imental studies in the same vein are presented by Wei- senburger et al. in [1]. They have shown practical per- spectiveness of the surface alloying and surface fusing methods for coating of the cladding tubes to prevent corrosion. According to [1], coatings previously depos- ited or foils placed on the material's surface (T91 ferritic and 316L austenitic steels) are melted together by the impinging 120-keV electron beam with an energy densi- ty of 30…50 J/cm2, and those efficiently reduce oxida- tion and corrosion rates in liquid lead alloys. Some efforts have been made on the experimental investigation of the HCEB modification of material's bulk [4, 6], gas-plasma cloud generation [3], and the rapid solidification coating [7] by our team. The radia- tion-thermal strengthening after HCEB exposure was observed in [4]. In other work [6], aluminum, titanium as well as stainless steel were deposited on the cold copper templates to gain better understanding about remote surface coating using HCEBs. The targets for deposition were placed at some distance apart sample surfaces, which, in their turn, were not subjected to e- beam irradiation. It was noticed, that coatings, obtained using such method, are nonuniform and rough due to hydrodynamic instability of melted metal during its transport to template, but their hardness increased com- pared to the similar coatings got using conventional methods. However, both the literature and our previous re- search represent none efforts about surface coating of activated template, when the combined effect of materi- al deposition from target and activation of template's surface is achieved simultaneously by one e-beam shot. Thus, the main purpose of this study is to investigate the general specifics of such coating under exposure by the microsecond HCEB at the TEMP-A pulsed electron beam accelerator facility [6]. As the candidate materials for such research, we have chosen the previously stud- ied [6] couple: aluminum for the deposition target and cooper for the template. Both of them were subjected to the HCEB impact, but with different fluences. The strat- egy was to irradiate the aluminum plate in the intense ablative mode to generate damage products enough for deposition on the copper foil, which was thermally acti- vated by the tangent impact of the e-beam, impinging at low angle to the copper surface (Fig. 1) significantly decreasing fluence. The most important is to find exper- imentally advantages provided by the proposed method ISSN 1562-6016. ВАНТ. 2015. №4(98) 303 in contrast to the remote surface coating method on cold template, studied previously [6]. 1. MATERIALS AND METHODS A plate of technically pure Al (99.5 %wt.) and a copper template (Cu 99.9 %wt.) were irradiated at the TEMP-A pulsed e-beam accelerator [6], located in the NSC Kharkiv Institute of Physics and Technology. The beam’s parameters were the following: the current of 2 kA, electron energy ~ 0.35 MeV, impulse duration τp ~ 5 µs. One-impulse irradiation was conducted under the pressure of about 10-5 Torr. The thickness of the Al- plate and copper template were 2 mm and 200 µm re- spectively. The Gaussian-shaped solid cross-sectional beam had a diameter ~ 40 mm and a full-width half- maximum (FWHM) of about 10 mm. The complex tar- get was irradiated normally to the collector surface that means the copper template was subjected to sliding irra- diation with the energy fluence in the range of 10 to 40 J/cm2, and the Al-plate was irradiated normally in order to provide the maximal incident energy density around 200 J/cm2. The main part of the Al-plate (Fig. 1) was fixed on the accelerator collector perpendicularly to the incident e-beam, and its other bended part served as a holder for the Cu-template, which was initially in- clined at β ~ 40° to the e-beam axis with one free side directing towards the collector (see Fig. 1). The bended part of Al-plate was inclined at α ~ 30° to the e-beam axis. Such construction enables thermal activation of the copper template, condensation of the dense plasma cloud and liquid splash on its surface, as well as pre- vents it from destruction. The specimens for metallography, fractography and hardness measurements were taken in the epicenter zone and in the periphery zone of the e-beam impact (Fig. 2). The sectioning of special parts was performed by means of shears. The fractionation was done by manual tensile bending rupture at the room temperature. Fig. 1. Schematic view of the prepared target: 1 – collector; 2 – Al-plate; 3 – Cu-template; 4 – strong fixation of template to Al-plate; 5 – free side of template Preliminary visual and morphological analysis of the irradiated copper foil and its cross-fractures was per- formed using the light microscope Bresser BioLux NV. Fractographic and energy-dispersive X-ray spectroscop- ic analyzes of the cross-fractures were conducted using the scanning electron microscope JEOL JSM-840. Then, the cross-sections were prepared for metallographic and hardness analyzes. The specimens were polished using a micron diamond powder W0-1. To reveal the hardness H50 properties of the copper foil after modification, we used the PMT-3 microhardness testing machine equipped with Berkovich trihedral diamond pyramid with an applied load of 50 kgf. Estimates of the elastic modulus E and nanohardness H of the modified copper template were obtained using the continuous stiffness method on MSSI’s Agilent Nano Indenter G200 by Berkovich indenter to the indentation depth up to 500 nm. The hardness was calculated using the Oliver-Pharr analysis method. After hardness measurements had been performed, metallographic analyses were performed. To detect the microstructure of the material, the chemical etching was carried out using the Kroll’s reagent (2 ml HF, 6 ml HNO3, and 92 ml H2O) at the room tempera- ture; etching time of 45 s. The average grain sizes were measured by chord intercept method. We conduct numerical finite element (FE) modeling (with finite difference (FD) discretization of time opera- tors) of the thermal and stress evolution in the samples to find the corresponding fluences and optimize the modification process. It was performed in 64-bit Ubuntu 15.04 LTS using a C++-like language in the free-source software FreeFem++-3.36. We applied the thermoelastic ablation numerical model, which was previously de- scribed in [4]. The energy deposition profiles and the scattering factors was calculated in Casino 3.2v. 2. RESULTS AND DISCUSSION Fig. 2 shows the copper template with the formed Al-rich coating after the HCEB irradiation. The e-beam heating was intense enough to melt the surface of the copper template and deflect its free side from angle β to α. Some amount of copper was ejected into vacuum and condensed onto the aluminum target. Fig. 2. Surface of Cu-template after the HCEB irradiation The Al-target was exposed to the aforementioned high fluence, which provoked damage with explosive melting accompanied by liquid splash and generation of gas-liquid and plasma cloud. These ablative products also interacted with the ejected material from the tem- plate itself. Almost 30% of ablated aluminum con- densed on the thermally activated copper template. It was easy to notice, that the coating was formed during fast solidification of the droplet-gas cloud, preceded by some mixing with melt on the template. In fact, such ISSN 1562-6016. ВАНТ. 2015. №4(98) 304 construction of the complex target is simple and reliable method to detect expansion of the gas-plasma torch in contrast to the conventional ones [3]. The obtained coat- ing directly replicates the density of the ejected ablative products, preserving the shape of torch. Noteworthy, when the complex target was extracted from the vacuum chamber, the copper template was stranded. While the coating was deposited at an elevated temperature and cooled down rapidly to normal temper- ature, the thermal expansion mismatch between the Al- rich coating and the copper template results in compres- sive residual stress. Fig. 3. Surface of coating on the boundary between smooth epicenter and wavy periphery zones The obtained coating consists of the epicenter zone, where the dense core of the cloud condensed, and the periphery zone. These two characteristic zones are clearly distinguished by the surface roughness (see Figs. 2, 3). The first one has relatively smooth surface in the micrometer scale with few dimples and ridges of (1…5) µm deep. On the “as-fabricated” surface, using optical microscopy and SEM, we noticed a needle-like alignment of surface morphology at low magnification, and dendrite-like character was found at higher magni- fication. The coating on the periphery is very wavy and not solid. It has deep dimples, ridges and voids. SEM analysis showed, that it consists mainly of deformed droplets. Such complicated nonuniform surface was created due to high kinetic energy of the deposited va- por and melt, which had not been accumulated by the copper melt layer on the template. Moreover, the total density of material flux and surface tension were not enough to shrink the gaps between the droplets during fast cooling through thermal conduction to the bulk. Inasmuch as the roughness of the periphery zone surface approximately equals its thickness, so, such coating cannot be considered as functional. Then, the fracture surface morphology was investi- gated (Fig. 4). The nonirradiated copper bulk has long coarse fatigue striations, which were found perpendicu- lar to applied load (e.g. parallel to the surface). They appeared due to tensile bending rupture process. We observed ductile character of fracture at higher magnifi- cation along with limited macroscale brittle. Periodic shear lips were also found. We noticed the transitional layer in the sample between the unmodified copper ma- terial and the Al-enriched coating. Formation of this layer was caused by the tangent e-beam irradiation and further thermal conduction from the hotter coating. It was melted and then resolidified with coating upon it. This heat-affected layer is a mediate between the coat- ing and substrate. Its thickness is around 30 µm. Its rup- ture has relatively flat surface and characterized by brit- tle fracture. Several big cracks directing from the coat- ing to the bulk were observed (see Fig. 4). Their origins begin on the boundary with the coating. Such cracks could be formed when the stranded template was manu- ally expanded for sample preparation, whether it was provoked by the residual stresses. Fig. 4. Fractogram of aluminum coating on the copper template: 1 – coating; 2 – copper template The formed coating (see Figs. 4, 5) is characterized by the rough fracture surface that revealed ductile-brittle fracture mechanism. It has short intergranular branched cracks in preferable vertical direction. We also found a net of parallel cracks inside the coating, especially in the epicenter zone. Worth to mention, they did not cause any significant delamination of the coating from the template. The parallel cracks are considered to be caused by relaxation of compression residual stresses. Interestingly, we noticed some fine debris – particles with linear size of (1…5) µm, and several 5-µm de- formed facets. Fig. 5. Aluminum coating on the copper template Metallographic data revealed the specifics of the coating’s microstructure. In the epicenter zone, its thickness is up to 30, and 20 µm in the periphery. It consists of the large grains with parallel size of (20…40) µm and vertical size of (6…12) µm. Among the boundaries of the large grains, there were found the abovementioned fine debris (their part ratio is around 15%). After deep etching of the samples, a few hidden round voids with size of 5…10 µm were observed in the coating. EDX analysis of the element composition showed, that in the epicenter zone it is around 25%Cu/75%Al (±5%, %wt.), and in the periphery it varies in the range of 25%Cu to 90%Cu. We tested the hardness and elastic modulus for the dense coating at the epicenter zone. It has microhard- ness H50 ~ 6.7 GPa, that equals to its average nanohard- ness H measured experimentally (see Fig. 5), and ISSN 1562-6016. ВАНТ. 2015. №4(98) 305 Young’s modulus E ~ 122 GPa. The transition mediate has H ~ 1.6 GPa and E ~124 GPa, and the nonirradiated copper has 1.4, and 127 GPa, respectively. Thus, the physical and mechanical properties of the obtained coat- ing is significantly higher, than in case of the remote surface coating on cold copper template described in [6], when the microhardness of nonuniform aluminum coating does not exceed H50 max ~ 5.49 GPa. Finally, these results motivate the use of the HCEB- assisted coating method on activated template as it pro- vides good integrity of coating and adhesion to sub- strate. It is proposed, homogenization for elimination of surface roughness and voids can also be achieved through post-treatment with the light HCEB exposure. However, in-depth study about the melt dynamics along with the intense e-beam damage of polycrystalline ma- terials is needed to obtain better practical results. CONCLUSIONS The Al-grade and the Cu-template have been irradi- ated simultaneously by the single HCEB impulse to create the Al-rich coating on the template. The copper template was exposed to the sliding impact, which guar- anteed its thermal activation and light surface melting for further condensation on it of aluminum deposited from the nearby placed target. The condensation of the dense Al-cloud core resulted in formation of the com- pacted Al-Cu layer with smooth surface and good adhe- sion to the bulk material. This coating has hardness around 6.7 GPa and Young’s modulus of 122 GPa. The obtained results have demonstrated, that the proposed coating method with microsecond HCEBs is a promis- ing technique for improvement and protecting of the surface-sensitive physical and mechanical properties. REFERENCES 1. A. Weisenburger, W. An, V. Engelko, A. Heinzel, A. Jianu, F. Lang, G. Mueller, F. Zimmermann. Intense Pulsed Electron Beams Application of Modi-fied Materials // Acta Physica Polonica A. 2009, № 6, v. 115, p. 1053-1055. 2. J. Cai, Le Ji, S.Z. Yang et al. Deformation mechanism and microstructures on polycrystalline aluminum induced by high-current pulsed electron beam // Chin. Sci. Bull. 2013, doi: 10.1007/s11434- 013-5848-5. 3. V.F. Klepikov, V.V. Lytvynenko, et al. Dynamics of the gas-plasma torch formed by the high-current electron beam action on solid targets // Problems of Atomic Science and Technology. Series “Plasma Physics” (15). 2009, № 1, p. 119-121. 4. V.F. Klepikov, Yu.F. Lonin, A.G. Ponomarev, O.A. Startsev, V.T. Uvarov. Physical and mechanical properties of titanium alloy VT1-0 after high-current electron beam irradiation // Problems of Atomic Science and Technology. Series “Physics of Radiation Effect and Radiation Materials Science” (96). 2015, № 2, p. 39-42. 5. V.T. Uvarov, V.T. Uvarov, et al. Radiation acoustic control over the thermal parameter of construction materials irradiated by intense relativistic electron beam // Phys. of Part. and Nucl. Latter. 2014, v. 11, № 3, p. 274-281. 6. A.B. Batracov, M.I. Bazaleev, et al. The particularities of the high current relativistic electron beams influence on construction materials targets // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigation”. 2013, № 6, p. 225-229. 7. V.F. Klepikov, Yu.F. Lonin, et al. The formation of strengthening coats by microsecond duration high- current relativistic electron beam // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigation”. 2008, № 5, p. 91-95. Article received 26.05.2015 ПОВЕРХНОСТНОЕ НАНЕСЕНИЕ АЛЮМИНИЯ НА МЕДЬ С ПРИМЕНЕНИЕМ СИЛЬНОТОЧНОГО ЭЛЕКТРОННОГО ПУЧКА С.Е. Донец, В.Ф. Клепиков, В.В. Литвиненко, Ю.Ф. Лонин, А.Г. Пономарёв, Р.И. Старовойтов, А.A. Старцев, В.Т. Уваров Облучение сильноточным электронным пучком применено для поверхностного нанесения алюминия на медь в абляционном режиме на ускорителе ТЕМП-А с энергией 350 кэВ, длительностью импульса 5 мкс и флюенсом 10…200 Дж/см2. На медной подложке сформировался поверхностный слой, обогащённый алю- минием, со средней толщиной 25 мкм, микротвёрдостью 6,7 ГПа и модулем упругости 122 ГПа. ПОВЕРХНЕВЕ НАНЕСЕННЯ АЛЮМІНІЮ НА МІДЬ З ВИКОРИСТАННЯМ СИЛЬНОСТРУМОВОГО ЕЛЕКТРОННОГО ПУЧКА С.Є. Донець, В.Ф. Клепіков, В.В. Литвиненко, Ю.Ф. Лонін, А.Г. Пономарьов, Р.І. Старовойтов, O.A. Старцев, В.T. Уваров Опромінення сильнострумовим електронним пучком застосовано для поверхневого нанесення алюмінію на мідь в абляційному режимі на прискорювачі ТЕМП-А з енергією 350 кеВ, тривалістю імпульсу 5 мкс, і флюенсом 10…200 Дж/cм2. На мідній підкладці сформувався поверхневий шар, збагачений алюмінієм, з середньою товщиною 25 мкм, мікротвердістю 6,7 ГПа і модулем пружності 122 ГПa. Introduction 1. Materials and methods 2. Results and Discussion Conclusions references ПОВЕРХНОСТНОЕ НАНЕСЕНИЕ АЛЮМИНИЯ НА МЕДЬ С ПРИМЕНЕНИЕМ СИЛЬНОТОЧНОГО ЭЛЕКТРОННОГО ПУЧКА Поверхневе нанесення алюмінію на мідь з використанням сильнострумового електронного пучка