Application of nanoindentation for investigation of radiation damage in SS316 stainless steel
The possibility of application of nanoindentation technique for investigation of mechanical properties (hardness and modulus of elasticity) of SS316 steel irradiated with 1.4 MeV Ar⁺ ions to a dose of 1·10¹⁷ cm⁻² at 900 K has been considered. Methods of experimental data processing for extracting of...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2015 |
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/112303 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Application of nanoindentation for investigation of radiation damage in SS316 stainless steel / G.N. Tolmachova, G.D. Tolstolutskaya, S.A. Karpov, B.S. Sungurov, R.L. Vasilenko // Вопросы атомной науки и техники. — 2015. — № 5. — С. 163-167. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-112303 |
|---|---|
| record_format |
dspace |
| spelling |
Tolmachova, G.N. Tolstolutskaya, G.D. Karpov, S.A. Sungurov, B.S. Vasilenko, R.L. 2017-01-19T20:28:47Z 2017-01-19T20:28:47Z 2015 Application of nanoindentation for investigation of radiation damage in SS316 stainless steel / G.N. Tolmachova, G.D. Tolstolutskaya, S.A. Karpov, B.S. Sungurov, R.L. Vasilenko // Вопросы атомной науки и техники. — 2015. — № 5. — С. 163-167. — Бібліогр.: 20 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/112303 539.32 The possibility of application of nanoindentation technique for investigation of mechanical properties (hardness and modulus of elasticity) of SS316 steel irradiated with 1.4 MeV Ar⁺ ions to a dose of 1·10¹⁷ cm⁻² at 900 K has been considered. Methods of experimental data processing for extracting of physical characteristics of materials, in particular, hardening at irradiation to 25 dpa are analyzed. The influence of different factors on hardening is discussed involving results of transmission and scanning electron microscopy. Розглянута можливість використання методу наноіндентування при дослідженні змін механічних властивостей (твердості і модуля пружності) сталі 316, опроміненої при 900 К іонами Ar⁺ з енергією 1,4 МеВ до дози 1·10¹⁷ см⁻². Аналізуються способи обробки експериментальних даних з метою вилучення фізичних характеристик матеріалу, зокрема, його зміцнення при опромінені до 25 зна. Обговорюється вплив різних чинників на зміцнення стали 316 з залученням даних просвічуючої і скануючої електронної мікроскопії. Рассмотрена возможность применения метода наноиндентирования при исследовании изменения механических свойств (твердости и модуля упругости) стали 316, облученной при 900 К ионами Ar⁺ с энергией 1,4 МэВ до дозы 1·10¹⁷ см⁻². Анализируются способы обработки экспериментальных данных с целью извлечения физических характеристик материала, в частности, его упрочнения при облучении до 25 сна. Обсуждается влияние различных факторов на упрочнение стали 316 с привлечением данных просвечивающей и сканирующей электронной микроскопии. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Диагностика и методы исследований Application of nanoindentation for investigation of radiation damage in SS316 stainless steel Застосування методу наноіндентування для дослідження радіаційної пошкоджуваності сталі 316 Применение метода наноиндентирования для исследования радиационной повреждаемости стали 316 Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Application of nanoindentation for investigation of radiation damage in SS316 stainless steel |
| spellingShingle |
Application of nanoindentation for investigation of radiation damage in SS316 stainless steel Tolmachova, G.N. Tolstolutskaya, G.D. Karpov, S.A. Sungurov, B.S. Vasilenko, R.L. Диагностика и методы исследований |
| title_short |
Application of nanoindentation for investigation of radiation damage in SS316 stainless steel |
| title_full |
Application of nanoindentation for investigation of radiation damage in SS316 stainless steel |
| title_fullStr |
Application of nanoindentation for investigation of radiation damage in SS316 stainless steel |
| title_full_unstemmed |
Application of nanoindentation for investigation of radiation damage in SS316 stainless steel |
| title_sort |
application of nanoindentation for investigation of radiation damage in ss316 stainless steel |
| author |
Tolmachova, G.N. Tolstolutskaya, G.D. Karpov, S.A. Sungurov, B.S. Vasilenko, R.L. |
| author_facet |
Tolmachova, G.N. Tolstolutskaya, G.D. Karpov, S.A. Sungurov, B.S. Vasilenko, R.L. |
| topic |
Диагностика и методы исследований |
| topic_facet |
Диагностика и методы исследований |
| publishDate |
2015 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Застосування методу наноіндентування для дослідження радіаційної пошкоджуваності сталі 316 Применение метода наноиндентирования для исследования радиационной повреждаемости стали 316 |
| description |
The possibility of application of nanoindentation technique for investigation of mechanical properties (hardness and modulus of elasticity) of SS316 steel irradiated with 1.4 MeV Ar⁺ ions to a dose of 1·10¹⁷ cm⁻² at 900 K has been considered. Methods of experimental data processing for extracting of physical characteristics of materials, in particular, hardening at irradiation to 25 dpa are analyzed. The influence of different factors on hardening is discussed involving results of transmission and scanning electron microscopy.
Розглянута можливість використання методу наноіндентування при дослідженні змін механічних властивостей (твердості і модуля пружності) сталі 316, опроміненої при 900 К іонами Ar⁺ з енергією 1,4 МеВ до дози 1·10¹⁷ см⁻². Аналізуються способи обробки експериментальних даних з метою вилучення фізичних характеристик матеріалу, зокрема, його зміцнення при опромінені до 25 зна. Обговорюється вплив різних чинників на зміцнення стали 316 з залученням даних просвічуючої і скануючої електронної мікроскопії.
Рассмотрена возможность применения метода наноиндентирования при исследовании изменения механических свойств (твердости и модуля упругости) стали 316, облученной при 900 К ионами Ar⁺ с энергией 1,4 МэВ до дозы 1·10¹⁷ см⁻². Анализируются способы обработки экспериментальных данных с целью извлечения физических характеристик материала, в частности, его упрочнения при облучении до 25 сна. Обсуждается влияние различных факторов на упрочнение стали 316 с привлечением данных просвечивающей и сканирующей электронной микроскопии.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/112303 |
| citation_txt |
Application of nanoindentation for investigation of radiation damage in SS316 stainless steel / G.N. Tolmachova, G.D. Tolstolutskaya, S.A. Karpov, B.S. Sungurov, R.L. Vasilenko // Вопросы атомной науки и техники. — 2015. — № 5. — С. 163-167. — Бібліогр.: 20 назв. — англ. |
| work_keys_str_mv |
AT tolmachovagn applicationofnanoindentationforinvestigationofradiationdamageinss316stainlesssteel AT tolstolutskayagd applicationofnanoindentationforinvestigationofradiationdamageinss316stainlesssteel AT karpovsa applicationofnanoindentationforinvestigationofradiationdamageinss316stainlesssteel AT sungurovbs applicationofnanoindentationforinvestigationofradiationdamageinss316stainlesssteel AT vasilenkorl applicationofnanoindentationforinvestigationofradiationdamageinss316stainlesssteel AT tolmachovagn zastosuvannâmetodunanoíndentuvannâdlâdoslídžennâradíacíinoípoškodžuvanostístalí316 AT tolstolutskayagd zastosuvannâmetodunanoíndentuvannâdlâdoslídžennâradíacíinoípoškodžuvanostístalí316 AT karpovsa zastosuvannâmetodunanoíndentuvannâdlâdoslídžennâradíacíinoípoškodžuvanostístalí316 AT sungurovbs zastosuvannâmetodunanoíndentuvannâdlâdoslídžennâradíacíinoípoškodžuvanostístalí316 AT vasilenkorl zastosuvannâmetodunanoíndentuvannâdlâdoslídžennâradíacíinoípoškodžuvanostístalí316 AT tolmachovagn primeneniemetodananoindentirovaniâdlâissledovaniâradiacionnoipovreždaemostistali316 AT tolstolutskayagd primeneniemetodananoindentirovaniâdlâissledovaniâradiacionnoipovreždaemostistali316 AT karpovsa primeneniemetodananoindentirovaniâdlâissledovaniâradiacionnoipovreždaemostistali316 AT sungurovbs primeneniemetodananoindentirovaniâdlâissledovaniâradiacionnoipovreždaemostistali316 AT vasilenkorl primeneniemetodananoindentirovaniâdlâissledovaniâradiacionnoipovreždaemostistali316 |
| first_indexed |
2025-11-25T20:43:27Z |
| last_indexed |
2025-11-25T20:43:27Z |
| _version_ |
1850530753251639296 |
| fulltext |
ISSN 1562-6016. PASТ. 2015. №5(99), p. 168
UDC 539.32
APPLICATION OF NANOINDENTATION FOR INVESTIGATION
OF RADIATION DAMAGE IN SS316 STAINLESS STEEL
G.N. Tolmachova, G.D. Tolstolutskaya, S.A. Karpov, B.S. Sungurov, R.L. Vasilenko
National Science Center “Kharkov Institute of Physics and Ttechnology”,
Kharkov, Ukraine
E-mail: termojad@rambler.ru
The possibility of application of nanoindentation technique for investigation of mechanical properties (hardness
and modulus of elasticity) of SS316 steel irradiated with 1.4 MeV Ar
+
ions to a dose of 1·10
17
cm
-2
at 900 K has
been considered. Methods of experimental data processing for extracting of physical characteristics of materials, in
particular, hardening at irradiation to 25 dpa are analyzed. The influence of different factors on hardening is
discussed involving results of transmission and scanning electron microscopy.
INTRODUCTION
Currently, nanoindentation techniques are extremely
popular among the specialists involved in the
development and use of nanostructured materials. The
intense progress of nano technologies required the
advance of methods for investigation and characterizing
of physical-mechanical properties of materials in nano-
level.
Nanoindentation (depth sensing testing, ultra-low-
load indentation, instrumented indentation) is the
absolute leader of such testing, suitable for solution of
different physical problems and clarify the fundamental
laws of behavior of nanometer near-surface layers and
submicron volumes of various materials. The term
nanoindentation (NI) means all methods with the use of
precise local load effect on material and simultaneous
registration of deformation response with nano meter
resolution [13].
Operation mode of nanoindenters is realized by
penetration of geometrically certified indenter under the
action of prescribed profile of normal force P(t) and
simultaneous registration of the depth of its penetration
into the material h(t).
It is noted in the review [4] that one of the attractive
distinction of NI is the possibility to obtain the different
quantitative characteristics of material. Approximately
for a half of these characteristics there are well accepted
determinations, standards, algorithms and programs of
realization. These are: Young`s modulus E, hardness H,
fracture toughness K1c, loading diagram σ = f(ε),
determined by diagram P = f(h) and more than two tens
of characteristics.
Another group of characteristics have not the
accepted ways of description and methods of
experimental characterization. They may be estimated
by different methods having comparative or semi-
quantitative character. These are: a) parameters of
different scale effects, conditions of their manifestation,
boundaries of mechanical properties invariance
respectively to variation of specimen size and
morphological units of its structure; b) conditions of
polymorph transformation induced by high contact
pressure under indenter; c) dependence of properties on
depth in high-gradient materials; d) position of
boundaries and separate determination of properties of
the film and substrate in fine-film structures without
preparation of transverse metallographic specimen and
surface etching; e) adhesion, parameters of peeling and
fracture of film coatings [5].
Promising is the possibility to use nanoindentation
during investigation of radiation resistance and
mechanisms of radiation damage on charged particles
accelerators since experiments with ion irradiation has
an essential disadvantage – the low depth of damaged
layer, that make difficult the correct description of
radiation phenomena and study of mechanical properties
of material. Nanoindentation is practically the one
experimental technique for obtaining quantitative rather
than estimated values characterizing the set of
mechanical and operational properties of surface layers
in nano- and sub- microvolumes.
In [6] the first results on hardening of 316 steel
irradiated with ions of deuterium, helium and argon
were obtained. These results showed an increase in steel
hardness of approximately two times after irradiation
but did not allow to fully extract quantitative
characteristics and to specify structural aspects of the
mechanisms of radiation hardening.
The goal of present paper is the use of the
nanoindentation method for investigation of hardness
and modulus of elasticity of SS316 steel in initial state
and after irradiation with 1.4 MeV Ar
+
ions to a dose of
25 dpa and to develop the methods for obtaining of
macroscopic characteristics of materials from results of
nano meter scale.
EXPERIMENTAL TECHNIQUE
Specimens of SS316 steels with dimensions of
27x7x0.1 mm were preliminary solution annealed at
temperature 1340 K in vacuum 10
-4
Pa during one hour.
To clean the steel surface from impurities specimens
were electropolished in electrolyte composed of 530 ml
of glycerin, 300 ml H3PO4 and 80 ml H2O. The polished
surface quality was inspected with “MIM-2P”
microscope.
After electropolishing before irradiation and
investigation specimens were short-term annealed to
1200 K in experimental chamber. Composition of steel
is presented in Table.
mailto:termojad@rambler.ru
Composition of steel 316, weigh %
C Si Mn P S Cr Ni Mo Ti Fe
0,06 0,67 1,77 0,035 0,015 16,68 12,01 2,39 0,01 Bal.
Specimens were irradiated in electrostatic
accelerator “ESU-2” with 1.4 MeV Ar
+
ions to a dose of
1·10
17
cm
-2
. The current density of argon ions was
10
13
cm
-2
∙s
-1
. The temperature of irradiation was chosen
to be 900 K and was registered by chromel-alumel
thermocouple.
Microstructure of irradiated specimens was studied
by transmission electron microscopy at room
temperature using standard bright field technique.
Surface structure transformations were studied using
scanning electron microscope JEOLJSM-7001F 00.
Nanohardness was measured by Nanoindenter G200
with the use of tripod Berkovich pyramid. The first data
about the mechanical properties was obtained from
simple loading-unloading test, which gives general
information and basic characteristics such as hardness
and modulus of elasticity and also reports about
irreversible processes. Fig. 1 shows the diagram of
indenter penetration obtained during nanoindentation of
irradiated specimen of SS316 steel.
Fig. 1. Curve loading-unloading
The most common method of data analysis in
nanoindentation is a method of Oliver and Pharr
allowing determination of hardness and elastic modulus
of specimen without measurement of its dimensions by
direct methods [7]. However, a significant disadvantage
of the classical method of Oliver and Pharr is that the
hardness and elastic modulus of specimen of in such
tests can be determined only with maximal load on
indenter which is not always convenient and needs long-
time tests.
We have realized tests using the method of
continuous stiffness measurement with continuous
registration of the curve of loading and unloading [8].
The method consist in superposition of harmonic
disturbance F=F0sinω0t with small amplitude on the
slowly varying test load and in measurement of
amplitude and phase of indenter displacement on
frequency ω0 (usually from 1 to tens of Hz) using
synchronous detector. Due to such modulation the areas
of short-time load decrease appear periodically on the
curve of indenter penetration.
As a result, continuous dependence of hardness and
elastic modulus of the sample from the depth of
indentation is obtained according to the data of one test
(Fig. 2). Wherein, the rate of deformation in the contact
remains constant.
a
b
Fig. 2. Hardness (a) and elastic modulus (b) of SS316
steel irradiated with 1.4 MeV Ar
+
ions
RESULTS AND DISCUSSION
Fig. 3 shows the dependence of initial SS316 steel
nanohardness from the depth of indenter penetration.
Measurements of nanohardness were performed up to
the depth of 1000 nm. Imprints were made on distance
15 m one from another. The figure shows the data of
8 imprints.
Measured values of hardness have the high
discordance for the depth up to 50 nm due to the
inaccuracy in determination of geometry of indenter
head and effects of deformation rates round the pyramid
head and also due to other surface artifacts such as the
film contamination, for instance.
0
1
2
3
4
5
0 200 400 600 800 1000
Indentation depth (nm)
H
a
rd
n
e
s
s
(
G
P
a
)
Ряд1
Ряд2
Ряд3
Ряд4
Ряд5
Ряд6
Fig. 3. Dependence of hardness of SS316 steel in initial
state from the depth of indenter penetration
In general case several areas may be distinguish on
the curve. In first area (0…30 nm) a rapid increase of
pressure is observed that may be explained by the fact
that Berkovich indenter is not ideally sharp. On indenter
vertex there is a blunting in the shape of sphere (in our
case the sphere has the radius ~ 230 nm according to
data of atom-force microscopy). Spherical blunting
induces the formation of initial elastic area.
In second area from 30 to 60 nm elastic-plastic
transition is observed; the last is induced by that with
the increase of indenter penetration depth the fraction of
spherical peak in contact decreases and transition to
pyramidal indenter is observed. Such smooth transition
is observed during heterogeneous nucleation of
dislocations in contact (another reason – multiplication
of existing dislocations) [9]. Plastic flow in specimen
starts only from depth ~ 60 nm when indentation is
realized just by pyramid. The control of hardness
became possible from this depth.
For initial non-irradiated specimens the value of
nanohardness decreases slowly with the depth of
penetration. Such behavior is due to methodological
distinctions: with the increase of nanoindentation depth
the measured hardness decreases and reaches gradually
the value of macro hardness.
As it is seen from Fig. 3 on depths 150…1000 nm
the tendency of dependencies is the same, but some
spread of data (~ 15%) is observed. In the present paper
10 measurements were carried out on each specimen
and then results were averaged. The averaged value of
nanohardness in non-irradiated specimens of steel was
~ (2,3±0,3) GPa on depth up to 1000 nm.
Fig. 4 shows the dependencies of hardness versus
depth of indenter penetration for specimen irradiated at
room temperature with 1.4 MeV argon ions to a dose of
1·10
17
cm
-2
. Similarly to initial specimens profiles of
hardness after irradiation show the effect of hardness
increase on low depth of nanoindentation, so called ISE
(indentation size effect).
According to the methodology adopted by
international community the first parts of curves (depth
0…50 nm) having the artifact origin are not shown.
Data are presented for two imprints showing the highest
data spread. Structure of specimen surface with
indentations is shown on Fig. 4,b,c.
Relative data spread for irradiated specimen exceeds
slightly the data spread obtained from initial specimen.
But the maximal variation in hardness obtained on
depths 100…500 nm was 0.8 GPa and approximately
twice exceeds the mean spread for initial specimens.
Indentations on irradiated specimen fall on boundary
and body of the grain (see Fig. 4,b,c). It may be
supposed that higher value of hardness obtained for
indentation #1 is due to the effect of grain boundary.
2
2,5
3
3,5
4
4,5
5
0 200 400 600 800 1000
Indentation depth (nm)
H
a
rd
n
e
s
s
(
G
P
a
)
укол 1
Ряд2
1
2
a
b
c
Fig. 4. Hardness of SS316 steel irradiated at 900 K with
1.4 MeV Ar
+
ions to a dose of 1·.10
17
cm
-2
measured on
boundary (1) and in grain body (2) (a). Surface of
specimen with imprints of indentation # 1 (b) and # 2 (c)
There is a contradict information about the effect of
grain boundaries on hardness [1012]. Majority of
authors have observed hardening with the indentation
approaching to boundary. They have explained this
effect by difficulty of gliding transfer into the
neighboring grain. Decrease of hardening was rarely
observed with the approaching to grain boundary. It was
noted in [4] that on initial stage of Berkovich indenter
penetration the grain boundaries are on large distance
and can’t participate into deformation.
On the other hand quantitative characteristics of
hardening reflect the integral character of nucleation
and movement of dislocations, their interaction with
lattice, among themselves and other structural
imperfection of crystals. Under irradiation the variety of
different radiation defects contribute to hardening; these
defects are: isolated point defects, clusters, vacancy and
interstitial dislocation loops, precipitates of new phase,
vacancy and gas-filled voids which make difficult the
free movement of dislocation [13].
In present experiments SS316 steel was irradiated
with ions of inert gas-argon at temperature 900 K, in
conditions where gaseous bubbles are formed
effectively. Swelled grain boundaries (see Fig. 4,b,c)
indicate the accumulation of argon bubbles on them.
However TEM and SEM studies of steel structure had
showed that gaseous bubbles are formed not only on
grain boundary but also into the grain body (Fig. 5).
a
b
Fig. 5. Microstructure of SS316 steel irradiated at
900 K with 1.4 MeV Ar
+
ions to a dose of 1·10
17
cm
-2
obtained by means of SEM (after electro polishing) (a)
and TEM (b)
It may be supposed that gas bubbles located in the
grain body or on its boundary influence differently on
dislocation movement during nanoindentation. But this
assumption must be confirmed experimentally.
Fig.6 shows profiles of hardness for initial and argon
irradiated specimens of SS316 steel and also calculated
profiles of radiation damage and argon concentrations
for irradiation of steel with 1.4 MeV Ar
+
ions to a dose
of 1·10
17
cm
-2
. Maximal (calculated) value of damage is
60 dpa, concentration of implanted argon – 4.2 at.%.
Depth of damage extends up to ~ 800 nm [14].
The comparison of the two hardness profiles shows
that irradiation causes (leads to) an increase of hardness
nearly 1.7 times in the depths of 50…125 nm. Decrease
of the hardness with an increase of indentation depth is
related to the effect of soft base (see Fig. 6,a, curve 2)
[15]. During nanoindentation, as it is shown in [1618],
plastic zone around the indenter tip extends well below
it on depth approximately 4…7 times larger than the
depth of indentation. So, the hardness of softer non-
irradiated part of material located beyond the ion ranges
dominates at hardness measurement of irradiated area.
In the same time the highest value of hardness on depth
100…150 nm is induced by maximum of damage on
depth 500…600 nm (see Fig. 6,b).
2
3
4
0 200 400 600 800 1000
Indentation depth (nm)
H
a
rd
n
e
s
s
(
G
P
a
)
облучен 1,4 МэВ Ar
исходный
1 - Virgin
2 - Ar
+
irradiated
1
2
a 0.0
0.5
1.0
1.5
2.0
2.5
0 200 400 600 800 1000
0
20
40
60
H = Hirr.Ar - Hinit.
H
a
rd
n
e
s
s
,
G
P
a
D
a
m
a
g
e
,
d
p
a
Depth, nm
0
1
2
3
4
5
Ar
+
(1.4 MeV)
1
cm
-2
C
o
n
c
e
n
tr
a
ti
o
n
,
a
t.
%
b
Fig. 6. Profile of hardness of steel 316 for initial (1)
and argon irradiated (2) specimens (a); designed
profiles of damage and concentrations of argon with
energy of irradiation 1.4 MeV to dose 1·10
17
cm
-2
(b)
Method of determination of actual relative hardening
due to radiation was proposed in [17]. It means the
subtraction of the hardness measured in initial material
from the hardness measured in irradiated material. For
specimens irradiated with argon ions the maximum
increase of nanohardness after irradiation was
determined to be ≈ 1.7 GPa.
With the development of the method of
nanoindentation, especially for its use in ion-implanted
specimens other approaches were examined for
determination of hardening not in nano-region, but also
for macroscopic volume of material.
It was supposed that at continuous indentation when
radius of contact spot varies from atomic to
macroscopic one the scale of the problem passes
successively the different structural level of deformation.
In the result of such scanning each level having
characteristic dimension will add its special features in
scale effects.
One of most developed approaches to size effects is
the use of concept of geometrically necessary
dislocations [19]. According to this concept size effects
arise in the case where the typical dimensions of
deformation (specimen cross-section) became lower
than the characteristic length h*. On the base of these
representations Nix and Gao [20] have derived the
relation
where H – hardness; h indenter penetration depth;
H0 limited hardness on infinite depth. Experimental
data rearrange as H
2
= f (1/h), as it is shown on Fig. 7.
Square root from H
2
0 obtained on intersection of the
curve with axis H
2
will give the value of hardness for
the bulk material.
0
5
10
15
20
0 5 10 15 20
1/h (µm
-1
)
Н
2
(
G
P
a
2
)
500 nm 70 nm200 nm
Initial
Arirr(600
o
C)
1
2
3
Fig. 7. Dependence of H
2
=f(1/h) for initial and argon
irradiated specimen of steel 316
For initial specimen practically linear dependence is
observed while for irradiated specimen the curve has
inflections in the region of 200 and 500 nm. The data
over the inflection point, which is indicated by the
arrow 1, could be interpreted as the hardness of the
irradiated region. The bulk hardness H0 estimated from
this irradiated region was 3.9 GPa. The data below the
inflection point indicated by arrow 2 included the
hardness of both the irradiated and unirradiated regions
and 3 unirradiated region [18]. The hardness values
H0 obtained by such processing for the initial samples
are 2.2 GPA. Obtained values of elastic modulus are:
181.7 GPa for initial steel and 183.9 GPa for argon
irradiated steel.
CONCLUSION
Methodology of nanoindentation was tested during
measurement of hardness and elastic modulus of SS316
steel in initial state and after irradiation with 1.4 MeV
Ar
+
ions to a dose of 25 dpa at 900 K .
It is shown that this methodology is a suitable tool
for determination of radiation-induced hardening in
damaged layer on the depth of several hundred of
nanometers.
Processing of experimental data for initial and
irradiated specimen requires consideration of size
effects when with the decrease of the depth of
nanoindentation the hardness increases.
Relative hardening due to radiation can be obtained
by subtracting the hardness measured in the initial
material from the hardness measured in the irradiated
material. To extract hardness values corresponding to
the bulk specimen the treatment of data must be
performed taking into account the theory of
geometrically necessary dislocation and plotting of
dependence H
2
=f(1/h).
REFERENCES
1. Springer handbook of nanotechnology / Ed.
B. Bhushan. Springer-Verlag, Berlin, 2007, 1916 p.
2. A.D. Romig, jr, M.T. Dugger, P.J. McWhorter //
Acta Mater. 2003, v. 51, p. 5837.
3. Ю.И. Головин. Введение в нанотехнику. М.:
«Машиностроение», 2007, 496 с.
4. Ю.И. Головин. Наноиндентирование и
механические свойства твердых тел в
субмикрообъемах, тонких приповерхностных слоях
и пленках (Обзор) // Физика твердого тела. 2008,
т. 50, в. 12, с. 2113-2143.
5. Ю. Головин, А. Самодуров, В. Шиндяпин.
Наноиндентирование – универсальный подход к
характеризации механических свойств материалов в
наношкале // Наноиндустрия. 2009, №3, с. 2-5.
6. Б.С. Сунгуров, Г.Д. Толстолуцкая, С.А. Кар-
пов, И.Е. Копанец, В.В. Ружицкий, А.В. Никитин,
Г.Н. Толмачева. Взаимодействие дейтерия с
аустенитной нержавеющей сталью SS316 // Вопросы
атомной науки и техники. Серия «Физика
радиационных повреждений и радиационное
материаловедение». 2015, №2, с. 29-34.
7. W.C. Oliver, G.M. Pharr. An improved
technique for determining hardness and elastic modulus
using load and displacement sensing indentation
experiments // J. Mater. Res. 1992, v. 7, N 6, р. 1564-
1583.
8. W. Oliver, G. Pharr. Measurment of hardness
and elastic modulus by instrumented indentation:
Advances in understanding and refinements to
methodology // J. Mater. Res. 2004, v. 19, N 1, p. 3-20.
9. С.Н. Дуб, В.В. Бражкин, Н.В. Новиков,
Г.Н. Толмачева, П.М. Литвин, Л.М. Литягина,
Т.И. Дюжева. Сравнительные исследования
механических свойств монокристаллов стишовита и
сапфира методом наноиндентирования //
Сверхтвердые материалы. 2010, № 6, c. 55-67.
10. W.A. Soer, K.E. Aifantis, J.Th.M. De Hosson
// Acta Mater. 2005, v. 53, p . 4665.
11. R. Iglesias, E.P.M. Leiva // Acta Mater. 2006,
v. 54, p.2655.
12. W.D. Nix, J.R. Greer, G. Feng, E.T. Lilleod-
den / / Thin Solid Films. 2007, v. 515, p. 3152.
13. Физика радиационных явлений и
радиационное материаловедение / Под ред.
А.М. Паршина, И.М. Неклюдова, Н.В. Камышан-
ченко. – Белгород: БГУ, 1998, 378 с.
14. www.srim.org. Version – SRIM-2006.02.
15. Y. Katoh, M. Ando, A. Kohyama. Radiation
and helium effects on microstructures nano-indentation
properties and deformation behavior in ferrous alloys //
Journal of Nuclear Materials. 2003, v. 323, p. 251-262.
16. S. Jiang, L. Peng, H. Ge, et al. He and H
irradiation effects on the nanoindentation hardness of
CLAM steel // J. Nucl. Mater. 2014, v. 455, p.335-338.
http://www.srim.org/
17. P. Dayal, D. Bhattacharyya, W.M. Mook, et al.
Effect of double ion implantation and irradiation by Ar
and He ions on nano-indentation hardness of metallic
alloys // J. Nucl. Mater. 2013, v. 438, p. 108-115.
18. С. Heintze, C. Recknagel, F. Bergner, et al.
Ion-irradiation-induced damage of steels characterized
by means of nanoindentation // Nucl. Instr. and Meth. in
Phys. Res. B. 2009, v. 267, p. 1505-1508.
19. J.F. Nye // Acta Met. 1953, v. 1, p. 153.
20. W.D. Nix, H.J. Gao. Indentation size effects in
crystalline materials. A law for strain gradient plasticity
// J. Mech. Phys. Solids. 1998, v. 46, p. 411.
Article received 19.08.2015
ПРИМЕНЕНИЕ МЕТОДА НАНОИНДЕНТИРОВАНИЯ
ДЛЯ ИССЛЕДОВАНИЯ РАДИАЦИОННОЙ ПОВРЕЖДАЕМОСТИ СТАЛИ 316
Г.Н. Толмачёва, Г.Д. Толстолуцкая, С.А. Карпов, Б.С. Сунгуров, Р.Л. Василенко
Рассмотрена возможность применения метода наноиндентирования при исследовании изменения
механических свойств (твердости и модуля упругости) стали 316, облученной при 900 К ионами Ar
+
с
энергией 1,4 МэВ до дозы 1·10
17
см
-2
. Анализируются способы обработки экспериментальных данных с
целью извлечения физических характеристик материала, в частности, его упрочнения при облучении до
25 сна. Обсуждается влияние различных факторов на упрочнение стали 316 с привлечением данных
просвечивающей и сканирующей электронной микроскопии.
ЗАСТОСУВАННЯ МЕТОДУ НАНОІНДЕНТУВАННЯ
ДЛЯ ДОСЛІДЖЕННЯ РАДІАЦІЙНОЇ ПОШКОДЖУВАНОСТІ СТАЛІ 316
Г.M. Толмачова, Г.Д. Толстолуцька, С.О. Карпов, Б. С. Сунгуров, Р.Л. Василенко
Розглянута можливість використання методу наноіндентування при дослідженні змін механічних
властивостей (твердості і модуля пружності) сталі 316, опроміненої при 900 К іонами Ar
+
з енергією 1,4 МеВ
до дози 1·10
17
см
-2
. Аналізуються способи обробки експериментальних даних з метою вилучення фізичних
характеристик матеріалу, зокрема, його зміцнення при опромінені до 25 зна. Обговорюється вплив різних
чинників на зміцнення стали 316 з залученням даних просвічуючої і скануючої електронної мікроскопії.
|