Results of study the influence electron irradiation on the high-frequency dielectric properties of zirconia nanoceramics

The use of dielectric materials in accelerator technology makes it necessary to research the change of dielectric constant and dielectric loss under relativistic electrons irradiation. The experiments were performed on electron linac LUE-40 with electron energy up to 100 MeV. Special attention was a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Aizatskyi, N.I., Bocharov, V.A., Dikiy, N.P., Dovbnya, A.N., Kushnir, V.A., Mytrochenko, V.V., Nikitina, O.D., Onishchenko, I.N., Selivanov, L.I., Stepin, D.L.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/112359
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Results of study the influence electron irradiation on the high-frequency dielectric properties of zirconia nanoceramics / N.I. Aizatskyi, V.A. Bocharov, N.P. Dikiy, A.N. Dovbnya, V.A. Kushnir, V.V. Mytrochenko, O.D. Nikitina, I.N. Onishchenko, L.I. Selivanov, D.L. Stepin, S.A. Perezhogin, I.A. Danilenko, T.E. Konstantinova, V.F. Zhiglo // Вопросы атомной науки и техники. — 2015. — № 6. — С. 47-51. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112359
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1123592025-02-09T10:08:16Z Results of study the influence electron irradiation on the high-frequency dielectric properties of zirconia nanoceramics Результати дослідження впливу електронного опромінення на високочастотні діелектричні властивості цирконієвої нанокераміки Результаты исследования влияния электронного облучения на высокочастотные диэлектрические свойства циркониевой нанокерамики Aizatskyi, N.I. Bocharov, V.A. Dikiy, N.P. Dovbnya, A.N. Kushnir, V.A. Mytrochenko, V.V. Nikitina, O.D. Onishchenko, I.N. Selivanov, L.I. Stepin, D.L. Новые и нестандартные ускорительные технологии The use of dielectric materials in accelerator technology makes it necessary to research the change of dielectric constant and dielectric loss under relativistic electrons irradiation. The experiments were performed on electron linac LUE-40 with electron energy up to 100 MeV. Special attention was attends to RF measurements of small permit-tivity changes. It was found that the permittivity of zirconia nanoceramics (ZrO₂ – 4 wt% MgO) was decreased on average (0.23 ± 0.02)% as a result of irradiation by electron beam with energy 41 MeV and the fluence of ≈10¹⁸cm⁻². Використання діелектричних матеріалів у прискорювальній техніці робить необхідним проведення досліджень процесів зміни діелектричної проникності та діелектричних втрат при опроміненні релятивістськими електронами. Наведено результати експериментального вивчення діелектричних властивостей цирконієвої нанокераміки після опромінення високоенергетичними електронами. Експерименти проводилися на прискорювачі електронів ЛУЕ-40 з енергією частинок до 100 МеВ. Особлива увага приділяється методам вимірювання на НВЧ малих змін діелектричної проникності. Встановлено, що в результаті впливу електронного пучка з енергією 41 МеВ і флюенсом ≈10¹⁸см⁻² діелектрична проникність цирконієвої нанокераміки (ZrO₂ – 4 wt% MgO), зменшується в середньому на (0,23 ± 0,02)%. Использование диэлектрических материалов в ускорительной технике делает необходимым проведение исследований процессов изменения диэлектрической проницаемости и диэлектрических потерь при облуче-нии релятивистскими электронами. Приводятся результаты экспериментального изучения диэлектрических свойств циркониевой нанокерамики после облучения высокоэнергетическими электронами. Эксперименты проводились на ускорителе электронов ЛУЭ-40 с энергией частиц до 100 МэВ. Особое внимание уделяется методам измерения на СВЧ малых изменений диэлектрической проницаемости. Установлено, что в результате воздействия электронного пучка с энергией 41 МэВ и флюенсом ≈10¹⁸см⁻² диэлектрическая проницаемость циркониевой нанокерамики (ZrO₂ – 4 wt% MgO)уменьшается в среднем на (0,23 ± 0,02)%. Work supported by Global Initiatives for Proliferation Prevention (GIPP) program, project ANL-T2-247-UA (STCU Agreement P522). 2015 Article Results of study the influence electron irradiation on the high-frequency dielectric properties of zirconia nanoceramics / N.I. Aizatskyi, V.A. Bocharov, N.P. Dikiy, A.N. Dovbnya, V.A. Kushnir, V.V. Mytrochenko, O.D. Nikitina, I.N. Onishchenko, L.I. Selivanov, D.L. Stepin, S.A. Perezhogin, I.A. Danilenko, T.E. Konstantinova, V.F. Zhiglo // Вопросы атомной науки и техники. — 2015. — № 6. — С. 47-51. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 78.70-g, 61.80.Fe, 06.90.+v. https://nasplib.isofts.kiev.ua/handle/123456789/112359 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Новые и нестандартные ускорительные технологии
Новые и нестандартные ускорительные технологии
spellingShingle Новые и нестандартные ускорительные технологии
Новые и нестандартные ускорительные технологии
Aizatskyi, N.I.
Bocharov, V.A.
Dikiy, N.P.
Dovbnya, A.N.
Kushnir, V.A.
Mytrochenko, V.V.
Nikitina, O.D.
Onishchenko, I.N.
Selivanov, L.I.
Stepin, D.L.
Results of study the influence electron irradiation on the high-frequency dielectric properties of zirconia nanoceramics
Вопросы атомной науки и техники
description The use of dielectric materials in accelerator technology makes it necessary to research the change of dielectric constant and dielectric loss under relativistic electrons irradiation. The experiments were performed on electron linac LUE-40 with electron energy up to 100 MeV. Special attention was attends to RF measurements of small permit-tivity changes. It was found that the permittivity of zirconia nanoceramics (ZrO₂ – 4 wt% MgO) was decreased on average (0.23 ± 0.02)% as a result of irradiation by electron beam with energy 41 MeV and the fluence of ≈10¹⁸cm⁻².
format Article
author Aizatskyi, N.I.
Bocharov, V.A.
Dikiy, N.P.
Dovbnya, A.N.
Kushnir, V.A.
Mytrochenko, V.V.
Nikitina, O.D.
Onishchenko, I.N.
Selivanov, L.I.
Stepin, D.L.
author_facet Aizatskyi, N.I.
Bocharov, V.A.
Dikiy, N.P.
Dovbnya, A.N.
Kushnir, V.A.
Mytrochenko, V.V.
Nikitina, O.D.
Onishchenko, I.N.
Selivanov, L.I.
Stepin, D.L.
author_sort Aizatskyi, N.I.
title Results of study the influence electron irradiation on the high-frequency dielectric properties of zirconia nanoceramics
title_short Results of study the influence electron irradiation on the high-frequency dielectric properties of zirconia nanoceramics
title_full Results of study the influence electron irradiation on the high-frequency dielectric properties of zirconia nanoceramics
title_fullStr Results of study the influence electron irradiation on the high-frequency dielectric properties of zirconia nanoceramics
title_full_unstemmed Results of study the influence electron irradiation on the high-frequency dielectric properties of zirconia nanoceramics
title_sort results of study the influence electron irradiation on the high-frequency dielectric properties of zirconia nanoceramics
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Новые и нестандартные ускорительные технологии
url https://nasplib.isofts.kiev.ua/handle/123456789/112359
citation_txt Results of study the influence electron irradiation on the high-frequency dielectric properties of zirconia nanoceramics / N.I. Aizatskyi, V.A. Bocharov, N.P. Dikiy, A.N. Dovbnya, V.A. Kushnir, V.V. Mytrochenko, O.D. Nikitina, I.N. Onishchenko, L.I. Selivanov, D.L. Stepin, S.A. Perezhogin, I.A. Danilenko, T.E. Konstantinova, V.F. Zhiglo // Вопросы атомной науки и техники. — 2015. — № 6. — С. 47-51. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT aizatskyini resultsofstudytheinfluenceelectronirradiationonthehighfrequencydielectricpropertiesofzirconiananoceramics
AT bocharovva resultsofstudytheinfluenceelectronirradiationonthehighfrequencydielectricpropertiesofzirconiananoceramics
AT dikiynp resultsofstudytheinfluenceelectronirradiationonthehighfrequencydielectricpropertiesofzirconiananoceramics
AT dovbnyaan resultsofstudytheinfluenceelectronirradiationonthehighfrequencydielectricpropertiesofzirconiananoceramics
AT kushnirva resultsofstudytheinfluenceelectronirradiationonthehighfrequencydielectricpropertiesofzirconiananoceramics
AT mytrochenkovv resultsofstudytheinfluenceelectronirradiationonthehighfrequencydielectricpropertiesofzirconiananoceramics
AT nikitinaod resultsofstudytheinfluenceelectronirradiationonthehighfrequencydielectricpropertiesofzirconiananoceramics
AT onishchenkoin resultsofstudytheinfluenceelectronirradiationonthehighfrequencydielectricpropertiesofzirconiananoceramics
AT selivanovli resultsofstudytheinfluenceelectronirradiationonthehighfrequencydielectricpropertiesofzirconiananoceramics
AT stepindl resultsofstudytheinfluenceelectronirradiationonthehighfrequencydielectricpropertiesofzirconiananoceramics
AT aizatskyini rezulʹtatidoslídžennâvplivuelektronnogoopromínennânavisokočastotnídíelektričnívlastivostícirkoníêvoínanokeramíki
AT bocharovva rezulʹtatidoslídžennâvplivuelektronnogoopromínennânavisokočastotnídíelektričnívlastivostícirkoníêvoínanokeramíki
AT dikiynp rezulʹtatidoslídžennâvplivuelektronnogoopromínennânavisokočastotnídíelektričnívlastivostícirkoníêvoínanokeramíki
AT dovbnyaan rezulʹtatidoslídžennâvplivuelektronnogoopromínennânavisokočastotnídíelektričnívlastivostícirkoníêvoínanokeramíki
AT kushnirva rezulʹtatidoslídžennâvplivuelektronnogoopromínennânavisokočastotnídíelektričnívlastivostícirkoníêvoínanokeramíki
AT mytrochenkovv rezulʹtatidoslídžennâvplivuelektronnogoopromínennânavisokočastotnídíelektričnívlastivostícirkoníêvoínanokeramíki
AT nikitinaod rezulʹtatidoslídžennâvplivuelektronnogoopromínennânavisokočastotnídíelektričnívlastivostícirkoníêvoínanokeramíki
AT onishchenkoin rezulʹtatidoslídžennâvplivuelektronnogoopromínennânavisokočastotnídíelektričnívlastivostícirkoníêvoínanokeramíki
AT selivanovli rezulʹtatidoslídžennâvplivuelektronnogoopromínennânavisokočastotnídíelektričnívlastivostícirkoníêvoínanokeramíki
AT stepindl rezulʹtatidoslídžennâvplivuelektronnogoopromínennânavisokočastotnídíelektričnívlastivostícirkoníêvoínanokeramíki
AT aizatskyini rezulʹtatyissledovaniâvliâniâélektronnogooblučeniânavysokočastotnyediélektričeskiesvojstvacirkonievojnanokeramiki
AT bocharovva rezulʹtatyissledovaniâvliâniâélektronnogooblučeniânavysokočastotnyediélektričeskiesvojstvacirkonievojnanokeramiki
AT dikiynp rezulʹtatyissledovaniâvliâniâélektronnogooblučeniânavysokočastotnyediélektričeskiesvojstvacirkonievojnanokeramiki
AT dovbnyaan rezulʹtatyissledovaniâvliâniâélektronnogooblučeniânavysokočastotnyediélektričeskiesvojstvacirkonievojnanokeramiki
AT kushnirva rezulʹtatyissledovaniâvliâniâélektronnogooblučeniânavysokočastotnyediélektričeskiesvojstvacirkonievojnanokeramiki
AT mytrochenkovv rezulʹtatyissledovaniâvliâniâélektronnogooblučeniânavysokočastotnyediélektričeskiesvojstvacirkonievojnanokeramiki
AT nikitinaod rezulʹtatyissledovaniâvliâniâélektronnogooblučeniânavysokočastotnyediélektričeskiesvojstvacirkonievojnanokeramiki
AT onishchenkoin rezulʹtatyissledovaniâvliâniâélektronnogooblučeniânavysokočastotnyediélektričeskiesvojstvacirkonievojnanokeramiki
AT selivanovli rezulʹtatyissledovaniâvliâniâélektronnogooblučeniânavysokočastotnyediélektričeskiesvojstvacirkonievojnanokeramiki
AT stepindl rezulʹtatyissledovaniâvliâniâélektronnogooblučeniânavysokočastotnyediélektričeskiesvojstvacirkonievojnanokeramiki
first_indexed 2025-11-25T15:38:24Z
last_indexed 2025-11-25T15:38:24Z
_version_ 1849777305384124416
fulltext ISSN 1562-6016. ВАНТ. 2015. №6(100) 47 RESULTS OF STUDY THE INFLUENCE ELECTRON IRRADIATION ON THE HIGH-FREQUENCY DIELECTRIC PROPERTIES OF ZIRCONIA NANOCERAMICS N.I. Aizatskyi1, V.A. Bocharov1, N.P. Dikiy1, A.N. Dovbnya1, V.A. Kushnir1, V.V. Mytrochenko1, O.D. Nikitina1, I.N. Onishchenko1, L.I. Selivanov1, D.L. Stepin1, S.A. Perezhogin1, I.A. Danilenko2, T.E. Konstantinova2, V.F. Zhiglo1 1National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine; 2Donetsk O.O. Galkin Institute of Physics and Engineering, Donetsk, Ukraine E-mail: kushnir@kipt.kharkov.ua The use of dielectric materials in accelerator technology makes it necessary to research the change of dielectric constant and dielectric loss under relativistic electrons irradiation. The experiments were performed on electron lin- ac LUE-40 with electron energy up to 100 MeV. Special attention was attends to RF measurements of small permit- tivity changes. It was found that the permittivity of zirconia nanoceramics (ZrO2 – 4 wt% MgO) was decreased on average (0.23 ± 0.02)% as a result of irradiation by electron beam with energy 41 MeV and the fluence of ≈1018cm-2. PACS: 78.70-g, 61.80.Fe, 06.90.+v. INTRODUCTION The dielectric materials are widely used in accelerat- ing technique. For the past time the new dielectric based accelerating structures were designed and experimental- ly researched [1 - 4]. The zirconia nanoceramics which developed and manufactured at the DonPhTI [5, 6] can be used in RF-resonators of the multi-bunch accelerator [4]. It necessitate detailed study the dielectric properties of this material in the S-band of electromagnetic waves. First of all it concerns to the real part of complex per- mittivity ε and loss tangent tgδ. To the moment of our research beginning the unam- biguous information about dielectric properties of zirco- nia ceramics was absent in literature. The measurement results for the same materials substantially differ from each other [7]. Undoubtedly, it is first of all connected with the distinction of technology of making the ceram- ics, its composition and crystalline structure. The permittivity change of dielectric accelerating structure during exploitation can lead to the undesirable change of beam parameters. The basic possible source of dielectric properties change during the electron, neu- tron and gamma irradiation is radiation-induced defects of crystalline structure [8]. It is known that appearance of the radiation-induced defects lead to the increase of conductivity and, as a result, to the increase of dielectric losses. As concerns permittivity behavior, there are a few physical mechanisms that can result both in an in- crease and to reduction of permittivity. Under irradia- tion of dielectrics by neutrons or high energy electrons as a result of nuclear reactions new elements appear in material. The atom concentration of these elements even at the irradiation with large fluence is small. But it is unknown how they effect on the dielectric properties. The change of dielectric properties is also possible in case the crystalline structure change under the irradia- tion action. This question requires the detailed study as well. The dielectric properties of ceramic material depend on its composition, density, technology of making. Therefore, appropriate studies should be carried out in each case. In our case the research of permittivity change after an irradiation has some peculiarities. First- ly, after irradiation the samples have a high level of in- duced radiation that does not allow to conduct RF measuring in ordinary laboratory conditions during a long time (to 1 year to and more). In this connection the mass of a sample must be small. It is known, also, that the permittivity of zirconia ceramics is high and lies within the limits of 17…27. These features demanded the careful analysis and selection the methods for per- mittivity and dielectric losses measuring. 1. METHODS OF PERMITTIVITY AND LOSS TANGENT MEASURING Presently there are many methods of complex per- mittivity determination, based on different principles. The resonant methods are the most widespread in RF range. The basic idea of these methods consists in the measurement of the eigenfrequency shift and quality factor shift of a resonator with and without a dielectric sample. Then, on the base of experimental data, analyti- cally or with numerical method we can to find the per- mittivity. We will consider some realizations of reso- nant method bellow. The use of methods based on small perturbation ap- proach allows to measure the complex permittivity of small size samples. The approach of small perturbations supposes that the dielectric sample placed in the resona- tor disturb slightly the electromagnetic field. The error of measuring is grows with increasing the geometrical sizes and permittivity. Therefore applicability of this method in the S band is practically limited to the value of permittivity ε=7. These methods can be used only for simplest resonators that have the exact analytical solu- tion of eigenfrequency problem. So, in our case this method is inapplicable. With the computing engineering progress and ap- pearance of the computer codes that determine eigen- frequencies and quality factor of free-form resonators, the new approach to complex permittivity measurement has been developed, see for example [9]. It gives an opportunity to investigate the dielectric samples of free- form and sizes, to take into account influence of auxilia- ry elements of resonator (for example, holders of sam- ple and RF signals connectors). We have chosen this ISSN 1562-6016. ВАНТ. 2015. №6(100) 48 method with the partial filling of resonator with dielec- tric for the preliminary measuring of zirconia ceramics permittivity and its change due to the electron irradia- tion. The error in measurement permittivity is deter- mined by the following basic factors: - error in measuring resonant frequency − mainly caused by inaccuracy at assembling - disassembling of resonator and sample setting; - numeral model adequacy to the experiment condi- tions (sizes of resonator and sample, sizes and proper- ties of holder); - errors of simulation. If a dielectric sample has small RF losses it is possi- ble to use the method of the complete filling of the cavi- ty. Thus it is possible to attain a maximum sensitivity for measurement a change of permittivity. Really, for a cylindrical resonator an Е010 eigenfrequency and a quality factor are expressed as follows: επ ⋅ ⋅ = R pcf 2 01 0 , (1) δtg Q Q m + = 1 1 0 . (2) Here R is the radius of resonator, p01 is the first root of Bessel function of a zero order, ε − relative permittiv- ity of dielectric that fills a resonator fully, Qm is quality factor of resonator without dielectric. From (1) it fol- lows, that, for example, in an S band, the change of 1% in ε causes the change of 107 Hz in eigenfrequency. 1.1. RESONATORS FOR PERMITTIVITY MEASURING For the preliminary measuring the cylindrical reso- nators have been designed and fabricated in DonPhTI and in NSC KIPT. The investigated zirconia samples of ZrO2 – 4 wt% MgO ceramics are disks with a diameter about 10 mm and a high about 2.5 mm. The resonator fabricated in NSC KIPT is shown in Fig. 1. The ceramics sample has been set on the teflon holder. Frequency of Е010 mode and quality factor with- out a sample are 2700.9 MHz and (11.7±0.3)⋅103. The setting of sample changes the resonant frequency on 5.5...7.0 MHz. The relationship between this frequency change and sample permittivity have been definite by a numeral design with code SUPERFISH [10]. From the calculations it follows, that for this sample (if ε≈20) ∆f0/∆ε≈7 kHz/%. We used the special device to stable of RF contacts and statistical treatment of measuring results. It decreased the error in measuring of resonant frequency, which is caused by resonator and sample mounting to ±60 kHz. The measurements conducted both in NSC KIPT and DonPhTI shows that the permit- tivity of zirconia samples before irradiation is 23±2, and tgδ does not exceed 3⋅10-3. The ceramics samples for permittivity measurement must to have a regular form and must be processed with high precision. The thickness of a disk sample must be uniform with accuracy of a few microns. The same re- quirements are imposed on the disk diameter. Unfortu- nately, our samples of zirconia ceramics are not satis- fied such requirements. The inaccuracy of processing both disk thickness in different points and disk diameter was 10…150 microns. Therefore it is impossible to ex- actly reproduce the complex shape of samples for simu- lation. It limited the accuracy of permittivity measuring with the value of 10%. Thus, evidently, that for measur- ing of small changes of permittivity (less than 1%) it is necessary to use another method. Fig. 1. Sample (2) in the cavity on the teflon holder (1) The resonance method with the complete filling of the cavity with dielectric can be an alternative approach. In this case permittivity and loss tangent can be found from exact analytical expressions. Obviously, this method is applicable in the case of small dielectric loss- es. If to suppose that tgδ=5⋅10-3, the quality factor of such resonator will be about 200. It is enough for meas- uring of all resonator characteristics. To eliminate the errors related to the gaps between dielectric and metal, it is necessary to coat metal layer on the surface of the investigated dielectric sample. Thickness of the coating must be substantially more than a skin depth. The skin depth for copper and silver in a 10-cm range approxi- mately equals 1.2 µm. For realization of this method new samples have been fabricated. The basic dielectric disks sizes were processed with accuracy of 10 microns. If the diameter of resonator is 20 mm, height is 3 mm and permittivity is 21, the E010 mode frequency is about 2500 MHz. The change of ceramics permittivity from 21 to 20 (5%) changes the Е010 eigenfrequency at 40 MHz. Fig. 2. The device for measuring microwave characteristics of ceramic samples. 1 − sample (R = 10 mm; h = 3 mm); 2 − metal coating For permittivity measuring the special device has been designed and created (Fig. 2). In case of necessity ISSN 1562-6016. ВАНТ. 2015. №6(100) 49 it allows to conduct the measuring of samples not coat- ed by metal. RF measuring of resonant frequency and quality factor has been conducted with schema present- ed in Fig. 3. Fig. 3. Measurement scheme We tested different methods for coating metal on zirconia ceramic dicks: magnetron spraying and thermal spraying of copper, deposition of silver by brazing method. The best results on durability of coating have been obtained with silver (Fig. 4). The thickness of the coating was 8 µm, which is much more than the skin depth. Fig. 4. RF resonator – sample coated with silver. The central hole in the center is designed for RF excitation the resonator The calculation of cavity frequency and its quality factor vs. the value ε and tgδ has been conducted by SUPERFISH. These dependences for samples #1 are presented in Figs. 5, 6. It can be seen that 1% change in permittivity (ε≅25) results to frequency change of 11.82 MHz. The dependencies of Е010 eigenfrequency vs. the radius and the height of resonator have been ob- tained – they are 230 and 4 MHz/mm accordingly. The accuracy of radius measuring is ±10 µm, therefore the error of determination the resonant frequency is ±2.3 MHz and the error of permittivity determination is ±0.2%. The tgδ for the fully filled resonator is deter- mined from the expression (2). The quality factor Qm in our case depends on the coating quality and roughness of the sample surface. We shall notice that the relative change of tgδ and ε for the same sample before and after the irradiation is only determined by the change of die- lectric properties. Quality factor measuring on five samples with differ- ent silver coverage has shown that Q0 value lays within the limits of 280…335, i.e. tgδ = (2.4…2.9)⋅10-3. These results are consistent with measuring, that has been con- ducted in the resonator (see Fig. 2) with the dielectric dicks not coated by silver – tgδ ≅ (2.1…2.5)⋅10-3. For electron beam irradiation two samples with the best qual- ity of coating have been chosen. Fig. 5. Fig. 6. The E010 eigenfrequency and quality factor of the samples were measured immediately before irradiation. Measurements were carried out at a temperature of (18±0.5)°С. Each parameter was measured at least ten times with assembling − disassembling procedure the measuring device. The results were subjected to statisti- cal processing. The measurement results are summa- rized as follows: sample #1 f0 = 2281.79±0.12 MHz, Q0=335±10; sample #2 f0 = 2275.79±0.12 MHz, Q0=303±10. Based on the example data one can determine the di- electric constant and loss tangent of each sample. For sample # 1 ε= 25.29 ±0.05 and tgδ= 2.4⋅10-3. For sam- ple #2 ε = 25.36±0.05 and tgδ= 2.8⋅10-3. 2. ELECTRON IRRADIATION AND THE DIELECTRIC PROPERTIES OF ZIRCONIA NANOCERAMICS Experiments with electron irradiation were conduct- ed on the linac LUE-40 [11]. At the first phase irradia- tion of ceramic discs with a diameter of 10 mm and a thickness of 2.5 mm was conducted. There were about 20 samples irradiated with different electron beam flu- ences (from 2⋅1016 to 2⋅1018cm-2) and the electrons ener- gy to 90 MeV. The change in temperature of samples during irradiation did not exceed 100оС. Research of irradiated samples allowed getting the information about formation of radioactive isotopes, time dependence in- duced radioactivity and formation of radiation defects [12]. It is revealed also, that krypton atoms are centers of segregation of point defects. ISSN 1562-6016. ВАНТ. 2015. №6(100) 50 The ceramic samples after irradiation were dark gray color (Fig. 7), which is likely due to the formation of oxygen vacancies excess in zirconia. Fig. 7. Samples ZrO2 – 4 wt% MgO (№№ 5, 3, 3m, 9) after electron irradiation. In the center of the picture − not irradiated sample Change the color of zirconia samples under the in- fluence of temperature and vacuum or neutral atmos- phere is known fact. It is based on breach of stoichiome- try (loss of oxygen). The reduction of oxygen in the zirconia formula from 2 to 1.96 is sufficient for such change in color. After irradiation ceramic samples were annealed at 500oC. The samples color returned to the original state, i.e. the excess oxygen vacancies were annealed and stoichiometric composition was restored. This confirms the assumption that under electron irradi- ation in zirconia lattice oxygen vacancies are formed. Research of the dielectric properties change of ce- ramic samples with a diameter of 10 mm was carried out by using the cavity that depicted in Fig. 1. The ex- perimental data do not allow to draw a definite conclu- sion about the influence of irradiation on the permittivi- ty because of the low accuracy of measurements (error to 10%). Therefore, further detailed study was conduct- ed with samples of 20 mm, using the method of com- plete filling resonator. The irradiation of 20 mm samples has been conduct- ed on the linac exit with electrons energy of 41 MeV and average current of 4.54 µA. The irradiation time for each of two samples was 16.5 hour. Thus, a common amount of particles was 1.68⋅1018. Samples have been placed in the special radiator for cooling. The tempera- ture was measured with thermocouple. As the thermo- couple must not be exposed by beam, it has been set in the distance of 3 mm from the samples border. The temperature in the sample center has been determined by simulation. According to the results of simulation, the difference between the thermocouple indication and temperature in the sample center does not exceed 100°С. During all irradiation time the temperature measured by a thermocouple was less than ≈70°С (i.e. less than 170°С in the sample center). To obtain the necessary electrons density distribution on a sample, a diffuser (an aluminum plate 1.5 mm thick) has been set after the linac exit. After the irradiation the samples have had a high level of activity. After «cooling» during a month the repeated high-frequency measuring have been conduct- ed. The measurement conditions were identical with those measurements before irradiation. During the measuring the following results have been obtained: sample #1 f0 =2284.52±0.12 MHz, Q0=337±10; sam- ple #2: f0 =2278.42±0.2 MHz, Q0=305±10. Thus, comparing the results of measuring of eigen- frequencies and quality factor of resonators before and after irradiation, it is possible to draw the following conclusions. As a result of influence of electron beam irradiation with the fluence of ≈1018cm-2 the frequency of Е010 mode increased for a sample #1 and sample #2 by 2.73±0.12 and 2.76±0.2 MHz accordingly. This fre- quency change can be explained by a decrease in the dielectric constant of zirconia nanoceramics (ZrO2 – 4 wt% MgO) on average (0.23±0.02)%. Electron beam irradiation did not lead to a change in the dielectric loss tangent (within range of ±3%). Causes of changes in permittivity of zirconia nanoceramics due to high ener- gy electron irradiation will be the subject of our future work. Work supported by Global Initiatives for Prolifera- tion Prevention (GIPP) program, project ANL-T2-247- UA (STCU Agreement P522). REFERENCES 1. W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J. Rosenzweig, and J. Simpson. Experimental Demonstration of Wake-Field Effects in Dielectric Structures // Phys. Rev. Lett. 1988, v. 61, p. 2756- 2760. 2. Wei Gai, R. Konecny, and J. Simpson. Extremely powered dielectric loaded waveguides as accelerat- ing structures // Proceedings of PAC97. 1997, p. 636-638. 3. C. Jing, S. Antipov, P. Schoessow, A. Kanareykin, et al. An X-band standing wave dielectric loaded ac- celerating // Proceedings of IPAC2012. 2012, p. 1927-1929. 4. I.N. Onishchenko. Concept of multi-bunch dielectric wakefield accelerator // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”, 2012, № 3, p. 145-149. 5. I. Danilenko, T. Konstantinova, O. Gorban, et al. Synthesis and Consolidation of Oxide Nanoparticles // Proc. of the 4th Intern. Conf. NANOCON 2012. Brno, Czech Republic. 2012, p. 51-56. 6. I. Danilenko, T. Konstantinova, G. Volkova, et al. The Role of Powder Preparation Method in Enhanc- ing Fracture Toughness of Zirconia Ceramics with Low Alumina Amount // Journal of Ceramic Sci- ence and Technology, 2015, v. 6, № 3, p. 191-200. 7. D.P. Thommpson, A.M. Dickins, J.S. Thorp. The dielectric properties of zirconia // Journal of Materi- als Science. 1992, v. 27, p. 2267-2271. 8. N.S. Kostyukov, A.A. Lukichev, et al. ε and tgδ under irradiation. Moskow: “Science”, 2002. 9. F. Adams, M. de Jong and R. Hutcheon. Sample shape Coorrection factors for cavity perturbation method //Journal of Microwave power and electro- magnetic energy. 1992, v. 27, № 2, p. 131-135. ISSN 1562-6016. ВАНТ. 2015. №6(100) 51 10. J.H. Billen and L.M. Young. POISSON / SUPERFISH on PC compatibles // Proc of PAC’93. Washington. 1993, p. 790-792. 11. A.N. Dovbnya, M.I. Ayzatsky, V.N. Boriskin, et al. State and prospects of the linac of the nuclear- physics complex with energy up to 100 MeV // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2014, №3, p. 60. 12. N.I. Aizatsky, N.P. Dikiy, A.N. Dovbnya, et al. In- fluence of high-energy electrons irradiation on nanoceramics properties of zirconia // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2013, № 6, p. 161-164. Article received 02.11.2015 РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ВЛИЯНИЯ ЭЛЕКТРОННОГО ОБЛУЧЕНИЯ НА ВЫСОКОЧАСТОТНЫЕ ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ЦИРКОНИЕВОЙ НАНОКЕРАМИКИ Н.И. Айзацкий, В.А. Бочаров, Н.П. Дикий, А.Н. Довбня, В.А. Кушнир, В.В. Митроченко, О.Д. Никитина, И.Н. Онищенко, Л.И. Селиванов, Д.Л. Степин, С.А. Пережогин, И.А. Даниленко, Т.Е. Константинова, В.Ф. Жигло Использование диэлектрических материалов в ускорительной технике делает необходимым проведение исследований процессов изменения диэлектрической проницаемости и диэлектрических потерь при облуче- нии релятивистскими электронами. Приводятся результаты экспериментального изучения диэлектрических свойств циркониевой нанокерамики после облучения высокоэнергетическими электронами. Эксперименты проводились на ускорителе электронов ЛУЭ-40 с энергией частиц до 100 МэВ. Особое внимание уделяется методам измерения на СВЧ малых изменений диэлектрической проницаемости. Установлено, что в резуль- тате воздействия электронного пучка с энергией 41 МэВ и флюенсом ≈1018см-2 диэлектрическая проницае- мость циркониевой нанокерамики (ZrO2 – 4 об.% MgO) уменьшается в среднем на (0,23 ± 0,02)%. РЕЗУЛЬТАТИ ДОСЛІДЖЕННЯ ВПЛИВУ ЕЛЕКТРОННОГО ОПРОМІНЕННЯ НА ВИСОКОЧАСТОТНІ ДІЕЛЕКТРИЧНІ ВЛАСТИВОСТІ ЦИРКОНІЄВОЇ НАНОКЕРАМІКИ М.І. Айзацький, В.А. Бочаров, М.П. Дикий, А.М. Довбня, В.А. Кушнір, В.В. Митроченко, О.Д. Нікітіна, І.М. Оніщенко, Л.І. Селіванов, Д.Л. Стьопін, С.А. Пережогін, І.А. Даниленко, Т.Є. Константинова, В.Ф. Жигло Використання діелектричних матеріалів у прискорювальній техніці робить необхідним проведення дос- ліджень процесів зміни діелектричної проникності та діелектричних втрат при опроміненні релятивістськи- ми електронами. Наведено результати експериментального вивчення діелектричних властивостей цирконіє- вої нанокераміки після опромінення високоенергетичними електронами. Експерименти проводилися на при- скорювачі електронів ЛУЕ-40 з енергією частинок до 100 МеВ. Особлива увага приділяється методам вимі- рювання на НВЧ малих змін діелектричної проникності. Встановлено, що в результаті впливу електронного пучка з енергією 41 МеВ і флюенсом ≈1018см-2 діелектрична проникність цирконієвої нанокераміки (ZrO2 – 4 об.% MgO), зменшується в середньому на (0,23 ± 0,02)%. INTRODUCTION 1. Methods of permittivity and loss tangent measuring 1.1. Resonators for permittivity measuring 2. ELECTRON Irradiation and the Dielectric properties of zirconia nanoceramics references Результаты исследования влияния электронного облучения на высокочастотные диэлектрические свойства циркониевой нанокерамики Результати дослідження впливу електронного опромінення на високочастотні діелектричні властивості цирконієвої нанокераміки