Probe formation in proton beam writing facility at IAP NASU

The principles of a proton beam writing facility were described. Particular attention was paid to the problem of probe-forming system design. It was shown that using of separate systems and parts of the scanning nuclear microprobe is the most effective solution. Various probe-forming system configur...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2015
Автори: Lapin, O.S., Ponomarev, A.G.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/112234
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Probe formation in proton beam writing facility at IAP NASU / O.S. Lapin, A.G. Ponomarev // Вопросы атомной науки и техники. — 2015. — № 4. — С. 57-61. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112234
record_format dspace
spelling Lapin, O.S.
Ponomarev, A.G.
2017-01-18T19:56:34Z
2017-01-18T19:56:34Z
2015
Probe formation in proton beam writing facility at IAP NASU / O.S. Lapin, A.G. Ponomarev // Вопросы атомной науки и техники. — 2015. — № 4. — С. 57-61. — Бібліогр.: 19 назв. — англ.
1562-6016
PACS: 41.85.P; 13 41.85.Gy; 14 41.85.Lc; 15 41.85.Si
https://nasplib.isofts.kiev.ua/handle/123456789/112234
The principles of a proton beam writing facility were described. Particular attention was paid to the problem of probe-forming system design. It was shown that using of separate systems and parts of the scanning nuclear microprobe is the most effective solution. Various probe-forming system configurations for proton beam writing facility have been investigated. The optimization problem of proton beam formation was solved. On the base of this solution the probe-forming system which has best corresponded to requirements for the lithographic process has been found.
Наданo опис принципів побудови каналу протонно-променевої літографії. Особливу увагу приділено завданню щодо створення зондоформуючої системи. Показано, що найбільш ефективним є рішення з використання окремих систем і пристроїв каналу ядерного скануючого мікрозонда. Розглянуто різні конфігурації зондоформуючої системи каналу протонно-променевої літографії. На підставі рішення оптимізаційної задачі з формування пучка протонів знайдена зондоформуюча система, яка найкраще відповідає вимогам для проведення літографічного процесу.
Дано описание принципов построения канала протонно-лучевой литографии. Особое внимание уделено задаче по созданию зондоформирующей системы. Показано, что наиболее эффективным решением является использование отдельных систем и устройств канала ядерного сканирующего микрозонда. Рассмотрены различные конфигурации зондоформирующей системы канала протонно-лучевой литографии. На основании решения оптимизационной задачи по формированию пучка протонов найдена зондоформирующая система, которая наилучшим образом отвечает требованиям для проведения литографического процесса.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Нерелятивистская электроника
Probe formation in proton beam writing facility at IAP NASU
Формування пучка в каналі протонно-променевої літографії ІПФ НАНУ
Формирование пучка в канале протонно-лучевой литографии ИПФ НАНУ
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Probe formation in proton beam writing facility at IAP NASU
spellingShingle Probe formation in proton beam writing facility at IAP NASU
Lapin, O.S.
Ponomarev, A.G.
Нерелятивистская электроника
title_short Probe formation in proton beam writing facility at IAP NASU
title_full Probe formation in proton beam writing facility at IAP NASU
title_fullStr Probe formation in proton beam writing facility at IAP NASU
title_full_unstemmed Probe formation in proton beam writing facility at IAP NASU
title_sort probe formation in proton beam writing facility at iap nasu
author Lapin, O.S.
Ponomarev, A.G.
author_facet Lapin, O.S.
Ponomarev, A.G.
topic Нерелятивистская электроника
topic_facet Нерелятивистская электроника
publishDate 2015
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Формування пучка в каналі протонно-променевої літографії ІПФ НАНУ
Формирование пучка в канале протонно-лучевой литографии ИПФ НАНУ
description The principles of a proton beam writing facility were described. Particular attention was paid to the problem of probe-forming system design. It was shown that using of separate systems and parts of the scanning nuclear microprobe is the most effective solution. Various probe-forming system configurations for proton beam writing facility have been investigated. The optimization problem of proton beam formation was solved. On the base of this solution the probe-forming system which has best corresponded to requirements for the lithographic process has been found. Наданo опис принципів побудови каналу протонно-променевої літографії. Особливу увагу приділено завданню щодо створення зондоформуючої системи. Показано, що найбільш ефективним є рішення з використання окремих систем і пристроїв каналу ядерного скануючого мікрозонда. Розглянуто різні конфігурації зондоформуючої системи каналу протонно-променевої літографії. На підставі рішення оптимізаційної задачі з формування пучка протонів знайдена зондоформуюча система, яка найкраще відповідає вимогам для проведення літографічного процесу. Дано описание принципов построения канала протонно-лучевой литографии. Особое внимание уделено задаче по созданию зондоформирующей системы. Показано, что наиболее эффективным решением является использование отдельных систем и устройств канала ядерного сканирующего микрозонда. Рассмотрены различные конфигурации зондоформирующей системы канала протонно-лучевой литографии. На основании решения оптимизационной задачи по формированию пучка протонов найдена зондоформирующая система, которая наилучшим образом отвечает требованиям для проведения литографического процесса.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/112234
citation_txt Probe formation in proton beam writing facility at IAP NASU / O.S. Lapin, A.G. Ponomarev // Вопросы атомной науки и техники. — 2015. — № 4. — С. 57-61. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT lapinos probeformationinprotonbeamwritingfacilityatiapnasu
AT ponomarevag probeformationinprotonbeamwritingfacilityatiapnasu
AT lapinos formuvannâpučkavkanalíprotonnopromenevoílítografííípfnanu
AT ponomarevag formuvannâpučkavkanalíprotonnopromenevoílítografííípfnanu
AT lapinos formirovaniepučkavkanaleprotonnolučevoilitografiiipfnanu
AT ponomarevag formirovaniepučkavkanaleprotonnolučevoilitografiiipfnanu
first_indexed 2025-11-25T20:53:33Z
last_indexed 2025-11-25T20:53:33Z
_version_ 1850542473294643200
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 57 PROBE FORMATION IN PROTON BEAM WRITING FACILITY AT IAP NASU O.S. Lapin, A.G. Ponomarev Institute of Applied Physics NASU, Sumy, Ukraine E-mail: lapin@iap.sumy.org The principles of a proton beam writing facility were described. Particular attention was paid to the problem of probe-forming system design. It was shown that using of separate systems and parts of the scanning nuclear micro- probe is the most effective solution. Various probe-forming system configurations for proton beam writing facility have been investigated. The optimization problem of proton beam formation was solved. On the base of this solution the probe-forming system which has best corresponded to requirements for the lithographic process has been found. PACS: 41.85.P; 13 41.85.Gy; 14 41.85.Lc; 15 41.85.Si INTRODUCTION The progress in nanotechnology relates to overcom- ing the difficulties of 3D structures fabrication with a high aspect ratio and characteristic dimensions less than 100 nm. This causes an interest in developing of alterna- tive techniques for high-resolution lithography. Current- ly, the proton-beam writing (PBW) method of 3D mi- cro- and nanostructure fabrication, based on the expo- sure of the material surface by a focused beam of pro- tons with an energy of a several MeV, is well devel- oped [1, 2]. Protons with a few MeV energy in contrast to electrons (e-beam lithography, EBL) [3] and slow heavy ions (Focusing Ion Beam, FIB) [4] have a number of characteristic features while moving in materials. These features are related to the fact that the probability of a proton interaction with atomic electrons is a few orders of magnitude larger than its scattering by atomic nuclei of the irradiated material. Since the effect of pro- ton-electron interaction is small, the trajectory of pro- tons on the first half of the path in material is close to a straight line. The low energy of secondary electrons is a result of the high mismatch in mass differences of the proton and the electron that gives a low proximity ef- fect. Therefore, the advantage of this technology is a possibility to obtain structures with smooth and straight walls. The fact that the penetration depth of protons for the selected material depends on its energy enables to create complex three-dimensional multilayer structures. Scanning nuclear microprobe (SNMP) [5, 6] is a hardware for proton beam writing, where a beam of protons accelerated by electrostatic accelerator to the energy of a few MeV is focused by the system of mag- netic quadrupole lenses (MQL). The possibility of writ- ing process is directly related to the characteristics of SNMP’s probe-forming system (PFS). It should focus a proton beam into a spot with the minimum size and maximum current on the surface of irradiated material. This requires of the PFS with a high demagnification and large acceptance. In this paper, the principles to choose a PFS for proton beam writing facility of analyt- ical accelerator-based facility (AABF) at the Institute of Applied Physics, National Academy of Sciences of Ukraine (IAP NASU) are reviewed. 1. BASIC PRINCIPLES OF FOCUSING SYSTEM CONFIGURATION The SNMP is one of AABF’s channels at the IAP NASU [7]. Its main applications are the study of struc- ture and elemental composition of samples of different origin [8, 9]. The main methods of such studies are nu- clear-physical techniques like μ-PIXE and μ-RBS. For these techniques, the magnitude of the beam current I ~ 100 pA is determined by small cross-sections of the processes of particle induced X-ray emission and backscattered ions respectively. To obtain the desired current the rectangular window of object collimator must be opened to 40 µm due to the low brightness of the beam. The size of the probe is provided at the level of 2 μm, because PFS at the conventional SNMP has low demagnification D = 23. To reduce the probe size requires decreasing the size of collimator windows. On the other hand, this reduces the beam current and leads to an increasing in the proportion of ions scattered on the collimators jaws. Due to the influence of aberra- tions, such ions are focused inadequately on the sample surface that results in deterioration of the microprobe resolution. Therefore, parameters of the current SNMP largely do not meet the requirements for proton beam writing facilities for the fabrication of small structures with typical dimensions of < 100 nm. It is necessary to use new PFS with demagnification D > 100 that can be implemented by using a multiplet of MQL with a fun- damentally new focusing system configuration. A dis- tinctive feature of this new PFS is the using of four in- dependent power supplies of MQL. Currently PFS with two power supplies of MQL is used in SNMP of IAP NASU. This is necessary for stigmatic focusing of the beam, when Gaussian planes in two transverse direc- tions are matched with the plane of irradiated sample. In this case, the definition of the currents of two power supplies, which are used to supply lens coils, is reduced to the solution of two transcendental equations ,0),( ,0),( 21 21 = = IIf IIf y x where I1, I2 are currents in coils of lenses from two power supplies. In the case of four power supplies, there are infinite- ly set of solutions of choosing lens excitations. There- fore, the currents of two additional power supplies are determined by solving of the optimization problem, where a figure of merit is the acceptance of PFS. The acceptance is defined as a maximum quantity of the trajectory phase volume of the beam formed by rectan- gular object and angular collimators, which can be fo- cused into a probe of specified size d. Optimization ISSN 1562-6016. ВАНТ. 2015. №4(98) 58 problem in this case is a nonlinear programming prob- lem in the form )],([max)( ,,,, * dd yxyx RRrr τ τ Ω=Ω , )),,((),( dvold ττ Θ=Ω maxii BB ≤ , fx(I1,I2,I3,I4)=0, fy(I1,I2,I3,I4)=0, },2/δ ,2/)( ,2/)( , , , |)δ,,,,{( max0 0 0 0 0 0 0 0 0 0 0 0000000 δ≤ ≤≤ − ≤′≤ −−− ≤′≤ −− <<′′=Θ dzFdzF a yR y a yR a xRx a xR rx,rxyxyx tytx yyxx yx where τ = {I1, I2, I3, I4, a1,…,aN, ag, L1,eff,…, LN,eff } is a vector of parameters that affects the beam formation in the quadrupole PFS, N is a quantity of MQL in the sys- tem, ai is a drift gap before lens with the number I, аg is a working distance, Bi, Li,eff are a magnetic induction at the pole and the effective length of the lens with the number I; Θ(τ,d) is a phase volume of the beam ions formed by using of object and angular collimators; rx,ry, Rx,Ry are dimensions of the rectangular object and angular collimators; Fx(zt), Fy(zt) are nonlinear transformation of phase coor- dinates of ions from the object collimator plane into the plane of the irradiated sample, due to the influence of aberrations; δmax is a maximum momentum spread of the ions in the beam. In works [10 - 12] it was shown that the probe- forming systems with additional power supplies of lenses have a set of advantages in compare to systems with two power supplies. Such PFS have a higher ac- ceptance and possibility to change the demagnification in a wide range. The most efficient solution in designing of PBW fa- cility is to use separate elements and systems of existed microprobe (Fig. 1, positions 1-6), while the microprobe channel still can be used for its original objectives. This allows to reduce costs and space occupied in the exper- imental hall. General scheme of PBW facility at IAPis shown in Fig. 1. Collimators of PFS uses an object (po- sition 1) and angular (position 2) collimators of micro- probe. Fig. 1. Scheme of the PBW’s probe-forming system at IAP NASU: 1 – object collimator; 2 – angular collimator; 3, 4 – integrated doublet of MQL; 5 – magnetic scanning system; 6 – microprobe target chamber; 7 – vacuum valve; 8 – electrostatic scanning system; 9 – final multiplet of MQL; 10 – PBW chamber The PBW lens system consists of the second inte- grated doublet of MQL of SNMP (position 4) and the final multiplet (position 9). Design feature of integrated doublet is that the yoke and poles are made from a sin- gle piece of soft iron (Fig. 2,a) using the electrical dis- charge machining. a b c Fig. 2. Types of MQLs that are available for probe-forming system: integrated doublet of MQL (a); OM50m lens (b); IAP lens (c) The design ensures the identity of the magnetic flux- es in all four poles of each doublet’s lens and the preci- sion positioning of the poles to provide quadrupole symmetry [13]. This design also allows accurate align- ment of the doublet axes with the beam axis, which is necessary in separated PFS to reduce lens positioning aberrations. The outside diameter of the yoke is 235 mm, aperture radius is 6.5 mm, lens lengths are 65 and 44 mm, and the distance between the lenses is 46 mm. The maximum value of the magnetic field on the pole is 0.45 T. Two modernized MQLs − OM50m and IAP MQL − are available for the final multiplet of MQL (position 9). The pole form of IAP lens (see Fig. 2,c) is similar to integrated doublet and differs only in increased length [14]. The yoke of IAP lens has cylindrical shape with a diameter of 235 mm, length is 110 mm and an aperture radius is 6.5 mm, the maximum value of the magnetic field on the poles is no more than 0.4 T. Two OM50 type MQLs (Oxford Microbeams Ltd [15]) (see Fig. 2,b) have been modified. The modification was in replacing the current-carrying coils to allow using pow- er supplies with a maximum current of 10 A In this case, the maximum achievable value of magnetic field on the poles is 0.2 T, length of the lens is 60 mm, aper- ISSN 1562-6016. ВАНТ. 2015. №4(98) 59 ture radius is 7.5 mm, and yoke outside diameter is 200 mm. Thus, seven configurations of final multiplet have been identified employing between 2 and 3 lenses, as shown in Fig. 3. The notations of configurations are: C means that lens focuses in the plane xOz and defocuses in the plane yOz, D means that lens defocuses in the plane xOz and focuses in the plane yOz, number indi- cates the power supply connected to the lens. The spac- ing between lenses of all configurations is fixed and equal 32.5 mm. Fig. 3. Configurations of the final multiplet of MQL. In consideration of the integrated doublet of MQL, PBW lens systems are: quadruplet 1 (а); quadruplet 2 (b); quintuplet 1 (c); quintuplet 2 excitation mode (C3D4C3) (d); quintuplet 2 excitation mode (C3C3D4) (e); quintu- plet 3 excitation mode (C3D4D4) (f); quintuplet 3 excitation mode (C3D4C3) (g). Types of lenses: 1 – OM50m; 2 – IAP 2. SIMULATION Simulation was performed for 1.5 MeV proton beam with 5·10-5 energy spread. The system length (from ob- ject collimator to target) was L = 661.1 cm. Object-lens distance for all configuration was a0 = 345.3 cm. Linear properties of the focusing system were determined using a numerical code PROBFORM [16] based on the matri- zant method [17]. The working distance ag was varied by moving the final multiplet along the beam axis in the range 4…25 cm. For each position the optimal system parameters were obtained with the criterion of maxi- mum acceptance. The criterion was limited by the con- dition of the maximum current density, when the maxi- mum possible ion current had to be focused into a spot size d in the image plane. Optimization process was described in [18, 19] and realized in the numerical code MaxBEmit. The quadruplet 1 and quintuplet 2 with the excita- tion mode of the final multiplet (C3C3D4) (Fig. 4) showed the best performances for 4…9 cm and 10…25 cm working distance range respectively. Fig. 4. Acceptance: 1 – quadruplet 1; 2 – quadruplet 2; 3 – quintuplet 1; 4 – quintuplet 2 excitation mode (C3D4C3); 5 – quintuplet 2 excitation mode (C3C3D4); 6 – quintuplet 3 excitation mode (C3D4D4); 7 – quintuplet 3 excitation mode (C3D4C3) These two configurations are of the greatest interest. It should be mentioned that the working distance reduc- tion is limited by the physical parameters of the lens. However, as seen in Fig. 5 the magnetic field required for the second lens of the quadruplet 1 at the range of 4…18 cm working distance exceeds the value of the saturation of magnetic field of 0.2 T for that type of lens. At the same time, the obtained magnetic field of all lenses of the quintuplet 2 (see Figs. 5, 6) does not ex- ceed the maximum value. Fig. 5. Required field on poles of lenses OM50m: 1 – lens 1 quadruplet 1; 2 – lens 2 quadruplet 1; 3 – quadruplet 2; 4 – quintuplet 1; 5 – lens 1 quintuplet 2 excitation mode (C3D4C3); 6 – lens 2 quintuplet 2 excitation mode (C3D4C3); 7 – quintuplet 2 excitation mode (C3C3D4); 8 – quintuplet 3 excitation mode (C3D4D4); 9 – lens 1 quintuplet 3 excitation mode (C3D4C3); 10 – lens 2 quintuplet 3 excitation mode (C3D4C3); 11 – maximal field on poles ISSN 1562-6016. ВАНТ. 2015. №4(98) 60 Fig. 6. Required field on poles of lens IAP: 1 – quadruplet 2; 2 – quintuplet 1; 3 – quintuplet 2 excitation mode (C3D4C3); 4 – quintuplet 2 excitation mode (C3C3D4); 5 – quintuplet 3 excitation mode (C3D4D4); 6 – quintuplet 3 excitation mode (C3D4C3); 7 – maximal field on poles These results indicate that an optimum PFS is quin- tuplet 2 with the excitation mode of final multiplet (C3C3D4), because such configuration in practice can ensure maximum acceptance for small working distanc- es. Table shows parameters of the optimum probe- forming system. Working distance, cm 11 Field on poles, T B1;B2 -0.1254000;0.1648000 B3;B4 0.0567160;0.1119512 Demagnifications Dx × Dy 102×(-127.5) Chromatic aberrations, µm/mrad/% < x / x´δ > -175990.5 < y / y´δ > 21053.8 Spherical aberrations, µm/mrad/% < x / x´3 > 16301.5 < x / x´y´2 > 3661.2 < y / y´3 > -332.1 < y / y´x´2 > -2929.6 Acceptance, µm2mrad2 39 CONCLUSIONS Seven configurations of PFS for proton beam writ- ing facility was determined basing on available magnet- ic quadrupole lenses and considering their different ex- citation by four independent power supplies. For each configuration, the ion-optical characteristics were calcu- lated and the optimal parameters based on the value of maximum acceptance were determined. Comparison of simulation results showed that the quintuplet 2 with the excitation mode (C3C3D4) is the optimum probe- forming system for PBW facility, because it has the highest achievable acceptance on entire range of the considered working distances as well as can provide the demagnification D > 100. REFERENCES 1. F. Watt, M.B.H. Breese, A. Bettiol, J.A. van Kan. Proton beam writing: review // Materials today. 2007, v. 10, № 6, p. 20-29. 2. F. Watt, A.A. Bettiol, J.A. van Kan, et al. Ion beam lithograthy and nanofabrication: a review // Interna- tional Journal of Nanoscience. 2005, v. 4, № 3, p. 269-286. 3. L. Ressier, J. Grisolia, C. Martin, et al. Fabrication of planar cobalt electrodes separated by a sub-10nm gap using high resolution electron beam lithography with negative PMMA // Ultramicroscopy. 2007, v. 107, p. 985-988. 4. J. Gierak, A. Septier, C. Vieu. Design and realiza- tion of a very high-resolution FIB nanofabrication instrument // Nucl. Instr. and Meth. A. 1999, v. 427, p. 91-98. 5. A.D. Pogrebnyak, A.G. Ponomarev, A.P. Shpak, Yu.A. Kunickij. Primenenie mikro- i nanozondov dlya analiza malorazmernyx 3d materialov, nano- sistem i nanoobektov // UFN. 2012, v. 182, № 3, p. 287-321 (in Russian). 6. J.A. van Kan, P. Malar, A.B. de Vera. The second generation Singapore high resolution proton beam writing facility // Review of scientific instruments (83), 2012. 7. D.V. Magilin, A.G. Ponomarev, V.A. Rebrov, N.A. Sayko, K.I. Melnik, V.I. Miroshnichenko, V.Y. Storizhko. Performance of the Sumy nuclear microprobe with the integrated probe-forming sys- tem // Nucl. Instr. and Meth. B. 2009, v. 267, p. 2046-2049. 8. D.I. Kurbatov, О.V. Klymov, A.S. Opanasyuk, A.G. Ponomarev, P.M. Fochuk, H.M. Khlyap. Struc- tural characteristics of Zn1-xMnxTe polycrystalline films // Proc. of SPIE. 2012, v. 8507, p. 85071J-1- 85071J-6. 9. A.A. Valter, A.C. Englebrecht, D.V. Magilin, A.A. Ponomarev, A.I. Pisansky, A.G. Ponomarev. Evaluation of a calcium-rich uraninite composition by electron and proton microprobe // Mіneral. Zhurn. 2013, т. 35, № 3, с. 48-53. 10. A.A. Ponomarova, K.I. Melnik, G.S. Vorobjov, A.G. Ponomarev. One-stage probe-forming systems with quadrupole lenses excited by individual power supplies // Nucl. Instr. and Meth. B. 2011, v. 269, p. 2202-2205. 11. K.I. Melnik, D.V. Magilin, A.G. Ponomarev. Exper- imental results of microprobe focusing by quadru- plet with four independent lens power supplies // Nucl. Instr. and Meth. B. 2013, v. 306, p. 17-20. 12. A. Ponomarov, S.V. Kolinko, A.G. Ponomarev, N. Liu. Five magnetic quadrupole lenses with four power supplies as a single-stage lens system of a nuclear microprobe // Nucl. Instr. and Meth. B. 2015, v. 348, p. 83-87. 13. V.A. Rebrov, A.G. Ponomarev, V.K. Palchik, N.G. Melnik. The new design of magnetic quadru- pole lens doublet manufactured from a single piece // Nucl. Instr. and Meth. B. 2007, v. 260, p. 34-38. ISSN 1562-6016. ВАНТ. 2015. №4(98) 61 14. V.A. Rebrov, A.G. Ponomarev, D.V. Magilin i dr. Precizionnaya magnitnaya kvadrupolnaya linza yadernogo skaniruyushhego mikrozonda na baze el- ektrostaticheskogo perezaryadnogo uskoritelya EGP-10 // ZhTF. 2007, v. 77, № 3, p. 76-79 (in Rus- sian). 15. http://www.microbeams.co.uk/Products.html#om50 16. S.N. Abramovich, N.V. Zavyalov, A.G. Zvenigo- rodskij, et al. Optimizaciya zondoformiruyushhej sistemy yadernogo skaniruyushhego mikrozonda na baze elektrostaticheskogo perezaryadnogo us- koritelya epg-10 // ZhTF. 2005, v. 75, № 2, p. 6-12 (in Russian). 17. A. Dymnikov, R. Hellborg. Matrix theory of the motion of a charged particle beam in curvilinear space-time. Part I. General theory // Nucl. Instr. Meth. B. 1993, v. 330, p. 323. 18. A.G. Ponomarev, V.I. Miroshnichenko, V.E. Stor- izhko. Optimum collimator shape and maximum emittance for submicron focusing of ion beams. De- termination of the probe forming system resolution limit // Nucl. Instr. and Meth. A. 2003, v. 506, p. 20- 25. 19. A.G. Ponomarev. Optimalnoe kollimirovanie puchka zaryazhennyx chastic v zondoformiruyushhix sistemax // ZhTF. 2009, v. 79, № 2, p. 112-116 (in Russian). Article received 30.04.2015 ФОРМИРОВАНИЕ ПУЧКА В КАНАЛЕ ПРОТОННО-ЛУЧЕВОЙ ЛИТОГРАФИИ ИПФ НАНУ А.С. Лапин, А.Г. Пономарев Дано описание принципов построения канала протонно-лучевой литографии. Особое внимание уделено задаче по созданию зондоформирующей системы. Показано, что наиболее эффективным решением является использование отдельных систем и устройств канала ядерного сканирующего микрозонда. Рассмотрены различные конфигурации зондоформирующей системы канала протонно-лучевой литографии. На основании решения оптимизационной задачи по формированию пучка протонов найдена зондоформирующая система, которая наилучшим образом отвечает требованиям для проведения литографического процесса. ФОРМУВАННЯ ПУЧКА В КАНАЛІ ПРОТОННО-ПРОМЕНЕВОЇ ЛІТОГРАФІЇ ІПФ НАНУ О.С. Лапін, О.Г. Пономарьов Наданo опис принципів побудови каналу протонно-променевої літографії. Особливу увагу приділено за- вданню щодо створення зондоформуючої системи. Показано, що найбільш ефективним є рішення з викори- стання окремих систем і пристроїв каналу ядерного скануючого мікрозонда. Розглянуто різні конфігурації зондоформуючої системи каналу протонно-променевої літографії. На підставі рішення оптимізаційної задачі з формування пучка протонів знайдена зондоформуюча система, яка найкраще відповідає вимогам для про- ведення літографічного процесу. INTRODUCTION 1. BASIC PRINCIPLES OF FOCUSING SYSTEM CONFIGURATION 2. SIMULATION CONCLUSIONs REFERENCES ФОРМИРОВАНИЕ ПУЧКА В КАНАЛЕ ПРОТОННО-ЛУЧЕВОЙ ЛИТОГРАФИИ ИПФ НАНУ ФОРМУВАННЯ ПУЧКА В КАНАЛІ ПРОТОННО-ПРОМЕНЕВОЇ ЛІТОГРАФІЇ ІПФ НАНУ