Numerical simulation of pulsed plasma thruster with a preionization helicon discharge

The major electrical characteristics of pulsed coaxial magneto-plasma accelerator with a capacitive power source are calculated on the basis of approximate mathematical model of pulsed plasma thruster, preionization system of working gas with a helicon discharge and multiparametric optimization of C...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2015
Автори: Kuzenov, V.V., Polozova, T.N., Ryzhkov, S.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/112236
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Numerical simulation of pulsed plasma thruster with a preionization helicon discharge / V.V. Kuzenov, T.N. Polozova, S.V. Ryzhkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 49-52. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112236
record_format dspace
spelling Kuzenov, V.V.
Polozova, T.N.
Ryzhkov, S.V.
2017-01-18T19:59:18Z
2017-01-18T19:59:18Z
2015
Numerical simulation of pulsed plasma thruster with a preionization helicon discharge / V.V. Kuzenov, T.N. Polozova, S.V. Ryzhkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 49-52. — Бібліогр.: 30 назв. — англ.
1562-6016
PACS: 52.50.Dg, 52.50.Qt
https://nasplib.isofts.kiev.ua/handle/123456789/112236
The major electrical characteristics of pulsed coaxial magneto-plasma accelerator with a capacitive power source are calculated on the basis of approximate mathematical model of pulsed plasma thruster, preionization system of working gas with a helicon discharge and multiparametric optimization of CMPA by methods of computational experiment. The main parameters of the RF source and physical characteristics of argon plasma are presented. Initial assessments are conducted prior to plasma acceleration using helicon preionization source and main characteristics of coaxial magneto-plasma accelerator.
На основі розробленої наближеною математичної моделі імпульсного плазмового двигуна і системи пeредіонізації робочого газу з геліконним розрядом проведено розрахунок основних електрофізичних характеристик коаксіального імпульсного магнітоплазмового прискорювача з ємнісним джерелом живлення. Представленo основні параметри ВЧ-джерела і залежності теплофізичних характеристик аргонової плазми від часу.
На основе разработанной приближенной математической модели импульсного плазменного двигателя и системы предионизации рабочего газа с геликонным разрядом проведен расчет основных электрофизических характеристик коаксиального импульсного магнитоплазменного ускорителя с емкостным источником питания. Представлены основные параметры ВЧ-источника и зависимости теплофизических характеристик аргоновой плазмы от времени.
The work was performed under the Ministry of Education and Science of the Russian Federation Project No. 13.79.2014/K
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Нерелятивистская электроника
Numerical simulation of pulsed plasma thruster with a preionization helicon discharge
Чисельне моделювання імпульсного плазмового двигуна з системою предіонізації на основі геліконного розряду
Численное моделирование импульсного плазменного двигателя с системой предионизации на основе геликонного разряда
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Numerical simulation of pulsed plasma thruster with a preionization helicon discharge
spellingShingle Numerical simulation of pulsed plasma thruster with a preionization helicon discharge
Kuzenov, V.V.
Polozova, T.N.
Ryzhkov, S.V.
Нерелятивистская электроника
title_short Numerical simulation of pulsed plasma thruster with a preionization helicon discharge
title_full Numerical simulation of pulsed plasma thruster with a preionization helicon discharge
title_fullStr Numerical simulation of pulsed plasma thruster with a preionization helicon discharge
title_full_unstemmed Numerical simulation of pulsed plasma thruster with a preionization helicon discharge
title_sort numerical simulation of pulsed plasma thruster with a preionization helicon discharge
author Kuzenov, V.V.
Polozova, T.N.
Ryzhkov, S.V.
author_facet Kuzenov, V.V.
Polozova, T.N.
Ryzhkov, S.V.
topic Нерелятивистская электроника
topic_facet Нерелятивистская электроника
publishDate 2015
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Чисельне моделювання імпульсного плазмового двигуна з системою предіонізації на основі геліконного розряду
Численное моделирование импульсного плазменного двигателя с системой предионизации на основе геликонного разряда
description The major electrical characteristics of pulsed coaxial magneto-plasma accelerator with a capacitive power source are calculated on the basis of approximate mathematical model of pulsed plasma thruster, preionization system of working gas with a helicon discharge and multiparametric optimization of CMPA by methods of computational experiment. The main parameters of the RF source and physical characteristics of argon plasma are presented. Initial assessments are conducted prior to plasma acceleration using helicon preionization source and main characteristics of coaxial magneto-plasma accelerator. На основі розробленої наближеною математичної моделі імпульсного плазмового двигуна і системи пeредіонізації робочого газу з геліконним розрядом проведено розрахунок основних електрофізичних характеристик коаксіального імпульсного магнітоплазмового прискорювача з ємнісним джерелом живлення. Представленo основні параметри ВЧ-джерела і залежності теплофізичних характеристик аргонової плазми від часу. На основе разработанной приближенной математической модели импульсного плазменного двигателя и системы предионизации рабочего газа с геликонным разрядом проведен расчет основных электрофизических характеристик коаксиального импульсного магнитоплазменного ускорителя с емкостным источником питания. Представлены основные параметры ВЧ-источника и зависимости теплофизических характеристик аргоновой плазмы от времени.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/112236
citation_txt Numerical simulation of pulsed plasma thruster with a preionization helicon discharge / V.V. Kuzenov, T.N. Polozova, S.V. Ryzhkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 49-52. — Бібліогр.: 30 назв. — англ.
work_keys_str_mv AT kuzenovvv numericalsimulationofpulsedplasmathrusterwithapreionizationhelicondischarge
AT polozovatn numericalsimulationofpulsedplasmathrusterwithapreionizationhelicondischarge
AT ryzhkovsv numericalsimulationofpulsedplasmathrusterwithapreionizationhelicondischarge
AT kuzenovvv čiselʹnemodelûvannâímpulʹsnogoplazmovogodvigunazsistemoûpredíonízacíínaosnovígelíkonnogorozrâdu
AT polozovatn čiselʹnemodelûvannâímpulʹsnogoplazmovogodvigunazsistemoûpredíonízacíínaosnovígelíkonnogorozrâdu
AT ryzhkovsv čiselʹnemodelûvannâímpulʹsnogoplazmovogodvigunazsistemoûpredíonízacíínaosnovígelíkonnogorozrâdu
AT kuzenovvv čislennoemodelirovanieimpulʹsnogoplazmennogodvigatelâssistemoipredionizaciinaosnovegelikonnogorazrâda
AT polozovatn čislennoemodelirovanieimpulʹsnogoplazmennogodvigatelâssistemoipredionizaciinaosnovegelikonnogorazrâda
AT ryzhkovsv čislennoemodelirovanieimpulʹsnogoplazmennogodvigatelâssistemoipredionizaciinaosnovegelikonnogorazrâda
first_indexed 2025-11-25T14:27:12Z
last_indexed 2025-11-25T14:27:12Z
_version_ 1850517010203541504
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 49 NUMERICAL SIMULATION OF PULSED PLASMA THRUSTER WITH A PREIONIZATION HELICON DISCHARGE V.V. Kuzenov1,2,3, T.N. Polozova1, S.V. Ryzhkov1 1Bauman Moscow State Technical University, Moscow, Russia E-mail: svryzhkov@bmstu.ru; 2A.Yu. Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia E-mail: kuzenov@ipmnet.ru; 3N.L. Dukhov All-Russia Research Institute of Automatic, Moscow, Russia E-mail: vik.kuzenov@gmail.com The major electrical characteristics of pulsed coaxial magneto-plasma accelerator with a capacitive power source are calculated on the basis of approximate mathematical model of pulsed plasma thruster, preionization system of working gas with a helicon discharge and multiparametric optimization of CMPA by methods of computational ex- periment. The main parameters of the RF source and physical characteristics of argon plasma are presented. Initial assessments are conducted prior to plasma acceleration using helicon preionization source and main characteristics of coaxial magneto-plasma accelerator. PACS: 52.50.Dg, 52.50.Qt INTRODUCTION This work is devoted to the development of the per- spective electrodeless plasma thruster (EPT) with a high-frequency ionization which is called as a helicon engine [1 - 5]. As we know [1 - 7], the main advantages of this kind of engine is quite high (compared with an- other EPT) resource of life, the possibility of using the different working fluids. Such types of helicon plasma sources can be widely used for plasma interaction stud- ies with a substance in the systems of magnetic and magneto-inertial confinement of hot plasma [8 - 11]. Comparing with another reviewed EPT can be used as the engines for correction and orientation of geostation- ary and low orbital (weight less than 100 kg) spacecrafts and sustainer rocket motor as well. The radio frequency (RF) discharge is used for the preionization (helicon preionization source) for this type of engine, placed in an external magnetic field. The efficiency, high reliabil- ity and low cost of such charges allow using them in the field of accelerator technology, in different plasma and vacuum technology and etc. with a high degree of effec- tiveness. At the same time there is no contact of plasma with metal electrodes and there is quite low electron temperature and low plasma potential relative to the walls, which limits the discharge. 1. DESCRIPTION OF THE PROBLEM An inductor is a component of CMPA intended for decreasing a thermal interaction of plasma with the walls of the working channel of CMPA. In our case, the inductor can be electrically isolated from the accelerator and perform two functions: 1) creating of a cylindrically symmetric compact plasmoid (disc) that solves a prob- lem of an azimuthal instability; 2) the preliminary ac- celeration and throwing into the CMPA channel plasma. We briefly describe the principle of operation of the proposed CMPA. Short circuit through the conducting plasma (geometrically disc) takes place after applying a voltage U0 from the capacitive power supply on the cen- tral and cylindrical electrodes of CMPA. This plasma disc is created by the breakdown of a gas (after voltage U0 supply) and interaction of impulse current of induc- tor with a circular whirling current in a plasma for- mation it influences on appearing the electromagnetic force which affects upon the plasma and providing its initial acceleration and inflowing to the acceleration channel of CMPA. Then plasmoid electromagnetically compressed and accelerated in the direction of the axis of symmetry. At the same time an electrodynamic ac- celeration of plasma in the channel of CMPA is based on interaction (described by the Ampere law) of the magnetic field of the electric circuit with current- carrying plasma. The creation of an experimental stand for research of electrophysical properties of CMPA is very expensive, and the creation of a model can be considered as the original problem. The pulsed plasma thruster and pre- ionization system for gas based on helicon discharge (the pulsed RF-preionization discharge) will be exam- ined in the framework of an approximate mathematical model of the coaxial pulsed plasma thruster [12 - 14]. 2. CALCULATIONS OF THE MAIN PARAMETERS The simulation results based on a developed mathe- matical model of coaxial magneto-plasma accelerator are shown in Figs. 1-5. These results correspond the following parameters of a helicon discharge: the work- ing frequency of antenna is 13.56 MG, Phel = 100 W, the working gas – Ar, P = 1 mTorr, R = 7.5 cm, L= 20 cm. At the same time, geometrical and electrotechnique characteristics of CMPA have the following values: R2 = 7.5 cm is the external radius and R1 = 5 cm is the internal radius of the acceleration channel and inductor coils, L= 0.6 cm is the longitudinal length of inductor, the number of turns of the inductor is 2, U0 = 5 kV, C0 = 5 mF are the voltage and capacity of the capacitor bank, respectively. Through the Fig. 1, we can see that the current J reaches its first maximum (J1 = 7 kA) at the moment of t1 = 3 µs and fades up to the minimum (t2 = 9 µs) ahead in the electric circuit. The graphic dependence shows that the current is reversed in 6 s. Note, that the current drops to a value 7 kA, but the velocity is almost un- changeable parameter. ISSN 1562-6016. ВАНТ. 2015. №4(98) 50 J, kA 0 2 4 6 8 10 -8 -6 -4 -2 0 2 4 6 8 t, µs Fig. 1. Time dependence of the current J in the electric circuit of CMPA V, km/s 2 4 6 8 10 0 10 20 30 t, µs Fig. 2. The dependence of the plasmoid velocity V on the time t Estimate using the formula from [15] shows that hel- icon waves excited in the plasma (for the range of pa- rameters 10-3≤B0≤5⋅10-3 T, Р = 0.67 Pa, Te ≈ 7 eV) are weakly absorbed. en∑ ⋅1016, m-3 0.2 0.4 0.6 0.8 1 2.30E+01 2.40E+01 2.50E+01 2.60E+01 2.70E+01 2.80E+01 2.90E+01 3.00E+01 3.10E+01 3.20E+01 t, s Fig. 3. The dependence of electron concentration en∑ on time t The Figs. 3-5 show that the most significant changes in thermophysical characteristics are observed at the initial stage ( 0,05t ≤ s), i.e. power supply to the low- temperature rarefied plasma of the RF source. Te, kK 0.2 0.4 0.6 0.8 1 4.50E+01 5.00E+01 5.50E+01 6.00E+01 6.50E+01 7.00E+01 7.50E+01 t, s Fig. 4. The calculated electron temperature Te as a function of time t There is a strong temperature gap (Te ≈ 70 kK, and Ti ≈ 0.7 kK) in the discharge plasma for the aforemen- tioned characteristics of the RF discharge. I.e. the energy (from an external power generator) supplied to the plasma accumulates basically in the in- ternal energy of electrons and only partially changes the internal energy of ions. Figs. 6, 7 show the dependence of the accelerating power and the dependence of the longitudinal coordi- nate upon the time, where the maximum growth in ac- celerating force occurs at times between 0 and 0.5 µs and spatial coordinates between 0 and 5 mm. Ti, kK 0.2 0.4 0.6 0.8 1 0.5 0.55 0.6 0.65 0.7 t, s Fig. 5. Time evolution of ion temperature Since the coordinate of the plasmoid is relatively small, then in this range of times increase in the speed is mainly caused by the interaction of the pulsed current of the inductor and the annular eddy current in the plasma, which gives rise to an electromagnetic force acting on plasmoid and provides its acceleration. In the time range t > 0.5 µs the electrodynamic ac- celeration is mainly provided by the Ampere's force, e.g. by the interaction of magnetic field of electric ISSN 1562-6016. ВАНТ. 2015. №4(98) 51 CMPA circuit with the current-carrying conductor (plasmoid). The accelerating force Fq (see Fig. 6) has the second extremum and quite prolonged (t > 2 µs) zone with negative value Fq < 0. Fq, N 2 4 6 8 10 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 t, µs Fig. 6. The time dependence of the accelerating force acting on the plasmoid z, mm 0 2 4 6 8 10 0 20 40 60 80 100 120 140 160 t, µs Fig. 7. The dependence of the longitudinal coordinate z of the plasmoid in the CMPA channel on time t The calculations show that the most significant fac- tor limiting the speed V and making a negative force Fq is the term ( )dm dt dz dt , where m is the mass of the accelerated plasmoid. This term is responsible for the decrease in the acceleration by the plasma attachment over time, initially filling the accelerating channel of CMPA, and the evaporation of the electrode material [16 - 20]. Thus, it is clear from the above discussion that the acceleration channel length should be limited to the area where the accelerating force is positive, and the plas- moid velocity reaches the maximum value. Also note that the pulse flow of the working gas (axial or radial overlap) should be organized in a channel of the accel- erator to speed up the plasmoid. CONCLUSIONS The approximate mathematical model was devel- oped to get the main electrophysical characteristics of the coaxial magneto-plasma accelerator, including the preionization of the working substance by helicon dis- charge. This mathematical model takes into account shock waves in front of the plasma and its changing weight, gives a preliminary estimate of transformation of one type of energy to another, allows to estimate the contributions of different types of energy and to evalu- ate the mass of accelerated plasma. It has been proposed to use a two-stage system to accelerate the plasma in CMPA. The first stage is con- structed with inductor that forms a compact plasmoid and provides its initial acceleration and delivery to the accelerating channel of CMPA for a further acceleration (the second stage). The calculations that have been car- ried out demonstrate that the most essential factor (along with the braking force cause by appearing of a shock wave) which limits the value of plasma velocity is an attached mass which grows eventually. The work was performed under the Ministry of Edu- cation and Science of the Russian Federation Project No. 13.79.2014/K. REFERENCES 1. A.K. Petrov, E.A. Kralkina. Study of Helicon Dou- ble Layer Thruster // WDS'12 Proceedings of Con- tributed Papers. 2012, Part II, p. 93-98. 2. S. Shinohara, T. Tanikawa, T. Hada, et al. High- Density Helicon Plasma Sources: Basics and Appli- cation to Electrodeless Electric Propulsion // Fusion Science and Technology. 2013, v. 63 (1T), p. 164- 167. 3. E. Ahedo. Plasma dynamics in a helicon thruster / In L.T. DeLuca, C. Bonnal, O.J. Haidn, and S.M. Frolov, ed. // Progress in Propulsion Physics. 2013, v. IV of EUCASS Advances in Aerospace Sci- ences, chapter 3, p. 337-354. 4. F.F. Chen Ion ejection from a permanent-magnet mini-helicon thruster // Physics of Plasmas. 2014, v. 21, p. 093511. 5. A. Shabshelowitz, A.D. Gallimore, P.Y. Peterson. Performance of a helicon Hall thruster operating with Xenon, Argon, and Nitrogen // Journal of Pro- pulsion and Power. 2014, v. 30, p. 664-671. 6. K. Takahashi, C. Charles, R. Boswell, and A. Ando. Performance improvement of a permanent magnet helicon plasma thruster // J. Phys. D: Appl. Phys. 2013, v. 46, p. 352001. 7. A. Cardinali, D. Melazzi, M. Manente, and D. Pavarin. Ray-tracing WKB analysis of Whistler waves in non-uniform magnetic fields applied to space thrusters // Plasma Sources Sci. Technol. 2014, v. 23, p. 015013. 8. S.V. Ryzhkov. The behavior of a magnetized plasma under the action of laser with high pulse energy // Problems of Atomic Science and Technology. 2010, № 4, p. 105-110. 9. V.V. Kuzenov, S.V. Ryzhkov. Numerical modeling of magnetized plasma compressed by the laser ISSN 1562-6016. ВАНТ. 2015. №4(98) 52 beams and plasma jets // Problems of Atomic Sci- ence and Technology. 2013, № 1 (83), p. 12-14. 10. V.V. Kuzenov, S.V. Ryzhkov. Evaluation of hydro- dynamic instabilities in inertial confinement fusion target in a magnetic field // Problems of Atomic Sci- ence and Technology. 2013, № 4 (86), p.103-107. 11. S.V. Ryzhkov. Current status, problems and pro- spects of thermonuclear facilities based on the mag- neto-inertial confinement of hot plasma // Bulletin of the Russian Academy of Sciences. Physics. 2014, v. 78, p. 456-461. 12. V.V. Kuzenov. Fiziko-khimicheskaya kinetika v gazovoi dinamike. 2014, v. 15, available at: http://chemphys.edu.ru/media/files/11-30-002- pdf (in Russian). 13. V.V. Kuzenov, S.V. Ryzhkov. Individual elements of the physical and mathematical model for a heli- con discharge // Applied Physics. 2015, № 2, p. 37- 44. 14. V.V. Kuzenov, P.A. Frolko. Approximated Model of the Coaxial Pulsed Plasma Thruster // WCSE. 2015. 15. Yu.P. Raizer. Gas Discharge Physics. Springer Ver- lag, Berlin, 1997, 449 p. 16. S.M. Mordyk, V.I. Voznyy, V.I. Miroshnichenko, et al. Helicon Ion Source in High Plasma Density Op- eration Mode // Problems of Atomic Science and Technology. 2006, № 5, p. 208-211. 17. V.F. Semenyuk, V.F. Virko, I.V. Korotash, et al. Controlling parameters determining technological properties of a helicon discharge system // Problems of Atomic Science and Technology. 2013, № 4, p. 179-182. 18. V.F. Virko, V.M. Slobodyan, K.P. Shamrai, et al. Helicon discharge excited by a planar antenna in a bounded volume // Problems of Atomic Science and Technology. 2014, № 6, p. 130-136. 19. I.A. Kotelnikov. On the density limit in the helicon plasma sources // Physics of Plasmas. 2014, v. 21, p. 122101. 20. S.V. Bobashev, B.G. Zhukov, R.O. Kurakin, et al. Intense shock waves and shock-compressed gas flows in the channels of rail accelerators // Technical Physics. 2015, v. 60 (1), p. 40-47. Article received 05.05.2015 ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ИМПУЛЬСНОГО ПЛАЗМЕННОГО ДВИГАТЕЛЯ С СИСТЕМОЙ ПРЕДИОНИЗАЦИИ НА ОСНОВЕ ГЕЛИКОННОГО РАЗРЯДА В.В. Кузенов, Т.Н. Полозова, С.В. Рыжков На основе разработанной приближенной математической модели импульсного плазменного двигателя и системы предионизации рабочего газа с геликонным разрядом проведен расчет основных электрофизиче- ских характеристик коаксиального импульсного магнитоплазменного ускорителя с емкостным источником питания. Представлены основные параметры ВЧ-источника и зависимости теплофизических характеристик аргоновой плазмы от времени. ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ ІМПУЛЬСНОГО ПЛАЗМОВОГО ДВИГУНА З СИСТЕМОЮ ПРЕДІОНІЗАЦІЇ НА ОСНОВІ ГЕЛІКОННОГО РОЗРЯДУ В.В. Кузенов, Т.Н. Полозова, С.В. Рижков На основі розробленої наближеною математичної моделі імпульсного плазмового двигуна і системи пeредіонізації робочого газу з геліконним розрядом проведено розрахунок основних електрофізичних харак- теристик коаксіального імпульсного магнітоплазмового прискорювача з ємнісним джерелом живлення. Представленo основні параметри ВЧ-джерела і залежності теплофізичних характеристик аргонової плазми від часу. iNtRoDUCtIoN 1. Description of the Problem