The use of molybdenum oxide nanoparticles for production of free isotope Mo-99

The possibility of photonuclear production of ⁹⁹Mo medical radioisotopes using recoil nuclei of nanoparticles MoO₃ from reaction ¹⁰⁰Mo(γ,n)⁹⁹Mo was investigated. (γ,n)-reaction does not be accompanied by change in nuclear charge. Therefore, the enrichment of radioactive isotopes is being carried out...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Dikiy, N.P., Dovbnya, A.N., Krasnoselsky, N.V., Lyashko, Yu.V., Medvedeva, E.P., Medvedev, D.V., Uvarov, V.L., Fedorets, I.D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/112374
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The use of molybdenum oxide nanoparticles for production of free isotope Mo-99 / N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2015. — № 6. — С. 154-156. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112374
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1123742025-02-09T11:52:08Z The use of molybdenum oxide nanoparticles for production of free isotope Mo-99 Використання наночастинок оксиду молібдену для виробництва вільного ізотопу Мо-99 Использование наночастиц оксида молибдена для производства свободного изотопа Мо-99 Dikiy, N.P. Dovbnya, A.N. Krasnoselsky, N.V. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. Fedorets, I.D. Применение ядерных методов The possibility of photonuclear production of ⁹⁹Mo medical radioisotopes using recoil nuclei of nanoparticles MoO₃ from reaction ¹⁰⁰Mo(γ,n)⁹⁹Mo was investigated. (γ,n)-reaction does not be accompanied by change in nuclear charge. Therefore, the enrichment of radioactive isotopes is being carried out using methods based on the effect of Szilard-Chalmers. The highest concentration of ⁹⁹Mo is required for manufacturing of ⁹⁹mTc-⁹⁹Mo generators. These generators will promote successful using ⁹⁹mTc in nuclear medicine. MoO₃ nanoparticles of size 13…80 nm were placed in isopropyl alcohol and ethylene glycol. The colloidal solution of MoO₃ is achieved by sonication. The colloidal solution of nanoparticles of MoO₃ was irradiated by bremsstrahlung with Emax = 12.5 MeV. The recoil nuclei of ⁹⁹Mo were separated by means of diantipyrylmethane in sulfuric acid solution. Yield of ⁹⁹Mo from extractable phase amounted ~ 4%, in consequence of the high density of MoO₃ nanoparticles in a colloidal solution. Була досліджена можливість фотоядерного виробництва медичного радіоізотопу ⁹⁹Mo при використанні ядер віддачі з наночастинок MoO₃ з реакції ¹⁰⁰Mo(γ,n)⁹⁹Mo. (γ,n)-реакції не супроводжуються зміною заряду ядра, тому збагачення радіоактивних ізотопів проводилося з використанням методів, заснованих на ефекті Сциларда-Чалмерса. Висока концентрація ⁹⁹Mo потрібно для виготовлення генераторів ⁹⁹мТс-⁹⁹Mo. Ці генератори дозволять успішно використовувати ⁹⁹мТс в ядерній медицині. MoO₃ − наночастинки розміром 13…80 нм були поміщені в ізопропіловий спирт і етиленгліколь. Колоїдний розчин MoO₃ досягався обробкою ультразвуком. Колоїдний розчин наночастинок MoO₃ був опромінений гальмівним ви-промінюванням з Емакс= 12,5 МеВ. Ядра віддачі ⁹⁹Mo були виділені з сірчанокислого розчину з використанням діантіпірілметана. Вихід ⁹⁹Mo в екстрагуєму фазу склав ~ 4%, що зумовлено високою щільністю наночастинок молібдену в колоїдному розчині. Была исследована возможность фотоядерного производства медицинского радиоизотопа ⁹⁹Mo при использовании ядер отдачи из наночастиц MoO₃ по реакции ¹⁰⁰Mo(γ,n)⁹⁹Mo. (γ,n)-реакции не сопровождаются изменением заряда ядра, поэтому обогащение радиоактивных изотопов проводилось с использованием методов, основанных на эффекте Сциларда-Чалмерса. Высокая концентрация ⁹⁹Mo требуется для изготовления генераторов ⁹⁹мТс-⁹⁹Mo. Эти генераторы позволят успешно использовать ⁹⁹мТс в ядерной медицине. MoO₃ − наночастицы размером 13…80 нм были помещены в изопропиловый спирт и этиленгликоль. Коллоидный раствор MoO₃ достигался обработкой ультразвуком. Коллоидный раствор наночастиц MoO₃ был облучен тормозным излучением с Емакс = 12,5 МэВ. Ядра отдачи ⁹⁹Mo были выделены из сернокислого раствора с использованием диантипирилметана. Выход 99Mo в экстрагируемую фазу составил ~ 4%, что обусловлено высокой плотностью наночастиц молибдена в коллоидном растворе. 2015 Article The use of molybdenum oxide nanoparticles for production of free isotope Mo-99 / N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2015. — № 6. — С. 154-156. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 28.60.+s; 87.53.Jw https://nasplib.isofts.kiev.ua/handle/123456789/112374 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ядерных методов
Применение ядерных методов
spellingShingle Применение ядерных методов
Применение ядерных методов
Dikiy, N.P.
Dovbnya, A.N.
Krasnoselsky, N.V.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Fedorets, I.D.
The use of molybdenum oxide nanoparticles for production of free isotope Mo-99
Вопросы атомной науки и техники
description The possibility of photonuclear production of ⁹⁹Mo medical radioisotopes using recoil nuclei of nanoparticles MoO₃ from reaction ¹⁰⁰Mo(γ,n)⁹⁹Mo was investigated. (γ,n)-reaction does not be accompanied by change in nuclear charge. Therefore, the enrichment of radioactive isotopes is being carried out using methods based on the effect of Szilard-Chalmers. The highest concentration of ⁹⁹Mo is required for manufacturing of ⁹⁹mTc-⁹⁹Mo generators. These generators will promote successful using ⁹⁹mTc in nuclear medicine. MoO₃ nanoparticles of size 13…80 nm were placed in isopropyl alcohol and ethylene glycol. The colloidal solution of MoO₃ is achieved by sonication. The colloidal solution of nanoparticles of MoO₃ was irradiated by bremsstrahlung with Emax = 12.5 MeV. The recoil nuclei of ⁹⁹Mo were separated by means of diantipyrylmethane in sulfuric acid solution. Yield of ⁹⁹Mo from extractable phase amounted ~ 4%, in consequence of the high density of MoO₃ nanoparticles in a colloidal solution.
format Article
author Dikiy, N.P.
Dovbnya, A.N.
Krasnoselsky, N.V.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Fedorets, I.D.
author_facet Dikiy, N.P.
Dovbnya, A.N.
Krasnoselsky, N.V.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Fedorets, I.D.
author_sort Dikiy, N.P.
title The use of molybdenum oxide nanoparticles for production of free isotope Mo-99
title_short The use of molybdenum oxide nanoparticles for production of free isotope Mo-99
title_full The use of molybdenum oxide nanoparticles for production of free isotope Mo-99
title_fullStr The use of molybdenum oxide nanoparticles for production of free isotope Mo-99
title_full_unstemmed The use of molybdenum oxide nanoparticles for production of free isotope Mo-99
title_sort use of molybdenum oxide nanoparticles for production of free isotope mo-99
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Применение ядерных методов
url https://nasplib.isofts.kiev.ua/handle/123456789/112374
citation_txt The use of molybdenum oxide nanoparticles for production of free isotope Mo-99 / N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2015. — № 6. — С. 154-156. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT dikiynp theuseofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT dovbnyaan theuseofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT krasnoselskynv theuseofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT lyashkoyuv theuseofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT medvedevaep theuseofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT medvedevdv theuseofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT uvarovvl theuseofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT fedoretsid theuseofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT dikiynp vikoristannânanočastinokoksidumolíbdenudlâvirobnictvavílʹnogoízotopumo99
AT dovbnyaan vikoristannânanočastinokoksidumolíbdenudlâvirobnictvavílʹnogoízotopumo99
AT krasnoselskynv vikoristannânanočastinokoksidumolíbdenudlâvirobnictvavílʹnogoízotopumo99
AT lyashkoyuv vikoristannânanočastinokoksidumolíbdenudlâvirobnictvavílʹnogoízotopumo99
AT medvedevaep vikoristannânanočastinokoksidumolíbdenudlâvirobnictvavílʹnogoízotopumo99
AT medvedevdv vikoristannânanočastinokoksidumolíbdenudlâvirobnictvavílʹnogoízotopumo99
AT uvarovvl vikoristannânanočastinokoksidumolíbdenudlâvirobnictvavílʹnogoízotopumo99
AT fedoretsid vikoristannânanočastinokoksidumolíbdenudlâvirobnictvavílʹnogoízotopumo99
AT dikiynp ispolʹzovanienanočasticoksidamolibdenadlâproizvodstvasvobodnogoizotopamo99
AT dovbnyaan ispolʹzovanienanočasticoksidamolibdenadlâproizvodstvasvobodnogoizotopamo99
AT krasnoselskynv ispolʹzovanienanočasticoksidamolibdenadlâproizvodstvasvobodnogoizotopamo99
AT lyashkoyuv ispolʹzovanienanočasticoksidamolibdenadlâproizvodstvasvobodnogoizotopamo99
AT medvedevaep ispolʹzovanienanočasticoksidamolibdenadlâproizvodstvasvobodnogoizotopamo99
AT medvedevdv ispolʹzovanienanočasticoksidamolibdenadlâproizvodstvasvobodnogoizotopamo99
AT uvarovvl ispolʹzovanienanočasticoksidamolibdenadlâproizvodstvasvobodnogoizotopamo99
AT fedoretsid ispolʹzovanienanočasticoksidamolibdenadlâproizvodstvasvobodnogoizotopamo99
AT dikiynp useofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT dovbnyaan useofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT krasnoselskynv useofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT lyashkoyuv useofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT medvedevaep useofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT medvedevdv useofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT uvarovvl useofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
AT fedoretsid useofmolybdenumoxidenanoparticlesforproductionoffreeisotopemo99
first_indexed 2025-11-25T22:43:14Z
last_indexed 2025-11-25T22:43:14Z
_version_ 1849804032029229056
fulltext ISSN 1562-6016. ВАНТ. 2015. №6(100) 154 ПРИМЕНЕНИЕ ЯДЕРНЫХ МЕТОДОВ THE USE OF MOLYBDENUM OXIDE NANOPARTICLES FOR PRODUCTION OF FREE ISOTOPE Mo-99 N.P. Dikiy1, A.N. Dovbnya1, N.V. Krasnoselsky2, Yu.V. Lyashko1, E.P. Medvedeva1, D.V. Medvedev1, V.L. Uvarov1, I.D. Fedorets3 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2S.P. Grigorev Institute of Medical Radiology, Kharkov, Ukraine; 3V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: ndikiy@kipt.kharkov.ua The possibility of photonuclear production of 99Mo medical radioisotopes using recoil nuclei of nanoparticles MoO3 from reaction 100Mo(γ,n)99Mo was investigated. (γ,n)-reaction does not be accompanied by change in nuclear charge. Therefore, the enrichment of radioactive isotopes is being carried out using methods based on the effect of Szilard-Chalmers. The highest concentration of 99Mo is required for manufacturing of 99mTc-99Mo generators. These generators will promote successful using 99mTc in nuclear medicine. MoO3 nanoparticles of size 13…80 nm were placed in isopropyl alcohol and ethylene glycol. The colloidal solution of MoO3 is achieved by sonication. The col- loidal solution of nanoparticles of MoO3 was irradiated by bremsstrahlung with Emax = 12.5 MeV. The recoil nuclei of 99Mo were separated by means of diantipyrylmethane in sulfuric acid solution. Yield of 99Mo from extractable phase amounted ∼ 4%, in consequence of the high density of MoO3 nanoparticles in a colloidal solution. PACS: 28.60.+s; 87.53.Jw INTRODUCTION 99mTc (T1/2=6 h) is being produced from the decay of the 99Mo (T1/2=66 h). 99mTc produces a single 140 keV gamma ray and it is an ideal isotope for nuclear medi- cine imaging [1]. 99Mo is used in the preparation of 99Mo-99mTc generator. Usually 99Mo is being produced either by neutron bombardment of MoO3 or as nuclear fission of enriched uranium [1]. A significant difference of these two procedures is that 99Mo obtained from fis- sion is “carrier free”. This allows to produce of 99Mo with a specific activity of tens thousands of Ci/g. Production of 99mTc and 99Mo by charging particle bombardment is also possible [2]. The method of photonuclear production of 99Мо is being characterized by considerable advantages especially [3]. In generator systems the 99Mo is normally adsorbed onto an alumina column and the less strongly bound 99mTcO4 − is eluted with isotonic saline solutions. How- ever, the limited adsorption capacity of alumina for Mo(VI) requires the use of very high specific activities of 99Mo (~3⋅104 Ci/g). To avoid this drawback, alterna- tive methods of generator preparation with using low specific activities have been proposed [4]. Nevertheless, efforts which have been directed at obtaining of a high specific activity of producing iso- topes were undertaken for an appreciable time interval [5]. These preparations of radioactive elements with high specific activity are necessary for nuclear medi- cine. (γ,n)-reaction does not be accompanied by change in nuclear charge. Therefore, the enrichment of radioac- tive isotopes is being carried out using methods based on the effect of Szilard-Chalmers. The highest concen- tration of 99Mo is required for manufacturing of 99mTc- 99Mo generators. These generators will promote suc- cessful using 99mTc in nuclear medicine. The purpose of the present article is the production of a high specific activity 99Мо on the basis of nanopar- ticles of molybdenum oxide and using of the effect of Szilard-Chalmers. RESULTS AND DISCUSSION Molybdenum oxide nanoparticles (US Research Na- nomaterials, Inc, USA, Orthorhombic crystal) of size 13…80 nm and weight of 80 mg were placed in isopro- pyl alcohol and ethylene glycol. The colloidal solution of MoO3 was obtained by treating the nanoparticle sus- pension sonicated. The colloidal solution of nanoparti- cles of MoO3 were irradiated by bremsstrahlung with Emax = 12.5 MeV. 1000 2000 3000 4000 100 101 102 103 99Mo 778 keV 99Mo 739 keV co un ts channel diantipyrylmethane in sulfuric acid solution 99mTc 140 keV 99Mo 181 keV Fig. 1. The spectrum of 99Mo and 99mTc after separated from colloidal solution of MoO3 nanoparticles After activation of samples and standards the activi- ty of radioisotopes obtained in reactions 100Mo(γ,n)99Mo has been measured by Ge(Li)-detector with volume 50 cm3 and with energy resolution 3.2 keV in the area of 1332 keV. The recoil nuclei of 99Mo were separated by means of diantipyrylmethane in sulfuric acid solution (Fig. 1). The energy spectrum of neutrons depends on the in- cident bremsstrahlung, target material, and cross section of the photonuclear reaction. The evaporation model for compound nuclei predicts that the emitted neutron ener- ISSN 1562-6016. ВАНТ. 2015. №6(100) 155 gy distribution approaches the form of a Maxwell distri- bution [7 - 9]: )exp()( 2 θθ nn n EEconstEw −= , where θ = [(Eγ − Bn)/a]1/2, Bn – separation energy of neutron, Eγ – bremsstrahlung energy. The constant a define of speed of ascending of density of levels of a nucleus at increasing of energy. The experimental esti- mate of this constant is а ≈ A/15 МeV-1. The estimate of the medial energy of neutrons for a gamma radiation with the maximum energy of 12.5 MeV the reaction 100Mo(γ,n)99Mo is equal 400 keV [6 - 9]. Therefore the medial energy of recoil nuclei of 99Мо is equal 4 keV. Recoil nuclei 99Мо can leave na- noparticles of MoO3 from a depth of 4.8 mm (Fig. 2). For medial radius of MoO3 nanoparticles 23 nm the part of recoil nuclei, which can go out into a solution, is 10.4%. Yield of 99Mo out of extractable phase amounted ∼4%, due to the high density of molybdenum nanoparti- cles in a colloidal solution. 0 10 20 30 40 50 0 5 10 15 20 25 Ra ng es o f 99 M o io ns in M oO 3, nm 99Mo ion energy, keV Fig. 2. 99Mo ranges in natural molybdenum oxide It is necessary to notice that MoO3 nanoparticles in the process of an irradiating have been covered by a stratum of ethylene glycol, at least, 0.5 nm. Therefore the considerable part of the recoil nucleus of atoms of the natural molybdenum after scattering of bremsstrah- lung cannot go out of MoO3 nanoparticles [10]. It will promote the production of 99Мо with a high specific activity. Irradiating 1 g Mo target for a day using 10 kW elec- tron LINAC would result in 1.68 GBq/g [10]. However, the problem of heat generation in the tar- get and the problem of obtaining of the maximum spe- cific activity in extracts of 99Mo limited the capacity of electronic accelerator for the above parameters up to 1 GBq/g [11]. Therefore, the use MoO3 nanoparticles with size 15 nm and of gamma radiation with E max=25 MeV on 10 kW electron accelerator will allow to produce 0.8 GBq/g per day of 99Mo with high specific activity, which is necessary for manufacturing genera- tors 99mTc-99Mo. CONCLUSIONS The possibility of photonuclear production of 99Mo by using recoil nuclei of MoO3 nanoparticles that ob- tained by reaction 100Mo(γ,n)99Mo has been found. The colloidal solution of MoO3 in isopropyl alcohol or eth- ylene glycol was used which was obtained by means of sonicating of nanoparticle suspension. The recoil nuclei of 99Mo after irradiation of the solution by bremsstrah- lung were separated by means of diantipyrylmethane in sulfuric acid solution. As a result, there is prepared with high specific activity of 99Mo that can be used for mak- ing generators 99mTc-99Mo on the basis of Al2O3. The use MoO3 nanoparticles with size 15 nm and of bremsstrahlung with Emax=25 MeV on 10 kW electron accelerator will allow to produce 0.8 GBq/g per day of 99Mo with high specific activity, which is necessary for manufacturing generators 99mTc−99Mo. It simplifies use of 99mTc in medical institutions. REFERENCES 1. Technetium-99m radiopharmaceuticals: status and trends. Vienna, IAEA. 2009, 360 p. 2. Non-HEU production technologies for molyb- denum-99 and Technetium-99m. IAEA, 2013, 60 p. 3. V.L. Uvarov, N.P. Dikiy, A.N. Dovbnya, et al. Elec- tron accelerator`s production of technetium-99m for nuclear medicine // Proc. of the Particle Accelerator Conf., Vancuver, Canada, 1997, p.3840-3841. 4. F. Monroy-Guzman, O. Cortes Romero, H. Diaz. Velazquez Titanium Molybdate Gels as Matrix of 99Mo/99mTc Generators // J. Nucl. Radiochemical Sci. 2007, v. 8, № 1, p. 11-19. 5. A.N. Nesmeyanov, A.V. Lapitsky, N.P. Rudenko. Production radioactive isotopes. M.: “Goschimiz- dat’. 1954, 192 p. 6. A. Zanini, E. Durisi, F. Fasolo, et al. Monte Carlo simulation of the photoneutron field in linac radio- therapy treatments with different collimation sys- tems // Phys. Med. Biol. 2004, v. 49, p. 571-582. 7. V.V. Varlamov, B.S. Ishhanov, I.M. Kapitonov. Photonuclear reactions. Modern status experi- menttal data. Moskow: “University book”. 2008, 304 p. 8. B.S. Ishkhanov, I.M. Kapitonov, A.A. Kuznetsov, et al. Photonuclear reaction on molybdenum isotopes // Yad. Phys. 2014, v. 77, № 11, p. 1427-1435. 9. B.S. Ishkhanov, I.M. Kapitonov. The interaction of electromagnetic radiation with atomic nuclei. Mos- kow: “MGU”. 1979, 216 p. 10. V.N. Starovoitova, L. Tchelidze, D.P. Wells. Pro- duction of medical radioisotopes with linear acceler- ators // Appl. Radiat. Isot. 2014, v. 85, p. 39-44. 11. N.I. Aizatsky, N.P. Dikiy, A.N. Dovbnya, et al. 99Mo and 67Cu isotope yields under production con- ditions of NSC KIPT electron accelerator KUT-30 // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2010, № 2, p. 140-144. Article received 25.09.2015 ISSN 1562-6016. ВАНТ. 2015. №6(100) 156 ИСПОЛЬЗОВАНИЕ НАНОЧАСТИЦ ОКСИДА МОЛИБДЕНА ДЛЯ ПРОИЗВОДСТВА СВОБОДНОГО ИЗОТОПА Мо-99 Н.П. Дикий, A.Н. Довбня, Н.В. Красносельский, Ю.В. Ляшко, Е.П. Медведева, Д.В. Медведев, В.Л. Уваров, И.Д. Федорец Была исследована возможность фотоядерного производства медицинского радиоизотопа 99Mo при ис- пользовании ядер отдачи из наночастиц MoO3 по реакции 100Mo(γ,n)99Mo. (γ,n)-реакции не сопровождаются изменением заряда ядра, поэтому обогащение радиоактивных изотопов проводилось с использованием ме- тодов, основанных на эффекте Сциларда-Чалмерса. Высокая концентрация 99Mo требуется для изготовления генераторов 99мТс-99Mo. Эти генераторы позволят успешно использовать 99мТс в ядерной медицине. MoO3 − наночастицы размером 13…80 нм были помещены в изопропиловый спирт и этиленгликоль. Коллоидный раствор MoO3 достигался обработкой ультразвуком. Коллоидный раствор наночастиц MoO3 был облучен тормозным излучением с Емакс = 12,5 МэВ. Ядра отдачи 99Mo были выделены из сернокислого раствора с использованием диантипирилметана. Выход 99Mo в экстрагируемую фазу составил ∼ 4%, что обусловлено высокой плотностью наночастиц молибдена в коллоидном растворе. ВИКОРИСТАННЯ НАНОЧАСТИНОК ОКСИДУ МОЛІБДЕНУ ДЛЯ ВИРОБНИЦТВА ВІЛЬНОГО ІЗОТОПУ Мо-99 М.П. Дикий, A.М. Довбня, М.В. Красносельський, Ю.В. Ляшко, О.П. Медведєва, Д.В. Медведєв, В.Л. Уваров, І.Д. Федорець Була досліджена можливість фотоядерного виробництва медичного радіоізотопу 99Mo при використанні ядер віддачі з наночастинок MoO3 з реакції 100Mo(γ,n)99Mo. (γ,n)-реакції не супроводжуються зміною заряду ядра, тому збагачення радіоактивних ізотопів проводилося з використанням методів, заснованих на ефекті Сциларда-Чалмерса. Висока концентрація 99Mo потрібно для виготовлення генераторів 99мТс-99Mo. Ці генератори дозволять успішно використовувати 99мТс в ядерній медицині. MoO3 − наночастинки розміром 13…80 нм були поміщені в ізопропіловий спирт і етиленгліколь. Колоїдний розчин MoO3 досягався обробкою ультразвуком. Колоїдний розчин наночастинок MoO3 був опромінений гальмівним ви- промінюванням з Емакс = 12,5 МеВ. Ядра віддачі 99Mo були виділені з сірчанокислого розчину з використанням діантіпірілметана. Вихід 99Mo в екстрагуєму фазу склав ~ 4%, що зумовлено високою щільністю наночастинок молібдену в колоїдному розчині. references