System spectral analysis of the fractal ultra-wideband signals

The theoretical basis and practical peculiarities of the system spectral analysis are briefly considered. The necessity and the expediency of simultaneously application of different linear and non-linear integral transforms during the system spectral analysis performance are explained. The system sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2015
Hauptverfasser: Chernogor, L.F., Kravchenko, S.G., Lazorenko, O.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/112224
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:System spectral analysis of the fractal ultra-wideband signals / L.F. Chernogor, S.G. Kravchenko, O.V. Lazorenko // Вопросы атомной науки и техники. — 2015. — № 4. — С. 244-247. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112224
record_format dspace
spelling Chernogor, L.F.
Kravchenko, S.G.
Lazorenko, O.V.
2017-01-18T19:48:21Z
2017-01-18T19:48:21Z
2015
System spectral analysis of the fractal ultra-wideband signals / L.F. Chernogor, S.G. Kravchenko, O.V. Lazorenko // Вопросы атомной науки и техники. — 2015. — № 4. — С. 244-247. — Бібліогр.: 5 назв. — англ.
1562-6016
PACS: 07.50.Qx, 02.30.Uu
https://nasplib.isofts.kiev.ua/handle/123456789/112224
The theoretical basis and practical peculiarities of the system spectral analysis are briefly considered. The necessity and the expediency of simultaneously application of different linear and non-linear integral transforms during the system spectral analysis performance are explained. The system spectral analysis usage for investigations of the time-frequency structure of the fractal ultra-wideband signals is shown to be effective and useful.
Стисло розглянуто теоретичні засади та практичні особливості системного спектрального аналізу. Роз’яснено необхідність і доцільність одночасного використання різних лінійних і нелінійних інтегральних перетворень для проведення системного спектрального аналізу. Продемонстровано, що застосування системного спектрального аналізу для дослідження часо-частотної структури фрактальних надширокосмугових сигналів є корисним та ефективним.
Кратко рассмотрены теоретические основы и практические особенности системного спектрального анализа. Разъяснена необходимость и целесообразность одновременного применения различных линейных и нелинейных интегральных преобразований для проведения системного спектрального анализа. Показано, что использование системного спектрального анализа для исследования время-частотной структуры фрактальных сверхширокополосных сигналов является полезным и эффективным.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Нелинейные процессы в плазменных средах
System spectral analysis of the fractal ultra-wideband signals
Системний спектральний аналіз фрактальних надширокосмугових сигналів
Системный спектральный анализ фрактальных сверхширокополосных сигналов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title System spectral analysis of the fractal ultra-wideband signals
spellingShingle System spectral analysis of the fractal ultra-wideband signals
Chernogor, L.F.
Kravchenko, S.G.
Lazorenko, O.V.
Нелинейные процессы в плазменных средах
title_short System spectral analysis of the fractal ultra-wideband signals
title_full System spectral analysis of the fractal ultra-wideband signals
title_fullStr System spectral analysis of the fractal ultra-wideband signals
title_full_unstemmed System spectral analysis of the fractal ultra-wideband signals
title_sort system spectral analysis of the fractal ultra-wideband signals
author Chernogor, L.F.
Kravchenko, S.G.
Lazorenko, O.V.
author_facet Chernogor, L.F.
Kravchenko, S.G.
Lazorenko, O.V.
topic Нелинейные процессы в плазменных средах
topic_facet Нелинейные процессы в плазменных средах
publishDate 2015
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Системний спектральний аналіз фрактальних надширокосмугових сигналів
Системный спектральный анализ фрактальных сверхширокополосных сигналов
description The theoretical basis and practical peculiarities of the system spectral analysis are briefly considered. The necessity and the expediency of simultaneously application of different linear and non-linear integral transforms during the system spectral analysis performance are explained. The system spectral analysis usage for investigations of the time-frequency structure of the fractal ultra-wideband signals is shown to be effective and useful. Стисло розглянуто теоретичні засади та практичні особливості системного спектрального аналізу. Роз’яснено необхідність і доцільність одночасного використання різних лінійних і нелінійних інтегральних перетворень для проведення системного спектрального аналізу. Продемонстровано, що застосування системного спектрального аналізу для дослідження часо-частотної структури фрактальних надширокосмугових сигналів є корисним та ефективним. Кратко рассмотрены теоретические основы и практические особенности системного спектрального анализа. Разъяснена необходимость и целесообразность одновременного применения различных линейных и нелинейных интегральных преобразований для проведения системного спектрального анализа. Показано, что использование системного спектрального анализа для исследования время-частотной структуры фрактальных сверхширокополосных сигналов является полезным и эффективным.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/112224
citation_txt System spectral analysis of the fractal ultra-wideband signals / L.F. Chernogor, S.G. Kravchenko, O.V. Lazorenko // Вопросы атомной науки и техники. — 2015. — № 4. — С. 244-247. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT chernogorlf systemspectralanalysisofthefractalultrawidebandsignals
AT kravchenkosg systemspectralanalysisofthefractalultrawidebandsignals
AT lazorenkoov systemspectralanalysisofthefractalultrawidebandsignals
AT chernogorlf sistemniispektralʹniianalízfraktalʹnihnadširokosmugovihsignalív
AT kravchenkosg sistemniispektralʹniianalízfraktalʹnihnadširokosmugovihsignalív
AT lazorenkoov sistemniispektralʹniianalízfraktalʹnihnadširokosmugovihsignalív
AT chernogorlf sistemnyispektralʹnyianalizfraktalʹnyhsverhširokopolosnyhsignalov
AT kravchenkosg sistemnyispektralʹnyianalizfraktalʹnyhsverhširokopolosnyhsignalov
AT lazorenkoov sistemnyispektralʹnyianalizfraktalʹnyhsverhširokopolosnyhsignalov
first_indexed 2025-11-25T21:02:28Z
last_indexed 2025-11-25T21:02:28Z
_version_ 1850545436116385792
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 244 SYSTEM SPECTRAL ANALYSIS OF THE FRACTAL ULTRA-WIDEBAND SIGNALS L.F. Chernogor1, S.G. Kravchenko2, O.V. Lazorenko2 1V.N. Karazin Kharkiv National University, Kharkov, Ukraine; 2Kharkiv National University of Radio Electronics, Kharkov, Ukraine; E-mail: Leonid.F.Chernogor@univer.kharkov.ua; 1gisone@gmail.com; Oleg-Lazorenko@yandex.ua The theoretical basis and practical peculiarities of the system spectral analysis are briefly considered. The neces- sity and the expediency of simultaneously application of different linear and non-linear integral transforms during the system spectral analysis performance are explained. The system spectral analysis usage for investigations of the time-frequency structure of the fractal ultra-wideband signals is shown to be effective and useful. PACS: 07.50.Qx, 02.30.Uu INTRODUCTION Last years the new types of the ultra-wideband (UWB) signals have been proposed. In particular, the fractal, the random, the direct-chaotic UWB signals, the UWB signals with changing mean frequency can be considered as the suitable examples of such new UWB signal types [1]. These new UWB signal types have been started to apply in many branches of science and engineering. Moreover, many natural and artificial pro- cesses in nature, in particular, in the complex open dy- namical non-linear system called as the Earth- atmosphere-ionosphere-magnetosphere were appeared to be just the UWB processes, which can be classified as one of those new types [2]. The time-frequency structure of such UWB signals and processes is appeared to be more complex and mis- cellaneous than one of the traditional ultra-short UWB signals was. Therefore, for successful analysis and in- vestigations of such signals and processes it is necessary to use, of course, a new analysis method. One of the possible ways is the application of system spectral analysis. Actuality of this work is conditioned to these. 1. FRACTAL ULTRA-WIDEBAND SIGNAL MODELS By the definition, a fractal UWB (FUWB) signal is a UWB signal with self-affine property and fractal dimen- sion [1, 3]. Many different FUWB signal models as analytical, as numerical were proposed [1, 3]. In this paper, as an example, we consider the following model based on the Weierstrass function:        2 4 2 0 2 4 1 ( ) 1 cos 2 ; 1 D M D n n n n D M FUWB t b b sb t b                  where t is the time variable, b is the time scale param- eter, s is the frequency scale parameter, D is the frac- tal dimension of the signal, 1 2D  , n is the phase distributed randomly at the interval 0,2   , M is the harmonics number (if M   , a mathematical fractal is obtained). 2. SYSTEM SPECTRAL ANALYSIS BASES One of the most effective modern signal analysis methods, called as the system spectral analysis, has been proposed in 2007 by the authors of the paper [4]. The system spectral analysis is based on the simul- taneous application of set of linear and non-linear inte- gral transforms [1, 4, 5]. In first group there are the con- tinuous wavelet transform (CWT), the analytical wave- let transform (AWT), the Gabor transform (GT), the adaptive Fourier transform (AFT) and the short-time Fourier transform (STFT). Second group includes some members of the Cohen’s class of square non-linear inte- gral transforms, namely the Fourier spectrogram (FS), the Wigner transform (WiT), the Choi-Williams trans- form (ChWT) and the Born-Jordan transform (BJT). In addition to the module of spectral density function (SDF), for every transform also the skeletons, ener- gograms, dispersions of the SDF module for linear transforms and standard deviations of the SDF module for non-linear transforms are used. The basic idea of the system spectral analysis is the compensation of disadvantages of the some transforms due to advantages of other ones. A quantity and set of integral transforms, used in the systems spectral analysis, can change in the future. For the system spectral analysis performing the sys- tem of computer mathematics MATLAB including packages Wavelet Toolbox, Time-Frequency Toolbox, Wave Laboratory and some original software for MATLAB created by authors were used. 3. ANALYSIS RESULTS Considering the results of the system spectral analy- sis of model FUWB signal with the fractal dimension 1.5D  (Fig. 1,a), lets demonstrate the validating of our transform choice. The linear transform selection was based on the such reasons. The CWT SDF (Fig. 1,b) has a good time- frequency resolution, its basis is self-similar, there are many different wavelets allowing choosing the optimal one for each signal analyzed. The argument of the com- plex AWT SDF (Fig. 1,d) has more abilities for the ana- lyzing of the signals with peculiarities than the CWT has. Therefore, AWT is appears to be very useful addi- tion to the CWT. The GT SDF (Fig. 1,e) has the best time-frequency localization in the middle of all time- frequency transforms. mailto:1gisone@gmail.com ISSN 1562-6016. ВАНТ. 2015. №4(98) 245 Fig. 1. The analysis results of model FUWB signal: a, j – signal in time domain; b – CWT SDF with Morlet wavelet; c – CWT SDF skeleton; d – phase of complex coefficients of AWT with cgau1 wavelet; e – GT SDF module; f – CWT SDF energogram; g – dispersion of CWT SDF coefficients; h – GT SDF ener- gogram; i – dispersion of GT SDF module; k – AFT SDF module; l – AFT SDF skeleton; m – STFT SDF mod- ule; n – STFT SDF skeleton; o – AFT SDF energogram; p – dispersion of AFT SDF module; r – STFT SDF energogram; s – dispersion of AFT SDF module ISSN 1562-6016. ВАНТ. 2015. №4(98) 246 Fig. 2. The analysis results of model FUWB signal: a, j – signal in time domain; b – WiT SDF; c – WiT SDF skeleton; d – FS SDF; e – FS SDF skeleton; f – WiT SDF energogram; g – dispersion of WiT SDF coefficients; h – FS SDF energogram; i – dispersion of FS SDF module; k – ChWT SDF module; l – ChWT SDF skeleton; m – BJT SDF module; n – BJT SDF skeleton; o – ChWT SDF energogram; p – dispersion of ChWT SDF module; r – BJT SDF energogram; s – dispersion of BJT SDF module ISSN 1562-6016. ВАНТ. 2015. №4(98) 247 The AFT SDF (Fig. 1,k) is appeared to be another useful look at the signal time-frequency structure. Sometimes, the AFT comes to the AWT, but in a num- ber of cases it has an independent sense, in particular, when the non-symmetrical window functions have been used. The STFT SDF (Fig. 1,m) is appeared to be a good addition to the other ones. It is useful especially for the narrow-band signal analysis. The non-linear transform selection was based on such reasons. The WiT SDF (Fig. 2,b) has good time- frequency resolution which is better than one for linear transforms. The ChWT SDF (Fig. 2,k) has the parame- ter allowing to control by level of the cross-terms ap- pearing in the WiT SDF in case of the multi-component signal analysis. Another way of the cross-term influence reduction is given by the BJT SDF (Fig. 2,m) applica- tion. The FS SDF (Fig. 2,d) has the worst time- frequency resolution, but it has no interference struc- tures for multi-component signals. Being the limit result of the WiT averaging in time- and frequency domains, the FS allows effectively selecting the really existent signals and the cross-terms during the WiT interpreta- tion process. Moreover, all non-linear transforms are appeared to be useful for the analysis of the signals in case of the non-Gaussian noise presence. Some words about other numerical characteristics. The skeleton is defined as the set of the local maxima lines of the SDF module. Some experts believe that in skeleton there is all possible information about signal investigated. The distribution of the energy of the analyzed signal along the period or frequency variable is given exactly by the energogram. Some another view is given by the dispersion of module of the SDF coefficients for linear transforms and the mean-square deviation of module of the SDF coefficients for non-linear ones. The time-frequency structure of the model FUWB sig- nal was found to be fractal. This is demonstrated partic- ularly bright by the SDFs and skeletons of the linear integral transforms, namely the CWT and the AWT. The non-linear transforms results are appeared to be slightly worse. CONCLUSIONS • The system spectral analysis as a new integrated signal analysis method based on the simultaneous application of linear and non-linear integral trans- forms got further development. • The system spectral analysis was shown to be able to perform a complex research of a signal, compensat- ing the disadvantages of some used integral trans- forms by advantages other ones. • On the example of study of the model FUWB signal the efficiency of the system spectral analysis as a new signal analysis method was shown. REFERENCES 1. O.V. Lazorenko, L.F. Chernogor. Ultrawideband Signals and Processes: Monograph. Kharkov: V.N. Karazin Kharkiv National University, 2009. 2. L.F. Chernogor. About Nonlinearity in Nature and Science: Monograph. Kharkov: V.N. Karazin Kharkiv National University, 2008. 3. O.V. Lazorenko, A.A Potapov, L.F. Chernogor. Fractal Ultrawideband Signals // Informational secu- rity: the encryption methods / Ed.-in-ch. E.M. Suharev. Moscow: “Radiotechnika”, 2011. 4. O.V. Lazorenko, L.F. Chernogor. System Spectral Analysis of Signals: Theoretical Bases and Practical Applications // Radio Physics and Radio Astronomy (12). 2007, № 2, p. 162-181. 5. L.F. Chernogor, O.V. Lazorenko. System Spectral Analysis of Model Ultra-Wideband Signals // Proc. Ultrawideband and Ultrashort Impulse Signals. Se- vastopol, Ukraine, 2012, p. 243-245. Article received 01.06.2015 СИСТЕМНЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ ФРАКТАЛЬНЫХ СВЕРХШИРОКОПОЛОСНЫХ СИГНАЛОВ Л.Ф. Черногор, С.Г. Кравченко, О.В. Лазоренко Кратко рассмотрены теоретические основы и практические особенности системного спектрального ана- лиза. Разъяснена необходимость и целесообразность одновременного применения различных линейных и нелинейных интегральных преобразований для проведения системного спектрального анализа. Показано, что использование системного спектрального анализа для исследования время-частотной структуры фрак- тальных сверхширокополосных сигналов является полезным и эффективным. СИСТЕМНИЙ СПЕКТРАЛЬНИЙ АНАЛІЗ ФРАКТАЛЬНИХ НАДШИРОКОСМУГОВИХ СИГНАЛІВ Л.Ф. Чорногор, С.Г. Кравенко, О.В. Лазоренко Стисло розглянуто теоретичні засади та практичні особливості системного спектрального аналізу. Роз’яснено необхідність і доцільність одночасного використання різних лінійних і нелінійних інтегральних перетворень для проведення системного спектрального аналізу. Продемонстровано, що застосування систе- много спектрального аналізу для дослідження часо-частотної структури фрактальних надширокосмугових сигналів є корисним та ефективним. introduction 1. fractal ultra-wideband signal models 2. system spectral analysis bases 3. analysis results Conclusions references Системный спектральный анализ фрактальных сверхширокополосных сигналов Системний спектральний аналіз фрактальних надширокосмугових сигналів