Aluminum surface coating of copper using highcurrent electron beam
High-current electron beam irradiation has been applied for surface coating of copper with aluminum in ablative mode at the TEMP-A accelerator with energy of 350 keV, pulse length of 5 μs, and fluence 10…200 J/cm2. The aluminum-rich surface layer with average thickness around 25 μm, microhardness of...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2015 |
| Автори: | , , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/112210 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Aluminum surface coating of copper using highcurrent electron beam / S.E. Donets, V.F. Klepikov, V.V. Lytvynenko, Yu.F. Lonin, A.G. Ponomarev, R.I. Starovoytov, O.A. Startsev, V.T. Uvarov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 302-305. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-112210 |
|---|---|
| record_format |
dspace |
| spelling |
Donets, S.E. Klepikov, V.F. Lytvynenko, V.V. Lonin, Yu.F. Ponomarev, A.G. Starovoytov, R.I. Startsev, O.A. Uvarov, V.T. 2017-01-18T19:31:50Z 2017-01-18T19:31:50Z 2015 Aluminum surface coating of copper using highcurrent electron beam / S.E. Donets, V.F. Klepikov, V.V. Lytvynenko, Yu.F. Lonin, A.G. Ponomarev, R.I. Starovoytov, O.A. Startsev, V.T. Uvarov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 302-305. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 61.80.Fe, 81.40.Wx https://nasplib.isofts.kiev.ua/handle/123456789/112210 High-current electron beam irradiation has been applied for surface coating of copper with aluminum in ablative mode at the TEMP-A accelerator with energy of 350 keV, pulse length of 5 μs, and fluence 10…200 J/cm2. The aluminum-rich surface layer with average thickness around 25 μm, microhardness of 6.7 GPa and elasticity modulus of 122 GPa was formed on the copper template. Опромінення сильнострумовим електронним пучком застосовано для поверхневого нанесення алюмінію на мідь в абляційному режимі на прискорювачі ТЕМП-А з енергією 350 кеВ, тривалістю імпульсу 5 мкс, і флюенсом 10…200 Дж/cм2. На мідній підкладці сформувався поверхневий шар, збагачений алюмінієм, з середньою товщиною 25 мкм, мікротвердістю 6,7 ГПа і модулем пружності 122 ГПa. Облучение сильноточным электронным пучком применено для поверхностного нанесения алюминия на медь в абляционном режиме на ускорителе ТЕМП-А с энергией 350 кэВ, длительностью импульса 5 мкс и флюенсом 10…200 Дж/см2. На медной подложке сформировался поверхностный слой, обогащённый алюминием, со средней толщиной 25 мкм, микротвёрдостью 6,7 ГПа и модулем упругости 122 ГПа. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Приложения и технологии Aluminum surface coating of copper using highcurrent electron beam Поверхневе нанесення алюмінію на мідь з використанням сильнострумового електронного пучка Поверхностное нанесение алюминия на медь с применением сильноточного электронного пучка Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Aluminum surface coating of copper using highcurrent electron beam |
| spellingShingle |
Aluminum surface coating of copper using highcurrent electron beam Donets, S.E. Klepikov, V.F. Lytvynenko, V.V. Lonin, Yu.F. Ponomarev, A.G. Starovoytov, R.I. Startsev, O.A. Uvarov, V.T. Приложения и технологии |
| title_short |
Aluminum surface coating of copper using highcurrent electron beam |
| title_full |
Aluminum surface coating of copper using highcurrent electron beam |
| title_fullStr |
Aluminum surface coating of copper using highcurrent electron beam |
| title_full_unstemmed |
Aluminum surface coating of copper using highcurrent electron beam |
| title_sort |
aluminum surface coating of copper using highcurrent electron beam |
| author |
Donets, S.E. Klepikov, V.F. Lytvynenko, V.V. Lonin, Yu.F. Ponomarev, A.G. Starovoytov, R.I. Startsev, O.A. Uvarov, V.T. |
| author_facet |
Donets, S.E. Klepikov, V.F. Lytvynenko, V.V. Lonin, Yu.F. Ponomarev, A.G. Starovoytov, R.I. Startsev, O.A. Uvarov, V.T. |
| topic |
Приложения и технологии |
| topic_facet |
Приложения и технологии |
| publishDate |
2015 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Поверхневе нанесення алюмінію на мідь з використанням сильнострумового електронного пучка Поверхностное нанесение алюминия на медь с применением сильноточного электронного пучка |
| description |
High-current electron beam irradiation has been applied for surface coating of copper with aluminum in ablative mode at the TEMP-A accelerator with energy of 350 keV, pulse length of 5 μs, and fluence 10…200 J/cm2. The aluminum-rich surface layer with average thickness around 25 μm, microhardness of 6.7 GPa and elasticity modulus of 122 GPa was formed on the copper template.
Опромінення сильнострумовим електронним пучком застосовано для поверхневого нанесення алюмінію на мідь в абляційному режимі на прискорювачі ТЕМП-А з енергією 350 кеВ, тривалістю імпульсу 5 мкс, і флюенсом 10…200 Дж/cм2. На мідній підкладці сформувався поверхневий шар, збагачений алюмінієм, з середньою товщиною 25 мкм, мікротвердістю 6,7 ГПа і модулем пружності 122 ГПa.
Облучение сильноточным электронным пучком применено для поверхностного нанесения алюминия на медь в абляционном режиме на ускорителе ТЕМП-А с энергией 350 кэВ, длительностью импульса 5 мкс и флюенсом 10…200 Дж/см2. На медной подложке сформировался поверхностный слой, обогащённый алюминием, со средней толщиной 25 мкм, микротвёрдостью 6,7 ГПа и модулем упругости 122 ГПа.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/112210 |
| citation_txt |
Aluminum surface coating of copper using highcurrent electron beam / S.E. Donets, V.F. Klepikov, V.V. Lytvynenko, Yu.F. Lonin, A.G. Ponomarev, R.I. Starovoytov, O.A. Startsev, V.T. Uvarov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 302-305. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT donetsse aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam AT klepikovvf aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam AT lytvynenkovv aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam AT loninyuf aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam AT ponomarevag aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam AT starovoytovri aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam AT startsevoa aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam AT uvarovvt aluminumsurfacecoatingofcopperusinghighcurrentelectronbeam AT donetsse poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka AT klepikovvf poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka AT lytvynenkovv poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka AT loninyuf poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka AT ponomarevag poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka AT starovoytovri poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka AT startsevoa poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka AT uvarovvt poverhnevenanesennâalûmíníûnamídʹzvikoristannâmsilʹnostrumovogoelektronnogopučka AT donetsse poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka AT klepikovvf poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka AT lytvynenkovv poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka AT loninyuf poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka AT ponomarevag poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka AT starovoytovri poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka AT startsevoa poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka AT uvarovvt poverhnostnoenaneseniealûminiânamedʹsprimeneniemsilʹnotočnogoélektronnogopučka |
| first_indexed |
2025-11-26T14:19:29Z |
| last_indexed |
2025-11-26T14:19:29Z |
| _version_ |
1850626118931972096 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2015. №4(98) 302
ALUMINUM SURFACE COATING OF COPPER USING HIGH-
CURRENT ELECTRON BEAM
S.E. Donets1, V.F. Klepikov1, V.V. Lytvynenko1, Yu.F. Lonin2, A.G. Ponomarev2,
R.I. Starovoytov3, O.A. Startsev1, V.T. Uvarov2
1Institute of Electrophysics and Radiation Technologies, Kharkov, Ukraine;
2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
3V.N. Karazin Kharkiv National University, Kharkov, Ukraine
E-mail: startsev-alex@ukr.net
High-current electron beam irradiation has been applied for surface coating of copper with aluminum in ablative
mode at the TEMP-A accelerator with energy of 350 keV, pulse length of 5 μs, and fluence 10…200 J/cm2. The
aluminum-rich surface layer with average thickness around 25 µm, microhardness of 6.7 GPa and elasticity modulus
of 122 GPa was formed on the copper template.
PACS: 61.80.Fe, 81.40.Wx
INTRODUCTION
The high-current electron beams (HCEB) are less
known as a technique for modification and testing of
materials compared to the laser sources due to techno-
logical complexity of the e-beam facilities, radiation
protection, etc. Nevertheless, there were numerous in-
vestigations on irradiation of solids by HCEB [1, 2]
(and references cited therein). Intense e-beam exposure
stimulates proceeding of simultaneous processes such as
fast heating, melting, evaporation, ejection of plasma
and neutral vapor from the surface, generation of de-
formations and high dynamic stresses in the solid medi-
um, etc [3 - 7]. In fact, the variety of these processes,
called ablative processes, is defined by the electron en-
ergy, specific beam power, impulse duration, and de-
pend on the material characteristics. The induced fast
heating and cooling rates, high stresses lead to signifi-
cant changes in structural-phase state of the subsurface
layers, modification of the structure-dependent proper-
ties of different materials as described in [4, 6, 7]. In
this paper, we only deal with the microsecond pulses [6]
of e-beams, so, duration of exposure is far bigger than
the characteristic electron-phonon relaxation time for
the target medium. We operate with e-beams in nearly
relativistic range (~0.35 MeV) in ablation mode, that
enables deeper penetration of electrons into the bulk of
material and provokes explosive melting with liquid
splashing. It should be noted, that the low-energy e-
beams have relatively shallow impact on the material
surface, that is why they are usually replaced by the
laser sources for such purpose.
Microsecond e-beam pulses are the effective tech-
nique for generating the directed vapor and liquid flaws
as well as the bulk material fusing, thus creating new
opportunities for the HCEB-assisted coating technolo-
gies. The existing ones can be classified into two major
types according to distance between the materials for
deposition and the processing surface: (i) remote and (ii)
nearby-placed (i.e. precoating before the following e-
beam treatment). Another way to divide the methods
based on the characteristics of physical processes during
the HCEB-impact: (i) rapid melting and solidification,
(ii) surface alloying of coatings into the bulk, (iii) sur-
face fusing of coatings to the bulk [1]. The recent exper-
imental studies in the same vein are presented by Wei-
senburger et al. in [1]. They have shown practical per-
spectiveness of the surface alloying and surface fusing
methods for coating of the cladding tubes to prevent
corrosion. According to [1], coatings previously depos-
ited or foils placed on the material's surface (T91 ferritic
and 316L austenitic steels) are melted together by the
impinging 120-keV electron beam with an energy densi-
ty of 30…50 J/cm2, and those efficiently reduce oxida-
tion and corrosion rates in liquid lead alloys.
Some efforts have been made on the experimental
investigation of the HCEB modification of material's
bulk [4, 6], gas-plasma cloud generation [3], and the
rapid solidification coating [7] by our team. The radia-
tion-thermal strengthening after HCEB exposure was
observed in [4]. In other work [6], aluminum, titanium
as well as stainless steel were deposited on the cold
copper templates to gain better understanding about
remote surface coating using HCEBs. The targets for
deposition were placed at some distance apart sample
surfaces, which, in their turn, were not subjected to e-
beam irradiation. It was noticed, that coatings, obtained
using such method, are nonuniform and rough due to
hydrodynamic instability of melted metal during its
transport to template, but their hardness increased com-
pared to the similar coatings got using conventional
methods.
However, both the literature and our previous re-
search represent none efforts about surface coating of
activated template, when the combined effect of materi-
al deposition from target and activation of template's
surface is achieved simultaneously by one e-beam shot.
Thus, the main purpose of this study is to investigate the
general specifics of such coating under exposure by the
microsecond HCEB at the TEMP-A pulsed electron
beam accelerator facility [6]. As the candidate materials
for such research, we have chosen the previously stud-
ied [6] couple: aluminum for the deposition target and
cooper for the template. Both of them were subjected to
the HCEB impact, but with different fluences. The strat-
egy was to irradiate the aluminum plate in the intense
ablative mode to generate damage products enough for
deposition on the copper foil, which was thermally acti-
vated by the tangent impact of the e-beam, impinging at
low angle to the copper surface (Fig. 1) significantly
decreasing fluence. The most important is to find exper-
imentally advantages provided by the proposed method
ISSN 1562-6016. ВАНТ. 2015. №4(98) 303
in contrast to the remote surface coating method on cold
template, studied previously [6].
1. MATERIALS AND METHODS
A plate of technically pure Al (99.5 %wt.) and a
copper template (Cu 99.9 %wt.) were irradiated at the
TEMP-A pulsed e-beam accelerator [6], located in the
NSC Kharkiv Institute of Physics and Technology. The
beam’s parameters were the following: the current of
2 kA, electron energy ~ 0.35 MeV, impulse duration
τp ~ 5 µs. One-impulse irradiation was conducted under
the pressure of about 10-5 Torr. The thickness of the Al-
plate and copper template were 2 mm and 200 µm re-
spectively. The Gaussian-shaped solid cross-sectional
beam had a diameter ~ 40 mm and a full-width half-
maximum (FWHM) of about 10 mm. The complex tar-
get was irradiated normally to the collector surface that
means the copper template was subjected to sliding irra-
diation with the energy fluence in the range of 10 to
40 J/cm2, and the Al-plate was irradiated normally in
order to provide the maximal incident energy density
around 200 J/cm2. The main part of the Al-plate (Fig. 1)
was fixed on the accelerator collector perpendicularly to
the incident e-beam, and its other bended part served as
a holder for the Cu-template, which was initially in-
clined at β ~ 40° to the e-beam axis with one free side
directing towards the collector (see Fig. 1). The bended
part of Al-plate was inclined at α ~ 30° to the e-beam
axis. Such construction enables thermal activation of the
copper template, condensation of the dense plasma
cloud and liquid splash on its surface, as well as pre-
vents it from destruction.
The specimens for metallography, fractography and
hardness measurements were taken in the epicenter zone
and in the periphery zone of the e-beam impact (Fig. 2).
The sectioning of special parts was performed by means
of shears. The fractionation was done by manual tensile
bending rupture at the room temperature.
Fig. 1. Schematic view of the prepared target:
1 – collector; 2 – Al-plate; 3 – Cu-template; 4 – strong
fixation of template to Al-plate; 5 – free side of template
Preliminary visual and morphological analysis of the
irradiated copper foil and its cross-fractures was per-
formed using the light microscope Bresser BioLux NV.
Fractographic and energy-dispersive X-ray spectroscop-
ic analyzes of the cross-fractures were conducted using
the scanning electron microscope JEOL JSM-840. Then,
the cross-sections were prepared for metallographic and
hardness analyzes. The specimens were polished using a
micron diamond powder W0-1. To reveal the hardness
H50 properties of the copper foil after modification, we
used the PMT-3 microhardness testing machine
equipped with Berkovich trihedral diamond pyramid
with an applied load of 50 kgf. Estimates of the elastic
modulus E and nanohardness H of the modified copper
template were obtained using the continuous stiffness
method on MSSI’s Agilent Nano Indenter G200 by
Berkovich indenter to the indentation depth up to 500
nm. The hardness was calculated using the Oliver-Pharr
analysis method. After hardness measurements had been
performed, metallographic analyses were performed. To
detect the microstructure of the material, the chemical
etching was carried out using the Kroll’s reagent (2 ml
HF, 6 ml HNO3, and 92 ml H2O) at the room tempera-
ture; etching time of 45 s. The average grain sizes were
measured by chord intercept method.
We conduct numerical finite element (FE) modeling
(with finite difference (FD) discretization of time opera-
tors) of the thermal and stress evolution in the samples
to find the corresponding fluences and optimize the
modification process. It was performed in 64-bit Ubuntu
15.04 LTS using a C++-like language in the free-source
software FreeFem++-3.36. We applied the thermoelastic
ablation numerical model, which was previously de-
scribed in [4]. The energy deposition profiles and the
scattering factors was calculated in Casino 3.2v.
2. RESULTS AND DISCUSSION
Fig. 2 shows the copper template with the formed
Al-rich coating after the HCEB irradiation. The e-beam
heating was intense enough to melt the surface of the
copper template and deflect its free side from angle β to
α. Some amount of copper was ejected into vacuum and
condensed onto the aluminum target.
Fig. 2. Surface of Cu-template after the HCEB
irradiation
The Al-target was exposed to the aforementioned
high fluence, which provoked damage with explosive
melting accompanied by liquid splash and generation of
gas-liquid and plasma cloud. These ablative products
also interacted with the ejected material from the tem-
plate itself. Almost 30% of ablated aluminum con-
densed on the thermally activated copper template. It
was easy to notice, that the coating was formed during
fast solidification of the droplet-gas cloud, preceded by
some mixing with melt on the template. In fact, such
ISSN 1562-6016. ВАНТ. 2015. №4(98) 304
construction of the complex target is simple and reliable
method to detect expansion of the gas-plasma torch in
contrast to the conventional ones [3]. The obtained coat-
ing directly replicates the density of the ejected ablative
products, preserving the shape of torch.
Noteworthy, when the complex target was extracted
from the vacuum chamber, the copper template was
stranded. While the coating was deposited at an elevated
temperature and cooled down rapidly to normal temper-
ature, the thermal expansion mismatch between the Al-
rich coating and the copper template results in compres-
sive residual stress.
Fig. 3. Surface of coating on the boundary between
smooth epicenter and wavy periphery zones
The obtained coating consists of the epicenter zone,
where the dense core of the cloud condensed, and the
periphery zone. These two characteristic zones are
clearly distinguished by the surface roughness (see Figs.
2, 3). The first one has relatively smooth surface in the
micrometer scale with few dimples and ridges of
(1…5) µm deep. On the “as-fabricated” surface, using
optical microscopy and SEM, we noticed a needle-like
alignment of surface morphology at low magnification,
and dendrite-like character was found at higher magni-
fication. The coating on the periphery is very wavy and
not solid. It has deep dimples, ridges and voids. SEM
analysis showed, that it consists mainly of deformed
droplets. Such complicated nonuniform surface was
created due to high kinetic energy of the deposited va-
por and melt, which had not been accumulated by the
copper melt layer on the template. Moreover, the total
density of material flux and surface tension were not
enough to shrink the gaps between the droplets during
fast cooling through thermal conduction to the bulk.
Inasmuch as the roughness of the periphery zone surface
approximately equals its thickness, so, such coating
cannot be considered as functional.
Then, the fracture surface morphology was investi-
gated (Fig. 4). The nonirradiated copper bulk has long
coarse fatigue striations, which were found perpendicu-
lar to applied load (e.g. parallel to the surface). They
appeared due to tensile bending rupture process. We
observed ductile character of fracture at higher magnifi-
cation along with limited macroscale brittle. Periodic
shear lips were also found. We noticed the transitional
layer in the sample between the unmodified copper ma-
terial and the Al-enriched coating. Formation of this
layer was caused by the tangent e-beam irradiation and
further thermal conduction from the hotter coating. It
was melted and then resolidified with coating upon it.
This heat-affected layer is a mediate between the coat-
ing and substrate. Its thickness is around 30 µm. Its rup-
ture has relatively flat surface and characterized by brit-
tle fracture. Several big cracks directing from the coat-
ing to the bulk were observed (see Fig. 4). Their origins
begin on the boundary with the coating. Such cracks
could be formed when the stranded template was manu-
ally expanded for sample preparation, whether it was
provoked by the residual stresses.
Fig. 4. Fractogram of aluminum coating on the copper
template: 1 – coating; 2 – copper template
The formed coating (see Figs. 4, 5) is characterized
by the rough fracture surface that revealed ductile-brittle
fracture mechanism. It has short intergranular branched
cracks in preferable vertical direction. We also found a
net of parallel cracks inside the coating, especially in the
epicenter zone. Worth to mention, they did not cause
any significant delamination of the coating from the
template. The parallel cracks are considered to be
caused by relaxation of compression residual stresses.
Interestingly, we noticed some fine debris – particles
with linear size of (1…5) µm, and several 5-µm de-
formed facets.
Fig. 5. Aluminum coating on the copper template
Metallographic data revealed the specifics of the
coating’s microstructure. In the epicenter zone, its
thickness is up to 30, and 20 µm in the periphery. It
consists of the large grains with parallel size of
(20…40) µm and vertical size of (6…12) µm. Among
the boundaries of the large grains, there were found the
abovementioned fine debris (their part ratio is around
15%). After deep etching of the samples, a few hidden
round voids with size of 5…10 µm were observed in the
coating. EDX analysis of the element composition
showed, that in the epicenter zone it is around
25%Cu/75%Al (±5%, %wt.), and in the periphery it
varies in the range of 25%Cu to 90%Cu.
We tested the hardness and elastic modulus for the
dense coating at the epicenter zone. It has microhard-
ness H50 ~ 6.7 GPa, that equals to its average nanohard-
ness H measured experimentally (see Fig. 5), and
ISSN 1562-6016. ВАНТ. 2015. №4(98) 305
Young’s modulus E ~ 122 GPa. The transition mediate
has H ~ 1.6 GPa and E ~124 GPa, and the nonirradiated
copper has 1.4, and 127 GPa, respectively. Thus, the
physical and mechanical properties of the obtained coat-
ing is significantly higher, than in case of the remote
surface coating on cold copper template described in
[6], when the microhardness of nonuniform aluminum
coating does not exceed H50
max ~ 5.49 GPa.
Finally, these results motivate the use of the HCEB-
assisted coating method on activated template as it pro-
vides good integrity of coating and adhesion to sub-
strate. It is proposed, homogenization for elimination of
surface roughness and voids can also be achieved
through post-treatment with the light HCEB exposure.
However, in-depth study about the melt dynamics along
with the intense e-beam damage of polycrystalline ma-
terials is needed to obtain better practical results.
CONCLUSIONS
The Al-grade and the Cu-template have been irradi-
ated simultaneously by the single HCEB impulse to
create the Al-rich coating on the template. The copper
template was exposed to the sliding impact, which guar-
anteed its thermal activation and light surface melting
for further condensation on it of aluminum deposited
from the nearby placed target. The condensation of the
dense Al-cloud core resulted in formation of the com-
pacted Al-Cu layer with smooth surface and good adhe-
sion to the bulk material. This coating has hardness
around 6.7 GPa and Young’s modulus of 122 GPa. The
obtained results have demonstrated, that the proposed
coating method with microsecond HCEBs is a promis-
ing technique for improvement and protecting of the
surface-sensitive physical and mechanical properties.
REFERENCES
1. A. Weisenburger, W. An, V. Engelko, A. Heinzel,
A. Jianu, F. Lang, G. Mueller, F. Zimmermann.
Intense Pulsed Electron Beams Application of
Modi-fied Materials // Acta Physica Polonica A.
2009, № 6, v. 115, p. 1053-1055.
2. J. Cai, Le Ji, S.Z. Yang et al. Deformation
mechanism and microstructures on polycrystalline
aluminum induced by high-current pulsed electron
beam // Chin. Sci. Bull. 2013, doi: 10.1007/s11434-
013-5848-5.
3. V.F. Klepikov, V.V. Lytvynenko, et al. Dynamics
of the gas-plasma torch formed by the high-current
electron beam action on solid targets // Problems of
Atomic Science and Technology. Series “Plasma
Physics” (15). 2009, № 1, p. 119-121.
4. V.F. Klepikov, Yu.F. Lonin, A.G. Ponomarev,
O.A. Startsev, V.T. Uvarov. Physical and
mechanical properties of titanium alloy VT1-0 after
high-current electron beam irradiation // Problems
of Atomic Science and Technology. Series “Physics
of Radiation Effect and Radiation Materials
Science” (96). 2015, № 2, p. 39-42.
5. V.T. Uvarov, V.T. Uvarov, et al. Radiation acoustic
control over the thermal parameter of construction
materials irradiated by intense relativistic electron
beam // Phys. of Part. and Nucl. Latter. 2014, v. 11,
№ 3, p. 274-281.
6. A.B. Batracov, M.I. Bazaleev, et al. The
particularities of the high current relativistic
electron beams influence on construction materials
targets // Problems of Atomic Science and
Technology. Series “Nuclear Physics
Investigation”. 2013, № 6, p. 225-229.
7. V.F. Klepikov, Yu.F. Lonin, et al. The formation of
strengthening coats by microsecond duration high-
current relativistic electron beam // Problems of
Atomic Science and Technology. Series “Nuclear
Physics Investigation”. 2008, № 5, p. 91-95.
Article received 26.05.2015
ПОВЕРХНОСТНОЕ НАНЕСЕНИЕ АЛЮМИНИЯ НА МЕДЬ С ПРИМЕНЕНИЕМ
СИЛЬНОТОЧНОГО ЭЛЕКТРОННОГО ПУЧКА
С.Е. Донец, В.Ф. Клепиков, В.В. Литвиненко, Ю.Ф. Лонин, А.Г. Пономарёв, Р.И. Старовойтов,
А.A. Старцев, В.Т. Уваров
Облучение сильноточным электронным пучком применено для поверхностного нанесения алюминия на
медь в абляционном режиме на ускорителе ТЕМП-А с энергией 350 кэВ, длительностью импульса 5 мкс и
флюенсом 10…200 Дж/см2. На медной подложке сформировался поверхностный слой, обогащённый алю-
минием, со средней толщиной 25 мкм, микротвёрдостью 6,7 ГПа и модулем упругости 122 ГПа.
ПОВЕРХНЕВЕ НАНЕСЕННЯ АЛЮМІНІЮ НА МІДЬ З ВИКОРИСТАННЯМ
СИЛЬНОСТРУМОВОГО ЕЛЕКТРОННОГО ПУЧКА
С.Є. Донець, В.Ф. Клепіков, В.В. Литвиненко, Ю.Ф. Лонін, А.Г. Пономарьов, Р.І. Старовойтов,
O.A. Старцев, В.T. Уваров
Опромінення сильнострумовим електронним пучком застосовано для поверхневого нанесення алюмінію
на мідь в абляційному режимі на прискорювачі ТЕМП-А з енергією 350 кеВ, тривалістю імпульсу 5 мкс, і
флюенсом 10…200 Дж/cм2. На мідній підкладці сформувався поверхневий шар, збагачений алюмінієм, з
середньою товщиною 25 мкм, мікротвердістю 6,7 ГПа і модулем пружності 122 ГПa.
Introduction
1. Materials and methods
2. Results and Discussion
Conclusions
references
ПОВЕРХНОСТНОЕ НАНЕСЕНИЕ АЛЮМИНИЯ НА МЕДЬ С ПРИМЕНЕНИЕМ СИЛЬНОТОЧНОГО ЭЛЕКТРОННОГО ПУЧКА
Поверхневе нанесення алюмінію на мідь з використанням сильнострумового електронного пучка
|