Numerical simulation of pulsed plasma thruster with a preionization helicon discharge
The major electrical characteristics of pulsed coaxial magneto-plasma accelerator with a capacitive power source are calculated on the basis of approximate mathematical model of pulsed plasma thruster, preionization system of working gas with a helicon discharge and multiparametric optimization of C...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2015 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/112236 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Numerical simulation of pulsed plasma thruster with a preionization helicon discharge / V.V. Kuzenov, T.N. Polozova, S.V. Ryzhkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 49-52. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-112236 |
|---|---|
| record_format |
dspace |
| spelling |
Kuzenov, V.V. Polozova, T.N. Ryzhkov, S.V. 2017-01-18T19:59:18Z 2017-01-18T19:59:18Z 2015 Numerical simulation of pulsed plasma thruster with a preionization helicon discharge / V.V. Kuzenov, T.N. Polozova, S.V. Ryzhkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 49-52. — Бібліогр.: 30 назв. — англ. 1562-6016 PACS: 52.50.Dg, 52.50.Qt https://nasplib.isofts.kiev.ua/handle/123456789/112236 The major electrical characteristics of pulsed coaxial magneto-plasma accelerator with a capacitive power source are calculated on the basis of approximate mathematical model of pulsed plasma thruster, preionization system of working gas with a helicon discharge and multiparametric optimization of CMPA by methods of computational experiment. The main parameters of the RF source and physical characteristics of argon plasma are presented. Initial assessments are conducted prior to plasma acceleration using helicon preionization source and main characteristics of coaxial magneto-plasma accelerator. На основі розробленої наближеною математичної моделі імпульсного плазмового двигуна і системи пeредіонізації робочого газу з геліконним розрядом проведено розрахунок основних електрофізичних характеристик коаксіального імпульсного магнітоплазмового прискорювача з ємнісним джерелом живлення. Представленo основні параметри ВЧ-джерела і залежності теплофізичних характеристик аргонової плазми від часу. На основе разработанной приближенной математической модели импульсного плазменного двигателя и системы предионизации рабочего газа с геликонным разрядом проведен расчет основных электрофизических характеристик коаксиального импульсного магнитоплазменного ускорителя с емкостным источником питания. Представлены основные параметры ВЧ-источника и зависимости теплофизических характеристик аргоновой плазмы от времени. The work was performed under the Ministry of Education and Science of the Russian Federation Project No. 13.79.2014/K en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Нерелятивистская электроника Numerical simulation of pulsed plasma thruster with a preionization helicon discharge Чисельне моделювання імпульсного плазмового двигуна з системою предіонізації на основі геліконного розряду Численное моделирование импульсного плазменного двигателя с системой предионизации на основе геликонного разряда Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Numerical simulation of pulsed plasma thruster with a preionization helicon discharge |
| spellingShingle |
Numerical simulation of pulsed plasma thruster with a preionization helicon discharge Kuzenov, V.V. Polozova, T.N. Ryzhkov, S.V. Нерелятивистская электроника |
| title_short |
Numerical simulation of pulsed plasma thruster with a preionization helicon discharge |
| title_full |
Numerical simulation of pulsed plasma thruster with a preionization helicon discharge |
| title_fullStr |
Numerical simulation of pulsed plasma thruster with a preionization helicon discharge |
| title_full_unstemmed |
Numerical simulation of pulsed plasma thruster with a preionization helicon discharge |
| title_sort |
numerical simulation of pulsed plasma thruster with a preionization helicon discharge |
| author |
Kuzenov, V.V. Polozova, T.N. Ryzhkov, S.V. |
| author_facet |
Kuzenov, V.V. Polozova, T.N. Ryzhkov, S.V. |
| topic |
Нерелятивистская электроника |
| topic_facet |
Нерелятивистская электроника |
| publishDate |
2015 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Чисельне моделювання імпульсного плазмового двигуна з системою предіонізації на основі геліконного розряду Численное моделирование импульсного плазменного двигателя с системой предионизации на основе геликонного разряда |
| description |
The major electrical characteristics of pulsed coaxial magneto-plasma accelerator with a capacitive power source are calculated on the basis of approximate mathematical model of pulsed plasma thruster, preionization system of working gas with a helicon discharge and multiparametric optimization of CMPA by methods of computational experiment. The main parameters of the RF source and physical characteristics of argon plasma are presented. Initial assessments are conducted prior to plasma acceleration using helicon preionization source and main characteristics of coaxial magneto-plasma accelerator.
На основі розробленої наближеною математичної моделі імпульсного плазмового двигуна і системи пeредіонізації робочого газу з геліконним розрядом проведено розрахунок основних електрофізичних характеристик коаксіального імпульсного магнітоплазмового прискорювача з ємнісним джерелом живлення. Представленo основні параметри ВЧ-джерела і залежності теплофізичних характеристик аргонової плазми від часу.
На основе разработанной приближенной математической модели импульсного плазменного двигателя и системы предионизации рабочего газа с геликонным разрядом проведен расчет основных электрофизических характеристик коаксиального импульсного магнитоплазменного ускорителя с емкостным источником питания. Представлены основные параметры ВЧ-источника и зависимости теплофизических характеристик аргоновой плазмы от времени.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/112236 |
| citation_txt |
Numerical simulation of pulsed plasma thruster with a preionization helicon discharge / V.V. Kuzenov, T.N. Polozova, S.V. Ryzhkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 49-52. — Бібліогр.: 30 назв. — англ. |
| work_keys_str_mv |
AT kuzenovvv numericalsimulationofpulsedplasmathrusterwithapreionizationhelicondischarge AT polozovatn numericalsimulationofpulsedplasmathrusterwithapreionizationhelicondischarge AT ryzhkovsv numericalsimulationofpulsedplasmathrusterwithapreionizationhelicondischarge AT kuzenovvv čiselʹnemodelûvannâímpulʹsnogoplazmovogodvigunazsistemoûpredíonízacíínaosnovígelíkonnogorozrâdu AT polozovatn čiselʹnemodelûvannâímpulʹsnogoplazmovogodvigunazsistemoûpredíonízacíínaosnovígelíkonnogorozrâdu AT ryzhkovsv čiselʹnemodelûvannâímpulʹsnogoplazmovogodvigunazsistemoûpredíonízacíínaosnovígelíkonnogorozrâdu AT kuzenovvv čislennoemodelirovanieimpulʹsnogoplazmennogodvigatelâssistemoipredionizaciinaosnovegelikonnogorazrâda AT polozovatn čislennoemodelirovanieimpulʹsnogoplazmennogodvigatelâssistemoipredionizaciinaosnovegelikonnogorazrâda AT ryzhkovsv čislennoemodelirovanieimpulʹsnogoplazmennogodvigatelâssistemoipredionizaciinaosnovegelikonnogorazrâda |
| first_indexed |
2025-11-25T14:27:12Z |
| last_indexed |
2025-11-25T14:27:12Z |
| _version_ |
1850517010203541504 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2015. №4(98) 49
NUMERICAL SIMULATION OF PULSED PLASMA THRUSTER
WITH A PREIONIZATION HELICON DISCHARGE
V.V. Kuzenov1,2,3, T.N. Polozova1, S.V. Ryzhkov1
1Bauman Moscow State Technical University, Moscow, Russia
E-mail: svryzhkov@bmstu.ru;
2A.Yu. Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia
E-mail: kuzenov@ipmnet.ru;
3N.L. Dukhov All-Russia Research Institute of Automatic, Moscow, Russia
E-mail: vik.kuzenov@gmail.com
The major electrical characteristics of pulsed coaxial magneto-plasma accelerator with a capacitive power source
are calculated on the basis of approximate mathematical model of pulsed plasma thruster, preionization system of
working gas with a helicon discharge and multiparametric optimization of CMPA by methods of computational ex-
periment. The main parameters of the RF source and physical characteristics of argon plasma are presented. Initial
assessments are conducted prior to plasma acceleration using helicon preionization source and main characteristics
of coaxial magneto-plasma accelerator.
PACS: 52.50.Dg, 52.50.Qt
INTRODUCTION
This work is devoted to the development of the per-
spective electrodeless plasma thruster (EPT) with a
high-frequency ionization which is called as a helicon
engine [1 - 5]. As we know [1 - 7], the main advantages
of this kind of engine is quite high (compared with an-
other EPT) resource of life, the possibility of using the
different working fluids. Such types of helicon plasma
sources can be widely used for plasma interaction stud-
ies with a substance in the systems of magnetic and
magneto-inertial confinement of hot plasma [8 - 11].
Comparing with another reviewed EPT can be used as
the engines for correction and orientation of geostation-
ary and low orbital (weight less than 100 kg) spacecrafts
and sustainer rocket motor as well. The radio frequency
(RF) discharge is used for the preionization (helicon
preionization source) for this type of engine, placed in
an external magnetic field. The efficiency, high reliabil-
ity and low cost of such charges allow using them in the
field of accelerator technology, in different plasma and
vacuum technology and etc. with a high degree of effec-
tiveness. At the same time there is no contact of plasma
with metal electrodes and there is quite low electron
temperature and low plasma potential relative to the
walls, which limits the discharge.
1. DESCRIPTION OF THE PROBLEM
An inductor is a component of CMPA intended for
decreasing a thermal interaction of plasma with the
walls of the working channel of CMPA. In our case, the
inductor can be electrically isolated from the accelerator
and perform two functions: 1) creating of a cylindrically
symmetric compact plasmoid (disc) that solves a prob-
lem of an azimuthal instability; 2) the preliminary ac-
celeration and throwing into the CMPA channel plasma.
We briefly describe the principle of operation of the
proposed CMPA. Short circuit through the conducting
plasma (geometrically disc) takes place after applying a
voltage U0 from the capacitive power supply on the cen-
tral and cylindrical electrodes of CMPA. This plasma
disc is created by the breakdown of a gas (after voltage
U0 supply) and interaction of impulse current of induc-
tor with a circular whirling current in a plasma for-
mation it influences on appearing the electromagnetic
force which affects upon the plasma and providing its
initial acceleration and inflowing to the acceleration
channel of CMPA. Then plasmoid electromagnetically
compressed and accelerated in the direction of the axis
of symmetry. At the same time an electrodynamic ac-
celeration of plasma in the channel of CMPA is based
on interaction (described by the Ampere law) of the
magnetic field of the electric circuit with current-
carrying plasma.
The creation of an experimental stand for research of
electrophysical properties of CMPA is very expensive,
and the creation of a model can be considered as the
original problem. The pulsed plasma thruster and pre-
ionization system for gas based on helicon discharge
(the pulsed RF-preionization discharge) will be exam-
ined in the framework of an approximate mathematical
model of the coaxial pulsed plasma thruster [12 - 14].
2. CALCULATIONS OF THE MAIN
PARAMETERS
The simulation results based on a developed mathe-
matical model of coaxial magneto-plasma accelerator
are shown in Figs. 1-5. These results correspond the
following parameters of a helicon discharge: the work-
ing frequency of antenna is 13.56 MG, Phel = 100 W, the
working gas – Ar, P = 1 mTorr, R = 7.5 cm, L= 20 cm.
At the same time, geometrical and electrotechnique
characteristics of CMPA have the following values:
R2 = 7.5 cm is the external radius and R1 = 5 cm is the
internal radius of the acceleration channel and inductor
coils, L= 0.6 cm is the longitudinal length of inductor,
the number of turns of the inductor is 2, U0 = 5 kV,
C0 = 5 mF are the voltage and capacity of the capacitor
bank, respectively.
Through the Fig. 1, we can see that the current J
reaches its first maximum (J1 = 7 kA) at the moment of
t1 = 3 µs and fades up to the minimum (t2 = 9 µs) ahead
in the electric circuit. The graphic dependence shows
that the current is reversed in 6 s. Note, that the current
drops to a value 7 kA, but the velocity is almost un-
changeable parameter.
ISSN 1562-6016. ВАНТ. 2015. №4(98) 50
J, kA
0 2 4 6 8 10
-8
-6
-4
-2
0
2
4
6
8
t, µs
Fig. 1. Time dependence of the current J in the electric
circuit of CMPA
V, km/s
2 4 6 8 10
0
10
20
30
t, µs
Fig. 2. The dependence of the plasmoid velocity V
on the time t
Estimate using the formula from [15] shows that hel-
icon waves excited in the plasma (for the range of pa-
rameters 10-3≤B0≤5⋅10-3 T, Р = 0.67 Pa, Te ≈ 7 eV) are
weakly absorbed.
en∑ ⋅1016, m-3
0.2 0.4 0.6 0.8 1
2.30E+01
2.40E+01
2.50E+01
2.60E+01
2.70E+01
2.80E+01
2.90E+01
3.00E+01
3.10E+01
3.20E+01
t, s
Fig. 3. The dependence of electron concentration en∑
on time t
The Figs. 3-5 show that the most significant changes
in thermophysical characteristics are observed at the
initial stage ( 0,05t ≤ s), i.e. power supply to the low-
temperature rarefied plasma of the RF source.
Te, kK
0.2 0.4 0.6 0.8 1
4.50E+01
5.00E+01
5.50E+01
6.00E+01
6.50E+01
7.00E+01
7.50E+01
t, s
Fig. 4. The calculated electron temperature Te
as a function of time t
There is a strong temperature gap (Te ≈ 70 kK, and
Ti ≈ 0.7 kK) in the discharge plasma for the aforemen-
tioned characteristics of the RF discharge.
I.e. the energy (from an external power generator)
supplied to the plasma accumulates basically in the in-
ternal energy of electrons and only partially changes the
internal energy of ions.
Figs. 6, 7 show the dependence of the accelerating
power and the dependence of the longitudinal coordi-
nate upon the time, where the maximum growth in ac-
celerating force occurs at times between 0 and 0.5 µs
and spatial coordinates between 0 and 5 mm.
Ti, kK
0.2 0.4 0.6 0.8 1
0.5
0.55
0.6
0.65
0.7
t, s
Fig. 5. Time evolution of ion temperature
Since the coordinate of the plasmoid is relatively
small, then in this range of times increase in the speed is
mainly caused by the interaction of the pulsed current of
the inductor and the annular eddy current in the plasma,
which gives rise to an electromagnetic force acting on
plasmoid and provides its acceleration.
In the time range t > 0.5 µs the electrodynamic ac-
celeration is mainly provided by the Ampere's force,
e.g. by the interaction of magnetic field of electric
ISSN 1562-6016. ВАНТ. 2015. №4(98) 51
CMPA circuit with the current-carrying conductor
(plasmoid). The accelerating force Fq (see Fig. 6) has
the second extremum and quite prolonged (t > 2 µs)
zone with negative value Fq < 0.
Fq, N
2 4 6 8 10
-12
-10
-8
-6
-4
-2
0
2
4
6
8
10
12
t, µs
Fig. 6. The time dependence of the accelerating force
acting on the plasmoid
z, mm
0 2 4 6 8 10
0
20
40
60
80
100
120
140
160
t, µs
Fig. 7. The dependence of the longitudinal coordinate z
of the plasmoid in the CMPA channel on time t
The calculations show that the most significant fac-
tor limiting the speed V and making a negative force Fq
is the term ( )dm dt dz dt , where m is the mass of the
accelerated plasmoid. This term is responsible for the
decrease in the acceleration by the plasma attachment
over time, initially filling the accelerating channel of
CMPA, and the evaporation of the electrode material
[16 - 20].
Thus, it is clear from the above discussion that the
acceleration channel length should be limited to the area
where the accelerating force is positive, and the plas-
moid velocity reaches the maximum value. Also note
that the pulse flow of the working gas (axial or radial
overlap) should be organized in a channel of the accel-
erator to speed up the plasmoid.
CONCLUSIONS
The approximate mathematical model was devel-
oped to get the main electrophysical characteristics of
the coaxial magneto-plasma accelerator, including the
preionization of the working substance by helicon dis-
charge. This mathematical model takes into account
shock waves in front of the plasma and its changing
weight, gives a preliminary estimate of transformation
of one type of energy to another, allows to estimate the
contributions of different types of energy and to evalu-
ate the mass of accelerated plasma.
It has been proposed to use a two-stage system to
accelerate the plasma in CMPA. The first stage is con-
structed with inductor that forms a compact plasmoid
and provides its initial acceleration and delivery to the
accelerating channel of CMPA for a further acceleration
(the second stage). The calculations that have been car-
ried out demonstrate that the most essential factor
(along with the braking force cause by appearing of a
shock wave) which limits the value of plasma velocity
is an attached mass which grows eventually.
The work was performed under the Ministry of Edu-
cation and Science of the Russian Federation Project
No. 13.79.2014/K.
REFERENCES
1. A.K. Petrov, E.A. Kralkina. Study of Helicon Dou-
ble Layer Thruster // WDS'12 Proceedings of Con-
tributed Papers. 2012, Part II, p. 93-98.
2. S. Shinohara, T. Tanikawa, T. Hada, et al. High-
Density Helicon Plasma Sources: Basics and Appli-
cation to Electrodeless Electric Propulsion // Fusion
Science and Technology. 2013, v. 63 (1T), p. 164-
167.
3. E. Ahedo. Plasma dynamics in a helicon thruster / In
L.T. DeLuca, C. Bonnal, O.J. Haidn, and
S.M. Frolov, ed. // Progress in Propulsion Physics.
2013, v. IV of EUCASS Advances in Aerospace Sci-
ences, chapter 3, p. 337-354.
4. F.F. Chen Ion ejection from a permanent-magnet
mini-helicon thruster // Physics of Plasmas. 2014,
v. 21, p. 093511.
5. A. Shabshelowitz, A.D. Gallimore, P.Y. Peterson.
Performance of a helicon Hall thruster operating
with Xenon, Argon, and Nitrogen // Journal of Pro-
pulsion and Power. 2014, v. 30, p. 664-671.
6. K. Takahashi, C. Charles, R. Boswell, and A. Ando.
Performance improvement of a permanent magnet
helicon plasma thruster // J. Phys. D: Appl. Phys.
2013, v. 46, p. 352001.
7. A. Cardinali, D. Melazzi, M. Manente, and
D. Pavarin. Ray-tracing WKB analysis of Whistler
waves in non-uniform magnetic fields applied to
space thrusters // Plasma Sources Sci. Technol.
2014, v. 23, p. 015013.
8. S.V. Ryzhkov. The behavior of a magnetized plasma
under the action of laser with high pulse energy //
Problems of Atomic Science and Technology. 2010,
№ 4, p. 105-110.
9. V.V. Kuzenov, S.V. Ryzhkov. Numerical modeling
of magnetized plasma compressed by the laser
ISSN 1562-6016. ВАНТ. 2015. №4(98) 52
beams and plasma jets // Problems of Atomic Sci-
ence and Technology. 2013, № 1 (83), p. 12-14.
10. V.V. Kuzenov, S.V. Ryzhkov. Evaluation of hydro-
dynamic instabilities in inertial confinement fusion
target in a magnetic field // Problems of Atomic Sci-
ence and Technology. 2013, № 4 (86), p.103-107.
11. S.V. Ryzhkov. Current status, problems and pro-
spects of thermonuclear facilities based on the mag-
neto-inertial confinement of hot plasma // Bulletin of
the Russian Academy of Sciences. Physics. 2014,
v. 78, p. 456-461.
12. V.V. Kuzenov. Fiziko-khimicheskaya kinetika v
gazovoi dinamike. 2014, v. 15, available at:
http://chemphys.edu.ru/media/files/11-30-002- pdf
(in Russian).
13. V.V. Kuzenov, S.V. Ryzhkov. Individual elements
of the physical and mathematical model for a heli-
con discharge // Applied Physics. 2015, № 2, p. 37-
44.
14. V.V. Kuzenov, P.A. Frolko. Approximated Model of
the Coaxial Pulsed Plasma Thruster // WCSE. 2015.
15. Yu.P. Raizer. Gas Discharge Physics. Springer Ver-
lag, Berlin, 1997, 449 p.
16. S.M. Mordyk, V.I. Voznyy, V.I. Miroshnichenko, et
al. Helicon Ion Source in High Plasma Density Op-
eration Mode // Problems of Atomic Science and
Technology. 2006, № 5, p. 208-211.
17. V.F. Semenyuk, V.F. Virko, I.V. Korotash, et al.
Controlling parameters determining technological
properties of a helicon discharge system // Problems
of Atomic Science and Technology. 2013, № 4,
p. 179-182.
18. V.F. Virko, V.M. Slobodyan, K.P. Shamrai, et al.
Helicon discharge excited by a planar antenna in a
bounded volume // Problems of Atomic Science and
Technology. 2014, № 6, p. 130-136.
19. I.A. Kotelnikov. On the density limit in the helicon
plasma sources // Physics of Plasmas. 2014, v. 21,
p. 122101.
20. S.V. Bobashev, B.G. Zhukov, R.O. Kurakin, et al.
Intense shock waves and shock-compressed gas
flows in the channels of rail accelerators // Technical
Physics. 2015, v. 60 (1), p. 40-47.
Article received 05.05.2015
ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ИМПУЛЬСНОГО ПЛАЗМЕННОГО ДВИГАТЕЛЯ
С СИСТЕМОЙ ПРЕДИОНИЗАЦИИ НА ОСНОВЕ ГЕЛИКОННОГО РАЗРЯДА
В.В. Кузенов, Т.Н. Полозова, С.В. Рыжков
На основе разработанной приближенной математической модели импульсного плазменного двигателя и
системы предионизации рабочего газа с геликонным разрядом проведен расчет основных электрофизиче-
ских характеристик коаксиального импульсного магнитоплазменного ускорителя с емкостным источником
питания. Представлены основные параметры ВЧ-источника и зависимости теплофизических характеристик
аргоновой плазмы от времени.
ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ ІМПУЛЬСНОГО ПЛАЗМОВОГО ДВИГУНА
З СИСТЕМОЮ ПРЕДІОНІЗАЦІЇ НА ОСНОВІ ГЕЛІКОННОГО РОЗРЯДУ
В.В. Кузенов, Т.Н. Полозова, С.В. Рижков
На основі розробленої наближеною математичної моделі імпульсного плазмового двигуна і системи
пeредіонізації робочого газу з геліконним розрядом проведено розрахунок основних електрофізичних харак-
теристик коаксіального імпульсного магнітоплазмового прискорювача з ємнісним джерелом живлення.
Представленo основні параметри ВЧ-джерела і залежності теплофізичних характеристик аргонової плазми
від часу.
iNtRoDUCtIoN
1. Description of the Problem
|