The large scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force

In this paper, we find a new large scale instability which appears in obliquely rotating flow with the small scale turbulence, generated by external force with small Reynolds number. The external force has no helicity. The theory is based on the rigorous method of multi scale asymptotic expansion. N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2015
Hauptverfasser: Kopp, M.I., Tur, A.V., Yanovsky, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/112219
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The large scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force / M.I. Kopp, A.V. Tur, V.V. Yanovsky // Вопросы атомной науки и техники. — 2015. — № 4. — С. 264-269. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112219
record_format dspace
spelling Kopp, M.I.
Tur, A.V.
Yanovsky, V.V.
2017-01-18T19:44:43Z
2017-01-18T19:44:43Z
2015
The large scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force / M.I. Kopp, A.V. Tur, V.V. Yanovsky // Вопросы атомной науки и техники. — 2015. — № 4. — С. 264-269. — Бібліогр.: 17 назв. — англ.
1562-6016
PACS: 47.32C-; 47.27.De; 47.27.em; 47.55.Hd
https://nasplib.isofts.kiev.ua/handle/123456789/112219
In this paper, we find a new large scale instability which appears in obliquely rotating flow with the small scale turbulence, generated by external force with small Reynolds number. The external force has no helicity. The theory is based on the rigorous method of multi scale asymptotic expansion. Nonlinear equations for instability are obtained in third order of the perturbation theory. In this article, we explain in details the nonlinear stage of the instability and we find the nonlinear periodic vortices and the vortex kinks of Beltrami type.
Знайдено великомасштабну нестійкість, яка виникає в рідині, що обертається під нахилом, у маломасштабній турбулентності. Турбулентність генерується маломасштабною зовнішньою силою з малим числом Рейнольдса. Зовнішня сила не має спіральності. Теорія побудована з використанням послідовного багатомасштабного асимптотичного методу. Нелінійні рівняння для нестійкості отримано в третьому порядку теорії збурень. Проведено детальне дослідження нелінійної стадії нестійкості та знайдено нелінійні періодичні вихори Бельтрамієвського типу та вихорові кінки.
Найдена новая крупномасштабная неустойчивость, которая возникает в наклонно вращающейся жидкости с мелкомасштабной турбулентностью. Турбулентность генерируется мелкомасштабной внешней силой с малым числом Рейнольдса. Внешняя сила не имеет спиральности. Теория построена строгим методом многомасштабного асимптотического разложения. Нелинейные уравнения для неустойчивости получены в третьем порядке теории возмущений. Проведено детальное исследование нелинейной стадии неустойчивости и найдены нелинейные периодические вихри Бельтрамиевского типа и вихревые кинки.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Нелинейные процессы в плазменных средах
The large scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force
Великомасштабна нестійкість та нелінійні вихорові структури в рідині, що обертається під нахилом, з маломасштабною зовнішньою неспіральною силою
Крупномасштабная неустойчивость и нелинейные вихревые структуры в наклонно вращающейся жидкости с мелкомасштабной внешней неспиральной силой
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The large scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force
spellingShingle The large scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force
Kopp, M.I.
Tur, A.V.
Yanovsky, V.V.
Нелинейные процессы в плазменных средах
title_short The large scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force
title_full The large scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force
title_fullStr The large scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force
title_full_unstemmed The large scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force
title_sort large scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force
author Kopp, M.I.
Tur, A.V.
Yanovsky, V.V.
author_facet Kopp, M.I.
Tur, A.V.
Yanovsky, V.V.
topic Нелинейные процессы в плазменных средах
topic_facet Нелинейные процессы в плазменных средах
publishDate 2015
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Великомасштабна нестійкість та нелінійні вихорові структури в рідині, що обертається під нахилом, з маломасштабною зовнішньою неспіральною силою
Крупномасштабная неустойчивость и нелинейные вихревые структуры в наклонно вращающейся жидкости с мелкомасштабной внешней неспиральной силой
description In this paper, we find a new large scale instability which appears in obliquely rotating flow with the small scale turbulence, generated by external force with small Reynolds number. The external force has no helicity. The theory is based on the rigorous method of multi scale asymptotic expansion. Nonlinear equations for instability are obtained in third order of the perturbation theory. In this article, we explain in details the nonlinear stage of the instability and we find the nonlinear periodic vortices and the vortex kinks of Beltrami type. Знайдено великомасштабну нестійкість, яка виникає в рідині, що обертається під нахилом, у маломасштабній турбулентності. Турбулентність генерується маломасштабною зовнішньою силою з малим числом Рейнольдса. Зовнішня сила не має спіральності. Теорія побудована з використанням послідовного багатомасштабного асимптотичного методу. Нелінійні рівняння для нестійкості отримано в третьому порядку теорії збурень. Проведено детальне дослідження нелінійної стадії нестійкості та знайдено нелінійні періодичні вихори Бельтрамієвського типу та вихорові кінки. Найдена новая крупномасштабная неустойчивость, которая возникает в наклонно вращающейся жидкости с мелкомасштабной турбулентностью. Турбулентность генерируется мелкомасштабной внешней силой с малым числом Рейнольдса. Внешняя сила не имеет спиральности. Теория построена строгим методом многомасштабного асимптотического разложения. Нелинейные уравнения для неустойчивости получены в третьем порядке теории возмущений. Проведено детальное исследование нелинейной стадии неустойчивости и найдены нелинейные периодические вихри Бельтрамиевского типа и вихревые кинки.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/112219
citation_txt The large scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force / M.I. Kopp, A.V. Tur, V.V. Yanovsky // Вопросы атомной науки и техники. — 2015. — № 4. — С. 264-269. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT koppmi thelargescaleinstabilityandnonlinearvortexstructuresinobliquelyrotatingfluidwithsmallscalenonspiralforce
AT turav thelargescaleinstabilityandnonlinearvortexstructuresinobliquelyrotatingfluidwithsmallscalenonspiralforce
AT yanovskyvv thelargescaleinstabilityandnonlinearvortexstructuresinobliquelyrotatingfluidwithsmallscalenonspiralforce
AT koppmi velikomasštabnanestíikístʹtanelíníinívihorovístrukturivrídiníŝoobertaêtʹsâpídnahilomzmalomasštabnoûzovníšnʹoûnespíralʹnoûsiloû
AT turav velikomasštabnanestíikístʹtanelíníinívihorovístrukturivrídiníŝoobertaêtʹsâpídnahilomzmalomasštabnoûzovníšnʹoûnespíralʹnoûsiloû
AT yanovskyvv velikomasštabnanestíikístʹtanelíníinívihorovístrukturivrídiníŝoobertaêtʹsâpídnahilomzmalomasštabnoûzovníšnʹoûnespíralʹnoûsiloû
AT koppmi krupnomasštabnaâneustoičivostʹinelineinyevihrevyestrukturyvnaklonnovraŝaûŝeisâžidkostismelkomasštabnoivnešneinespiralʹnoisiloi
AT turav krupnomasštabnaâneustoičivostʹinelineinyevihrevyestrukturyvnaklonnovraŝaûŝeisâžidkostismelkomasštabnoivnešneinespiralʹnoisiloi
AT yanovskyvv krupnomasštabnaâneustoičivostʹinelineinyevihrevyestrukturyvnaklonnovraŝaûŝeisâžidkostismelkomasštabnoivnešneinespiralʹnoisiloi
AT koppmi largescaleinstabilityandnonlinearvortexstructuresinobliquelyrotatingfluidwithsmallscalenonspiralforce
AT turav largescaleinstabilityandnonlinearvortexstructuresinobliquelyrotatingfluidwithsmallscalenonspiralforce
AT yanovskyvv largescaleinstabilityandnonlinearvortexstructuresinobliquelyrotatingfluidwithsmallscalenonspiralforce
first_indexed 2025-11-25T20:29:32Z
last_indexed 2025-11-25T20:29:32Z
_version_ 1850523583973949440
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 264 THE LARGE SCALE INSTABILITY AND NONLINEAR VORTEX STRUCTURES IN OBLIQUELY ROTATING FLUID WITH SMALL SCALE NON SPIRAL FORCE M.I. Kopp1,2, A.V. Tur3, V.V. Yanovsky1,2 1Institute for Single Crystals, National Academy of Science Ukraine, Kharkov, Ukraine; 2V.N. Karazin Kharkiv National University, Kharkov, Ukraine; 3Université de Toulouse [UPS], CNRS, Institut de Recherche en Astrophysique et Planétol- ogie, 9 avenue du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France E-mail: yanovsky@isc.kharkov.ua In this paper, we find a new large scale instability which appears in obliquely rotating flow with the small scale turbulence, generated by external force with small Reynolds number. The external force has no helicity. The theory is based on the rigorous method of multi scale asymptotic expansion. Nonlinear equations for instability are ob- tained in third order of the perturbation theory. In this article, we explain in details the nonlinear stage of the insta- bility and we find the nonlinear periodic vortices and the vortex kinks of Beltrami type. PACS: 47.32C-; 47.27.De; 47.27.em; 47.55.Hd INTRODUCTION It is well known, that the rotating effects play an im- portant role in many theoretical and practical applica- tions for fluid mechanics [1] and are especially im- portant for geophysics and astrophysics [2 - 4], when one have to deal with rotating objects such as the Earth, Jupiter, the Sun, etc. Rotating fluids could generate dif- ferent wave and vortex motions, for example, gyroscop- ic waves, Rossby waves, internal waves, located vorti- ces and coherent vortex structures [4 - 7]. Among the vortex structures, the most interesting are the large scale ones, since they carry out the efficient transport of ener- gy and impulse. The structures which have characteris- tic scale much more than the scale of turbulence or the scale of external force which generates this turbulence are understood as large scale ones. In this paper we find a new large scale instability in obliquely rotating flow which is influenced by the small scale external force with zero helicity. Its axis of rotation does not coincide with the Z axis. This force supports small scale turbu- lent fluctuations in fluid. The nonlinear large scale heli- cal vortex structures such as Beltrami vortices or local- ized kinks appear as a result of the development of this instability in rotating fluid. This supposes that the exter- nal small-scale force substitutes the action of small- scale turbulence. Further we consider that the external force acts in the plane (X, Y). Instability occurs only when the vector of angular velocity of rotation Ω  is inclined relatively to the plane (X, Y), as shown in Fig.1. If the fluid is rotating around the axis Z strictly, then instability does not occur. The helical 2D velocity field ,x yW W turns around the axis Z, when Z changes in the periodic wave (Fig. 2) and makes one turn in the kink (Fig. 3). The found instability belongs to the class of instabilities called hydrodynamic α-effects. For these instabilities the positive feedback between velocity components is typical: 0, T x x y yW W W z α ∂ ∂ −∆ − = ∂ 0,T y y x xW W W z α ∂ ∂ −∆ + = ∂ and leads to the instability. α-effect origins from mag- netic hydrodynamics, where it engenders the increase of large scale magnetic fields (see for example [16]). Later it was extended to ordinary hydrodynamics. Several examples of hydrodynamics α-effect [8-15] are known for today. From this point of view, in this study we found a new example of the α-effect. The theory of this instability is based on a rigorous method of multi-scale development, which was proposed by Frisch, She and Sulem for the theory of the AKA effect [13]. This method allows to find the equations for large scale per- turbations as the secular equations of the asymptotic theory, to calculate the Reynolds stress tensor and to find the instability. The small parameter of asymptotical development is the number of Reynolds , 1.R R ≤ Our paper is organized as follows: in Section 2 we formulate the problem and the main equations in rotating system coordinates; in Section 3 we discuss the concept of mul- ti-scale development and we give the secular equations. In Section 4 we calculate the velocity field of zero ap- proximation. In Section 5 we describe the calculations of the Reynolds stress and find the large scale instabil- ity. In Section 6 we discuss the saturation of the insta- bility and find the nonlinear stationary vortex structures. The results obtained are discussed in the conclusions given in Section 7. 1. THE MAIN EQUATIONS AND FORMULATION OF THE PROBLEM Let us examine the equations of motion for non- compressible rotating fluid with the external force 0F  in rotating coordinates system: ( ) 0 0 2 1 , V V V V t P V Fν ρ ∂ + ∇ + Ω× = ∂ = − ∇ + ∆ +       (1) 0.divV =  (2) The external force 0F  is divergence-free. Here Ω  is angular velocity of fluid rotation, is viscosity, is ISSN 1562-6016. ВАНТ. 2015. №4(98) 265 constant fluid density. Let us design characteristic am- plitude of force f0, and its characteristic space and time scale λ0 and t0 respectively. Then 0F  = f0 0F  0 0 ,x t tλ        . We will design the characteristic amplitude of veloc- ity, generated by external force as v0. We choose the dimensionless variables ( , , )t x V   0 0 0 0 0 0 0 0 , , , , ,x t V F Px t V F P t v f Pλ ρ → → → → →       2 2 0 0 0 0 0 0 0 0 02 0 0 = , = , = , = .v v ft P f vλ ν ν λ ν λ λ ν Then, in dimensionless variables the equation (1) takes following forme: 0( ) = ,V R V V D V P V F t ∂ + ⋅∇ + × −∇ + ∆ + ∂        (3) 0 0= , =vR D Taλ ν . 0 0= , =vR D Taλ ν . Where R and 2 4 0 2 4=Ta λ ν Ω are respectively the Reynolds number and the Taylor number on scale 0λ . Further we will consider the Reynolds number as small 1R ≤ and will construct on this small parameter the asymptotical development. Concerning the parameter D, we do not choose any range of values for the moment. Let us examine the fol- lowing formulation of the problem. We consider the external force as being of small scale and of high fre- quency. This force leads to small scale fluctuations in velocity. After averaging, these rapidly oscillating fluc- tuations vanish. Nevertheless, due to small nonlinear interactions in some orders of perturbation theory, non- zero terms can occur after averaging. This means that they are not oscillatory, that is to say, they are large scale. From a formal point of view, these terms are secular, i.e., they create the conditions for the solvability of large-scale asymptotic development. So, the purpose of this paper is to find and study the solvability equa- tions, i.e., the equations for the large scale perturbations. Let us denote the small scale variables by 0 0 0= ( , )x x t , and the large scale ones by = ( , )X X T  . The small scale partial derivative opera- tion 0 0 ,ix t ∂ ∂ ∂ ∂ , and the large scale ones , X T ∂ ∂ ∂ ∂  are written, respectively, as , ,i t i∂ ∂ ∇ and T∂ . To construct a multi-scale asymptotic development we follow the method which is proposed in [16]. 2. THE MULTI-SCALE ASYMPTOTIC DEVELOPMENT Let us search the solution to equations (2) and (3) in the following form: 1 0 0 1 1( , ) = ( ) ( )V x t W X v x Rv R − + + +      2 3 2 3 ,R v R v+ + +    (4) 3 2 1 0 03 2 1 1 1( , ) = ( ) ( ) ( ) ( )P x t P X P X P X P x R R R− − −+ + + +  2 3 11 2 3( ( )) .R P P X R P R P+ + + + + (5) We introduce the slow variables 2 0=X R x   and 4 0=T R t which lead to the following expressions for the spatial and temporal derivatives: 2= ,i ii R x ∂ ∂ + ∇ ∂ (6) 4= ,t TR t ∂ ∂ + ∂ ∂ (7) 2 2 4= 2 .jj j j jjj j R R x x ∂ ∂ + ∂ ∇ + ∂ ∂ ∂ (8) Using initial notation, the system of equations can be written as: 4 2 2 2 4 0 ( ) ( )( ) = ( ) ( 2 ) , i i j j k t T j j ijk i i j j jj j j jj R V R R V V D V R P R R V F ε∂ + ∂ + ∂ + ∇ + = ∂ + ∇ + ∂ + ∂ ∇ + ∇ + (9) ( )2 = 0.i i iR V∂ + ∇ (10) Substituting these expressions into the initial equa- tions (2) and (3) and then gathering together the terms of the same order, we obtain the equations of the multi- scale asymptotic development and write down the ob- tained equations up to order 3R inclusive. In the order 3R− there is only one the equation: 3 3 3= 0, = ( ).iP P P X− − −∂ ⇒ (11) In order 2R− we have the equation: 2 2 2= 0, = ( ).iP P P X− − −∂ ⇒ (12) In order 1R− we get a system of equations: 1 1 1 1 3 1 1= ( ) ,i i j k i j t jj ijk i i jW W D W P P W Wε− − − − − − −∂ − ∂ + − ∂ +∇ − ∂ (13) 1 = 0.i iW−∂ (14) The system of equations (13) and (14) gives the sec- ular terms 3 1= ,j k i ijkP D Wε− −−∇ (15) which corresponds to a geostrophic equilibrium equa- tion. In zero order 0R , we have the following system of equations: 0 0 1 0 0 1 0( ) =i i i j i j j k t jj j ijkv v W v v W D vε− −∂ − ∂ + ∂ + + 0 2 0( ) ,i i iP P F−= − ∂ +∇ + (16) 0 = 0.i iv∂ (17) These equations give the following secular equation: 2 2= 0, = .P P Const− −∇ ⇒ (18) Let us consider the equations of the first approxima- tion R : 1 1 1 1 1 1 1 0 0 1 1 1 1 ( ) = ( ) ( ), i i j k i j i j i j t jj ijk j i j j i i v v D v W v v W v v W W P P ε − − − − − ∂ − ∂ + + ∂ + + = −∇ − ∂ +∇ (19) 1 1 = 0.i i i iV W−∂ + ∇ (20) Secular equations follow from this system of equations: 1 = 0,i iW−∇ (21) 1 1 1( ) = ,i j j iW W P− − −∇ −∇ (22) ISSN 1562-6016. ВАНТ. 2015. №4(98) 266 The secular equation (21) and (22) are satisfied by choosing the following geometry for the velocity field (Beltrami field): 1 1 1 1= ( ( ), ( ),0); = ( );x yW W Z W Z T T Z− − − −  (23) 1 1= 0, = .P P Const− −∇ ⇒ In the second order 2R , we obtain the equations: 2 2 0 1 2 2 1 0 1 1 0 2 2 ( ) = i i i t jj j j i j i j i j i j j k j ijk v v v W v v W v v v v D vε− − ∂ − ∂ − ∂ ∇ + +∂ + + + + 1 0 0 1 2 0= ( ) ( ),i j i j j i iW v v W P P− −−∇ + − ∂ +∇ (24) 2 0 = 0.i iv v∂ +∇ (25) It is easy to see that there are no secular terms in this order. Let us come now to the most important order 3R . In this order we obtain the equations: 3 1 3 1 1 1 1 1 1 0 0 ( 2 ) ( ) i i i i i t T jj j j jj i j i j i j j v W v v W W v v W v v − − − − ∂ + ∂ − ∂ + ∂ ∇ +∇ + +∇ + + + 1 3 3 1 0 2 2 0 1 1( )i j i j i j i j i j j W v v W v v v v v v− −+∂ + + + + + 13 3= ( ),j k ijk i iD v P Pε+ − ∂ +∇ (26) 3 1 = 0.i iv v∂ +∇ From this we get the main secular equation: 11 1 0 0( ) = ,i i k i T k iW W v v P− −∂ − ∆ +∇ −∇ (27) There is also an equation to find the pressure 3P− : 3 1= .j k i ijkP D Wε− −−∇ (28) 3. THE VELOCITY FIELD IN ZERO APPROXIMATION It is clear that the most important is equation (27). In order to obtain these equations in closed form, we need to calculate the Reynolds stress 0 0( )k i k v v∇ . First of all we have to calculate the fields of the zero approxima- tion 0 kv . From the asymptotic development in zero order we have: 0 0 1 0 0 0 0= ,i i k i j k i t jj k ijk iv v W v D v P Fε−∂ − ∂ + ∂ + −∂ + (29) Let us introduce the operator  0D :  0 .k t jj kD W≡ ∂ − ∂ + ∂ (30) Using  0D , we rewrite equation (29) in the form:  0 0 0 0 0= ,i j k i ijk iD v D v P Fε+ −∂ + (31) Pressure P0 can be found from condition 0.divV =  0 0 2 i i D v P  ×∂ = ∂   (32) Let us introduce designations for the operators:  2 i ij j D P  ×∂ = ∂ ∂   (33) and for velocities: 0 0 0 0 0 0, , .x y zv u v v v w= = = Then ex- cluding pressure from (31), we obtain the system of equations to find the velocity field of zero approxima- tion:  ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( )  ( ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , , . x xx yx z zx y y xy z yy zy x z xz y yz x zz D P u P D v P D w F P D u D P v P D w F P D u P D v D P w F + + − + + = + + + + − = − + + + + = (34) In order to solve this system of equations we have to set the force in the explicit form. Let us choose now the external force in the rotating system of coordinates in the following form: ( ) ( ) ( ) 0 1 20 0 2 1 1 0 2 0 1 20 0 0, ; , , 1,0,0 , 0,1,0 . zF F f iCos jCos k x t k x t k k k k ϕ ϕ ϕ ω ϕ ω⊥= = + = − = − = =          It is obvious that divergence and helicity of this force us equal to zero: 0 0.F rotF =   Thus, the external force is given in the plane (x, y), which is orthogonal to the projection of angular velocity Ω  . Fig. 1. In general, the angular velocity Ω is in- clined relative to the plane (X, Y) in which there is an external force 0F ⊥  The solution for equations system (34) can be found easily in accordance with Cramer's Rule: 1 2 3 0 0 0, , .u v w∆ ∆ ∆ = = = ∆ ∆ ∆ (35) Here ∆ − is the determinant of the system (34):             0 0 0 , xx yx z zx y xy z yy zy x xz y yz x zz D P P D P D P D D P P D P D P D D P + − + ∆ = + + − − + + (36)         0 1 0 0 0 , 0 x yx z zx y y yy zy x yz x zz F P D P D F D P P D P D D P − + ∆ = + − + + (37)         0 0 2 0 0 , 0 x xx zx y y xy z zy x xz y zz D P F P D P D F P D P D D P + + ∆ = + − − + (38)         0 0 3 0 0 . 0 x xx yx z y xy z yy xz y yz x D P P D F P D D P F P D P D + − ∆ = + + − + (39) Expanding the determinant, we obtain:  ( )  ( ) ( ) ( ) ( ) ( ) ( )  ( ) 0 0 0 0 0 0 1 1 , x yy zz yz x zy x y zx y yz x yx z zz u D P D P P D P D F P D P D P D D P F  = + + − + − + ∆  + + + − − + ∆ (40) ( ) ( ) ( )  ( )  ( )  ( ) ( ) ( ) 0 0 0 0 0 0 1 1 , x xz y zy x xy z zz y xx zz xz y zx y v P D P D P D D P F D P D P P D P D F  = − − − + + + ∆  + + + − − + ∆ (41) ( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) 0 0 0 0 0 1 1 . x xy z yz x xz y yy y xz y yx z xx yz x w P D P D P D D P F P D P D D P P D F  = + + − − + + ∆  + − − − + + ∆ (42) ISSN 1562-6016. ВАНТ. 2015. №4(98) 267  ( )  ( )  ( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( ) ( ) ( )  ( ) ( ) 0 0 0 0 0 . xx yy zz yz x zy x yx z xy z zz xz y zy x zx y xy z yz x yy xz y D P D P D P P D P D P D P D D P P D P D P D P D P D D P P D  ∆ = + + + − + − −   − − + + − − − +   + + + + − + −  (43) In order to calculate the expressions (40) - (43) we present the external force in complex form: ( ) ( )2 2 1 10 0 0 0, . 2 2 i i i ix yf fF e e F e eϕ ϕ ϕ ϕ− −= + = + (44) Then all operators in formulae (40) - (42) act from the left on their eigen function. In particular:   ( )   ( ) ( ) ( ) 2 2 1 1 2 2 1 1 0 0 2 0 0 0 1 0 2 0 1 0 , , , , , , , i i i i i i i i D e e D k D e e D k e e k e e k ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ω ω ω ω = − = − ∆ = ∆ − ∆ = ∆ − (45) To simplify the formulae, let us choose 0 0 01, 1, 1.k fω= = = We will designate:  ( ) ( )  ( ) ( )0 2 0 0 1 0, 1 1 , , 1 1 .y y x xD k i w A D k i w Aω ω− = − − = − = − − = (46) Before doing further calculations, we have to note that some components of tensors  ( )1ijP k and  ( )2ijP k vanish. Let us write the non-zero components only:  ( )  ( )  ( )  ( )1 1 2 2, , , .yx zx xy zyz y z xP k D P k D P k D P k D= = − = − = (47) Taking into account the formulae (45) - (47), we can find the determinant: ( ) ( )3 2 3 2 1 2, .x x x y y yk A D A k A D A∆ = + ∆ = + (48) In a similar way we find velocity field of zero ap- proximation: 2 0 2 2 1 . ., 2 i y y y e A u C C A D ϕ = + + (49) 1 0 2 2 1 . ., 2 i x x x e Av C C A D ϕ = + + (50) 2 1 0 2 2 2 2 1 1 . .. 2 2 i i y x y y x x e D e Dw C C A D A D ϕ ϕ = − + + + (51) We note that the angular velocity zD component disappears from the expression for the velocity field of zero approximation, which is a consequence of the properties of an external force. 4. REYNOLDS STRESS AND LARGE SCALE INSTABILITY To close the equations (27) we have to calculate the Reynolds stresses 0 0w u and 0 0w v . These terms are easi- ly calculated with help of formulae (49) - (51). As a result we obtain: 0 0 0 02 22 2 2 2 1 1, . 2 2 y x y y x x D Dw u w v A D A D = = − + + (52) Now equations (27) are closed and take form: 22 2 22 2 1 0, 2 1 0. 2 y T x x y y x T y y x x D W W z A D DW W z A D ∂ ∂ − ∆ + = ∂ + ∂ ∂ − ∆ − = ∂ + (53) We calculate the modules and write the equations (53) in the explicit form: ( ) ( ) ( ) ( ) 22 2 22 2 1 0, 2 4 1 2 1 0 2 4 1 . 2 y T x x y y y y x T y y x x x x D W W z w D w w DW W z w D w w ∂ ∂ − ∆ + = ∂  − + + −  ∂ ∂ − ∆ − = ∂  − + + −  (54) With small ,x yW W we obtain the linear zed equa- tions (54) 0, 0. T x x y y T y y x x W W W z W W W z α α ∂ ∂ − ∆ − = ∂ ∂ ∂ − ∆ + = ∂ (55) ( ) ( ) ( ) ( ) 2 2 2 22 2 2 2 2 , 2 . 4 4 y y x x y x y x D D D D D D α α − − = = + + The system (55) describes the positive feedback be- tween the components of velocity. We will look for the solution of linear system (55) in the following form: ( ), exp .x yW W T ikZγ + (56) Substituting (56) in equation (55), we obtain the dis- persion equation: 2.x y k kγ α α= ± − (57) The dispersion equation (57) shows the existence at 0x yα α  the large scale instability with maximum growth rate max , 4 x yα α γ = at the wave vector max 1 . 2 x yk α α= As a result of the development of insta- bility the large scale helical Beltrami vortices are gener- ated in the system. When 0x yα α  , damped oscilla- tions with a frequency 0ω = x y kα α arise instead of instability. In fact the behavior of γ depends on how is located the external force 0 0,x yF F with respect to the perpendicular projections of the angular velocity of ro- tation and the values of components , .x yD D If one of the component ,x yD D is zero or equal to 2 , then the instability is absent. Instability exists in the following cases: 2 2 2 2 2 2 2 2 2 2 2 2 1. 2, 2; 2. , 0, 2, 2; 3. 0, 0, 2, 2; 4. 0, 0, 2, 2; 5. 0, 0, 2, 2; 2, 2; 6. 0, 0, 2, 2; 2, 2; x y x y x y x y x y x y x y x y y x y x x y y x y x D D D D D D D D D D D D D D D D D D orD D D D D D orD D                          In all other cases damped oscillations occur. 5. SATURATION OF INSTABILITY AND NONLINEAR VORTEX STRUCTURES It is clear that with increasing of amplitude nonlinear terms decrease and instability becomes saturated. Con- sequently stationary nonlinear vortex structures are formed. To find these structures let us choose for equa- tions (54) 0 T ∂ = ∂ and integrate equations one time over Z. We obtain the system of equations: ISSN 1562-6016. ВАНТ. 2015. №4(98) 268 ( ) ( ) ( ) ( ) 122 2 222 2 1 , 2 4 1 2 1 2 4 . 1 2 y x y y y y x y x x x x D W C w D w w DW C w D d dZ d dZ w w = +  − + + −  = − +  − + + −  (58) Let's take for this system new variables: 1 ,1 .x x y yw u w u− = − = Then we obtain: ( ) ( ) ( ) ( ) 122 2 2 4 222 2 2 4 1 , 2 1 2 1 1 . 2 1 2 1 y y y y y x x x x x x y du dZ du D C D D u u D C D D u udZ = − = + + + − + + + + − + (59) The system of equations (59) can be written in Ham- iltonian form: , . x y y x du H dZ u du H dZ u ∂ = − ∂ ∂ = ∂ Where Hamiltonian H has the form: ( ) ( ), , ,x x y yH h D u h D u= + (60) with function ( ),h D u : ( ) ( ) ( )22 2 2 4 , . 2 1 2 1 D duh D u Cu D D u u = + + + − + ∫ (61) Integral in expression (61) is calculated in elemen- tary functions [17]. Let us choose for simplicity 1.x yD D D= = = In this case, the function (61) is equal [17]: ( ) 2 2 2 1 2 2 2ln . 16 2 2 2 u u uh u arctg Cu u u u  + + = + + − + −  (62) The sum ( ) ( )x yh u h u+ can be write down as one formula. Then Hamiltonian is equal: ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 1 22 2 2 2 2 2 21 ln 16 2 2 2 2 2 2 2 21 16 2 4 x x y y x x y y y x x y x y x y x y u u u u H u u u u u u u u arctg C u C u u u u u + + + + = + − + − + − + − + + + + − − (63) It is easy to construct the phase portrait of Fig. 4. for Hamiltonian (63) and specific values 1C = 0.1, 2C = 0.1. Fig. 2. Nonlinear spiral wave Beltrami, which corre- sponds to a closed trajectory in the phase plane ( 1C =0.1, 2C = 0.1). The spiral is oriented along Z-axis and inclined relative to the axis of rotation The phase portrait shows the presence of closed tra- jectories in the phase plane around elliptic points and separatrix that connect hyperbolic points. It is obvious that the closed trajectories correspond to nonlinear peri- odic solutions. The separatrix correspond to localized solutions of kink type. Fig. 3. Localized solution (kink), which corresponds to the separatrix in the phase plane (C1=0.1, C2= 0.1) Fig. 4. Phase plane for Hamiltonian (63) (C1=0.1, C2= 0.1). We see the presence of closed trajectories around the elliptic points and separatrix that connect hyperbolic points. Phase portrait is typical for Hamiltonian systems CONCLUSIONS In this work we found new large scale instability in rotating fluid. It is supposed that the small scale vortex external force in rotating coordinates system acts on fluid which maintains the small velocity field fluctua- tions (small-scale turbulence with low Reynolds number , 1R R ). For the real applications this Reynolds num- ber should be calculated with help of the turbulent vis- cosity. The asymptotic development of motion equa- tions by small Reynolds number allows obtaining mo- tion equations for the large scale. These equations are of the hydrodynamic α- effect type, in which velocity components Wx, Wy are connected by the positive feed- back. This may result in the appearance of the large scale vortex instability. This instability is responsible for the formation in rotating fluid with small scale ex- ternal force of large scale Beltrami vortices. With fur- ther increase of amplitude the instability stabilizes and passes to a stationary mode. In this mode the nonlinear stationary vortex structures are formed. The most inter- esting structures belong to a variety of vortex kinks. These kinks connect stationary hyperbolic points of the dynamical system (58). Note that in contrast to previous work on the hydro- dynamic α- effect in rotating fluid, the method enables us to construct an asymptotic development in a natural way and to explore non-linear theory of nonlinear sta- tionary vortex kinks. ISSN 1562-6016. ВАНТ. 2015. №4(98) 269 REFERENCES 1. H.P. Grinspen. The Theory of Rotating Fluids. MA: “Breukelen Press”, 1990. 2. Rotating Fluids in Geophysics / P.H. Roberts and A.M. Soward. “Acad. Press”, 1978. 3. C. Clarke, B. Carswell. Principles of Astrophysical Fluid Dynamics. Cambridge: “Univ. Press”, 2007. 4. G.K. Vallis. Atmospheric and Oceanic Fluid Dy- namics. Cambridge: “Univ. Press”, 2010. 5. M.A. Abramowicz, A. Lanza, E.A. Spigel, E. Szusz- kiewicz // Nature. 1992, v.356, p.41. 6. P.N. Brandt, G.B. Scharmer, S. Ferguson, R.A. Shine, T.D. Tarbell, A.M. Title // Nature. 1988, v. 335, p. 238. 7. G. Dritschel, B. Legras. Modeling Oceanic and At- mospheric Vortices // Phys. Today. 1993, v.46, p. 44. 8. S.S. Moiseev, R.Z. Sagdeev, A.V. Tur, G.A. Khomenko, V.V. Yanovsky. Theory of large-scale structures in hydrodynamic turbulence // JETP. 1983, v. 58, p. 1149. 9. S.S. Moiseev, P.B. Rutkiewich, A.B. Tur, V.V. Yanovsky. Spiral vortex dynamo in turbulent convection // JETP. 1988, v.67, p. 294. 10. E.A. Loupian, A.A. Mazurov, P.B. Rutkiewich, A.V. Tur. Generation of large-scale eddies as a re- sult of the spiral turbulence convective nature // JETP. 1992, v. 75, p. 833. 11. G.A. Khomenko, S.S. Moiseev, A.V. Tur. The hy- drodynamic alpha-effect in a compressible fluid // J. Fluid Mech. 1991, v. 225, p. 355. 12. G.V. Levina, S.S. Moiseev, P.B. Rutkevich. Hydro- dynamic alpha-effect in a convective system // Ad- vances in Fluid Mechanics. 2000, v. 25, p. 111. 13. U. Frisch, Z.S. She, P.L. Sulem. Large-scale flow driven by the anisotropic kinetic alpha effect // Phys- ica D. 1987, v. 28, p. 382. 14. A.V. Tur, V.V. Yanovsky. Nonlinear vortex structu- res in stratified fluid driven by small-scale helical force // Open Journal of Fluid Dynamics. 2013, v. 3, p. 64. 15. L.L. Kitchatinov, G. Rudiger, G. Khomenko. Large- scale vortices in rotating stratified disks // Astron. Astrophys. 1994, v. 287, p. 320. 16. H.K. Moffat. Magnetic Field Generation in Electri- cally Conducting Fluids. Cambridge: “University Press”, 1978. 17. I.S. Gradshteyn, I.M. Ryzhik. Tables of integrals, sums, series and products. M.: “Science”, 1974. Article received 09.06.2015 КРУПНОМАСШТАБНАЯ НЕУСТОЙЧИВОСТЬ И НЕЛИНЕЙНЫЕ ВИХРЕВЫЕ СТРУКТУРЫ В НАКЛОННО ВРАЩАЮЩЕЙСЯ ЖИДКОСТИ С МЕЛКОМАСШТАБНОЙ ВНЕШНЕЙ НЕСПИРАЛЬНОЙ СИЛОЙ М.И. Копп, А.В. Тур, В.В. Яновский Найдена новая крупномасштабная неустойчивость, которая возникает в наклонно вращающейся жидко- сти с мелкомасштабной турбулентностью. Турбулентность генерируется мелкомасштабной внешней силой с малым числом Рейнольдса. Внешняя сила не имеет спиральности. Теория построена строгим методом мно- гомасштабного асимптотического разложения. Нелинейные уравнения для неустойчивости получены в тре- тьем порядке теории возмущений. Проведено детальное исследование нелинейной стадии неустойчивости и найдены нелинейные периодические вихри Бельтрамиевского типа и вихревые кинки. ВЕЛИКОМАСШТАБНА НЕСТІЙКІСТЬ ТА НЕЛІНІЙНІ ВИХОРОВІ СТРУКТУРИ В РІДИНІ, ЩО ОБЕРТАЄТЬСЯ ПІД НАХИЛОМ, З МАЛОМАСШТАБНОЮ ЗОВНІШНЬОЮ НЕСПІРАЛЬНОЮ СИЛОЮ М.І. Копп, А.В. Тур, В.В. Яновський Знайдено великомасштабну нестійкість, яка виникає в рідині, що обертається під нахилом, у маломасш- табній турбулентності. Турбулентність генерується маломасштабною зовнішньою силою з малим числом Рейнольдса. Зовнішня сила не має спіральності. Теорія побудована з використанням послідовного багатома- сштабного асимптотичного методу. Нелінійні рівняння для нестійкості отримано в третьому порядку теорії збурень. Проведено детальне дослідження нелінійної стадії нестійкості та знайдено нелінійні періодичні вихори Бельтрамієвського типу та вихорові кінки. Introduction 1. The Main Equations and Formulation of the Problem Великомасштабна нестійкість та нелінійні вихорові структури В рідині, що обертається під нахилом, з маломасштабною зовнішньою неспіральною силою