Measurement of the photometric characteristics of LEDs

Proposed and implemented a method for measuring LEDs, which is based on self-calibration of the LED goniophotometer facility by using a trap-detector. Designed and manufactured automated goniophotometer, which provides a measurement of high power LEDs at a specified junction temperature. Designed an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2015
Hauptverfasser: Nazarenko, L.A., Zubkov, D.P.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/112377
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Measurement of the photometric characteristics of LEDs / L.A. Nazarenko, D.P. Zubkov // Вопросы атомной науки и техники. — 2015. — № 6. — С. 141-145. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112377
record_format dspace
spelling Nazarenko, L.A.
Zubkov, D.P.
2017-01-20T18:15:02Z
2017-01-20T18:15:02Z
2015
Measurement of the photometric characteristics of LEDs / L.A. Nazarenko, D.P. Zubkov // Вопросы атомной науки и техники. — 2015. — № 6. — С. 141-145. — Бібліогр.: 7 назв. — англ.
1562-6016
PACS: 07.60.-j, 07.60.Dq
https://nasplib.isofts.kiev.ua/handle/123456789/112377
Proposed and implemented a method for measuring LEDs, which is based on self-calibration of the LED goniophotometer facility by using a trap-detector. Designed and manufactured automated goniophotometer, which provides a measurement of high power LEDs at a specified junction temperature. Designed and experimentally researched the photometer with a photometric sphere based diffuser, which meets all requirements of CIE for photometric measurements of LEDs.
Запропоновано та реалізовано метод вимірювання світлодіодів, який полягає в самокалібруванні гоніофотометричної установки для вимірювання світлодіодів за допомогою трап-детектора. Розроблено та виготовлено автоматизований гоніофотометр, який забезпечує вимірювання потужних світлодіодів при заданій температурі p-n-переходу. Розроблено та експериментально досліджено фотометр з фотометричною кулею в якості дифузора, який відповідає всім вимогам МКО для фотометричних вимірювань світлодіодів.
Предложен и реализован метод измерения светодиодов, который заключается в самокалибровке гониофотометрической установки для измерения светодиодов с помощью трап-детектора. Разработан и изготовлен автоматизированный гониофотометр, который обеспечивает измерение мощных светодиодов при заданной температуре p-n-перехода. Разработан и экспериментально исследован фотометр с фотометрической сферой в качестве диффузора, который отвечает всем требованиям МКО для фотометрических измерений светодиодов.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Экспериментальные методы и обработка данных
Measurement of the photometric characteristics of LEDs
Вимірювання фотометричних характеристик світлодіодів
Измерение фотометрических характеристик светодиодов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Measurement of the photometric characteristics of LEDs
spellingShingle Measurement of the photometric characteristics of LEDs
Nazarenko, L.A.
Zubkov, D.P.
Экспериментальные методы и обработка данных
title_short Measurement of the photometric characteristics of LEDs
title_full Measurement of the photometric characteristics of LEDs
title_fullStr Measurement of the photometric characteristics of LEDs
title_full_unstemmed Measurement of the photometric characteristics of LEDs
title_sort measurement of the photometric characteristics of leds
author Nazarenko, L.A.
Zubkov, D.P.
author_facet Nazarenko, L.A.
Zubkov, D.P.
topic Экспериментальные методы и обработка данных
topic_facet Экспериментальные методы и обработка данных
publishDate 2015
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Вимірювання фотометричних характеристик світлодіодів
Измерение фотометрических характеристик светодиодов
description Proposed and implemented a method for measuring LEDs, which is based on self-calibration of the LED goniophotometer facility by using a trap-detector. Designed and manufactured automated goniophotometer, which provides a measurement of high power LEDs at a specified junction temperature. Designed and experimentally researched the photometer with a photometric sphere based diffuser, which meets all requirements of CIE for photometric measurements of LEDs. Запропоновано та реалізовано метод вимірювання світлодіодів, який полягає в самокалібруванні гоніофотометричної установки для вимірювання світлодіодів за допомогою трап-детектора. Розроблено та виготовлено автоматизований гоніофотометр, який забезпечує вимірювання потужних світлодіодів при заданій температурі p-n-переходу. Розроблено та експериментально досліджено фотометр з фотометричною кулею в якості дифузора, який відповідає всім вимогам МКО для фотометричних вимірювань світлодіодів. Предложен и реализован метод измерения светодиодов, который заключается в самокалибровке гониофотометрической установки для измерения светодиодов с помощью трап-детектора. Разработан и изготовлен автоматизированный гониофотометр, который обеспечивает измерение мощных светодиодов при заданной температуре p-n-перехода. Разработан и экспериментально исследован фотометр с фотометрической сферой в качестве диффузора, который отвечает всем требованиям МКО для фотометрических измерений светодиодов.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/112377
citation_txt Measurement of the photometric characteristics of LEDs / L.A. Nazarenko, D.P. Zubkov // Вопросы атомной науки и техники. — 2015. — № 6. — С. 141-145. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT nazarenkola measurementofthephotometriccharacteristicsofleds
AT zubkovdp measurementofthephotometriccharacteristicsofleds
AT nazarenkola vimírûvannâfotometričnihharakteristiksvítlodíodív
AT zubkovdp vimírûvannâfotometričnihharakteristiksvítlodíodív
AT nazarenkola izmereniefotometričeskihharakteristiksvetodiodov
AT zubkovdp izmereniefotometričeskihharakteristiksvetodiodov
first_indexed 2025-11-25T21:02:29Z
last_indexed 2025-11-25T21:02:29Z
_version_ 1850542498730999808
fulltext ISSN 1562-6016. ВАНТ. 2015. №6(100) 141 MEASUREMENT OF THE PHOTOMETRIC CHARACTERISTICS OF LEDs L.A. Nazarenko, D.P. Zubkov O.M. Beketov National University of Urban Economy in Kharkov, Kharkov, Ukraine E-mail: lnazarenko@ksame.kharkov.ua; dmytro@z-ldc.com.ua Proposed and implemented a method for measuring LEDs, which is based on self-calibration of the LED gonio- photometer facility by using a trap-detector. Designed and manufactured automated goniophotometer, which pro- vides a measurement of high power LEDs at a specified junction temperature. Designed and experimentally re- searched the photometer with a photometric sphere based diffuser, which meets all requirements of CIE for photo- metric measurements of LEDs. PACS: 07.60.-j, 07.60.Dq FOREWORD The rapid development of light-emitting diodes (LEDs) revealed the problem of the lack of accurate and reliable methods for measuring the photometric charac- teristics of LEDs. Their unusual photometric parame- ters, such as spectrum radiation, spatial luminous inten- sity distribution, and others, have led to the fact that existing methods and measurement means that were developed for incandescent lamps have become unusa- ble for LEDs. Trying to compare the results of photo- metric measurements in various National Metrology Institutes revealed a difference in measurement results up to several tens of percent. In the framework of inter- national cooperation by the International Commission on Illumination (CIE), general guidelines were devel- oped for measuring LEDs – CIE 127-2007 "Photometry LEDs" [1]. These recommendations contain only a gen- eral concept which results in each country solving the problem of measuring photometric characteristics of LEDs by developing their own techniques. It is also important to have appropriate measurement means that are traceable to the national standards, the comparisons of which on an international scale, pro- vides the required accuracy of measurements and unity of the measured results throughout the world. Therefore, an important and urgent task is to create methods and means for measurement of LEDs that would on the one hand meet the requirements of the CIE, and on the oth- er, are traceable to the national standards, providing the required accuracy and traceability of measurement re- sults. 1. GONIOPHOTOMETER LGF-C-42 It is still the unanswered question – which character- istics should have a reference means for measurement of LEDs? In the world measurement practice, the greatest success on this issue was reached by the National Insti- tute of Standards and Technology (NIST) (US) and Physical-Technical Institute (PTB) (Germany). In the NIST, as a standard means for measuring the average LED intensity, reference photometers were used with aperture area of 100 mm2. Measurement of luminous flux of LEDs is performed using NIST 2.5 m absolute integrating sphere, based on the absolute measurement method [2]. In PTB the measurements of LEDs are made on spe- cially designed goniophotometer which are also used to measure luminous flux of LEDs [3]. To measure the luminous flux of LEDs, (the most important parameter for light sources) the integrating sphere method is attractive enough because of the speed, however, to perform precision measurements it is necessary to use the luminous flux standard. Goniopho- tometry is an absolute method for measurement of total luminous flux and does not require luminous flux stand- ards. A photometer scans over an imaginary spherical surface around the test LED and measures the illumi- nance distribution. The measured illuminance is then integrated over the entire spherical surface to calculate the total luminous flux. Goniophotometry tends to be more accurate at measuring varieties of light sources but is more time-consuming than sphere photometry. The creation of a measuring device based on goniophoto- metric method for measuring luminous flux of LED is most appropriate. For these purposes, LED Goniophotometer Facility LGF-C-42 was designed and created, to measure the photometric characteristics of LEDs (Fig. 1). The re- quired software was also developed. Fig. 1. LED Goniophotometer Facility LGF-C-42 The rotating mechanism was created using two step- per motors and reducers. The Goniophotometer resolu- tion to change planes C-equal 0.00014º, the resolution to change γ-angles equal 0.08º, which is sufficient for most measurements. The test LED was mounted on the mounting plate of the thermostat via printed circuit boards "Star" or the like. The required temperature level can be set and maintained using a Peltier element. In the lateral plane of the mounting plate, temperature sensor DS18B20 was installed, to provide feedback between the thermostat mailto:lnazarenko@ksame.kharkov.ua ISSN 1562-6016. ВАНТ. 2015. №6(100) 142 control unit and the computer on which the program for management and monitoring temperature was run. Us- ing the thermostat, measurement of photometric charac- teristics of high-power LEDs at specified constant junc- tion temperature was performed in accordance to a method developed by NIST [4]. 2. SPHERE-PHOTOMETER For photometers that are used to measure average LED intensity, there is a requirement of sensitivity uni- formity within the aperture [1]. This requirement is caused by the presence of certain types of LED narrow beam distribution or non-uniform spatial distribution of intensity, that create non-uniform distribution of light within the surface of aperture opening. Usually non-uniformity of the sensitivity within the photometer sensitive area is 0.1% or less when using photometric sphere as the diffuser. This gives 3-5 times better uniformity of the sensitivity than silicon photodi- odes highest quality [5]. In view of the above, the advantages of the photo- metric sphere as diffuser becomes apparent, therefore the photometer was designed and manufactured to use such a photometric sphere (Fig. 2, Table 1). Filter Photodiode Sphere unit Ç85mm Input baffle tube Precision aperture Port for spectrometer Filter Photodiode Sphere unit Ç85mm Input baffle tube Precision aperture Port for spectrometer Fig. 2. Sphere-photometer The detector used in the photometer was the photo- diode Hamamatsu S1337-1010BQ. Since the S1337 series photodiodes are not corrected to the CIE V(λ) function, a filter based on a set of colored optical glass- es was calculated and manufactured. Given the influ- ence of the sphere coating (paint OPRC from OptoPol- ymer), f1' was calculated equal to 5.86%, and measured – 5.83%. This result is more dependent on the quality of colored glasses, so in future it can be improved. For amplification of the output signal from the pho- tometer a transimpedance amplifier was designed based on the operational amplifier AD549JHZ. As the feed- back resistance, precision 100 MOhm resistor was used. To automate the measurement process on the gonio- photometer facility LGF-C-42, appropriate software was created (Fig. 3) that allows automatic (according to the preset settings) measurement of the spatial light intensi- ty distribution of the test LED. During measurement, the operator can monitor the process and measurement re- sults in the software’s main window. Table 1 Characteristics of the created sphere-photometer Characteristics Designation Value V(λ) match f1’ 5.825% Cosine response f2 0.0089% Linearity error f3 0.07% Temperature coeffi- cient Α 0.012%/°С Fatigue f5 0.146% Modulated radiation f7 0.1% Effect of nonuniform illumination of the ac- ceptance area of a pho- tometer head f9 0.41% Fig. 3. Goniophotometer LGF-C-42 software After measurement ends, the results can be saved in *.xml spreadsheet format or as IES-file. The latter al- lows use of measuring results in programs for lighting simulation, such as Photopia, Zemax or TracePro. 3. SPHERE-PHOTOMETER CALIBRATION For the traceability of the results to the state primary standards it was decided to use the standard detector method, which is more versatile than the method of standard light source. This method has the following advantages: the unit of the measured value remains on the photometer, which is more stable over time and it has a long service life and requires smaller service costs. The issue of transmission scale from the standard detector to the test detector, down to comparing the re- action of the test detector and the standard detector measured at each wavelength of the desired spectral range and spectral characteristics determine the ratio of photocurrent / power of radiation incident on the test detector, i.e. its spectral characteristics A/W sensitivi- ty [6]. To transfer the scale from the standard detector to the test detector a spectral comparator facility was de- signed (Fig. 4), which uses the substitution method with monitor-detector. As a reference detector the designed trap-detector [7] was used, which consists of three silicon photodi- odes Hamamatsu S1337-1010BQ. The trap-detector allows reproduction of the scale of radiation power in range from 10-9 to 10-2 W in the visible range. Margin of main relative measurement error is ± 0.2%. ISSN 1562-6016. ВАНТ. 2015. №6(100) 143 Fig. 4. Spectral comparator facility As a test detector, photometric head with silicon photodiode Hamamatsu S1337-1010BR and precision aperture were used. After calibration, this photometer is used as a working standard for calibration of photome- ters in other measurement devices. With spectral power responsivity of the working standard, it’s easy to find the integral value of the lumi- nous flux that was measured during calibration. Thus, knowing the exact value of the aperture acceptance area, it is possible to calculate the integral value of illumi- nance on the aperture acceptance area of the working standard. Calibration of the photometer of LGF-C-42 is made by the working standard detector using the method of substitution. For calibration of the test detector, it is set alternately with the working standard detector at equal distance from the standard illuminant type A. Equation of the illuminance responsivity of the sphere-photometer LGF-C-42 is shown below: ( ) ( )LGFs s s ssLGF LGF LGF LGF l R U Sl R U S α α cos cos 2 2 ⋅⋅ ⋅⋅⋅ = , (1) where ULGF – voltage on exit of LGF-C-42 transim- pendance amplifier; RLGF – feedback resistance of LGF- C-42 transimpendance amplifier; lLGF – distance be- tween standard illuminant type A and the aperture ac- ceptance area of LGF-C-42 photometer; αLGF – angle of deviation from the optical axis of LGF-C-42; Us – volt- age on exit of working standard detector transimpend- ance amplifier; Rs – feedback resistance of working standard detector transimpendance amplifier; ls – dis- tance between standard illuminant type A and the aper- ture acceptance area of working standard detector; αs – angle of deviation from the optical axis of working standard detector; Ss – illuminance responsivity of the working standard detector. The illuminance responsivity of the sphere- photometer LGF-C-42 equals 1.804451·10-10 [A/lx]. The uncertainty budget for calibration is presented in Table 2. Table 2 Uncertainty budget for sphere-photometer calibration Uncertainty component Relative standard uncertainty (type B), % Voltage on exit of LGF-C-42 transimpendance amplifier 0.005 Feedback resistance of LGF-C-42 transimpendance amplifier 0.085 Distance between light source and the aperture of LGF-C-42 photometer 0.191 Angle of deviation from the optical axis of LGF-C-42 0.001 Voltage on exit of working standard detector transimpendance amplifier 0.005 Feedback resistance of working standard detector transimpendance amplifier 0.042 Distance between light source and the aperture acceptance area of working stand- ard detector 0.191 Angle of deviation from the optical axis of working standard detector 0.001 Illuminance responsivity of the working standard detector 0.203 Cosine response 0.005 Linearity error 0.040 Temperature coefficient (for Tamb =18°С) 0.048 Fatigue 0.084 Modulated radiation 0.058 Effect of nonuniform illumination of the acceptance area of a photometer head 0.237 Relative expanded uncertainty of calibration U (k=2) 0.88 4. LEDs MEASUREMENTS Measurement of high-power LEDs, including (if necessary) averaged luminous intensity performed at a goniometer zero position in which the mechanical axis of the test LED is aligned to the photometric axis of sphere-photometer. The equation used for measurement of luminous intensity on goniophotometer LGF-C-42 is obtained by: ( )αcos * 2 0 rF SR UUI LGFLGF LED ⋅ ⋅ ⋅ − = , (2) where U and U0 – measured and dark signal respective- ly; RLGF – feedback resistance of LGF-C-42 transim- pendance amplifier; SLGF – illuminance responsivity of the sphere-photometer LGF-C-42; F* – spectral mis- match correction factor; r – distance between LED and the aperture acceptance area of LGF-C-42 photometer; α – deviation angle from the optical axis of LGF-C-42. Spectral mismatch correction factor F* calculated for each test LED as given by ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ⋅ ⋅ ⋅ ⋅ ⋅ = λλλ λλλ λλλ λλλ dVS dsS dsS dVS F A relA rel * , (3) ISSN 1562-6016. ВАНТ. 2015. №6(100) 144 where S(λ) – the relative spectral distribution of the test LED; SA(λ) – the relative spectral distribution of the CIE standard illuminant type A; V(λ) – the CIE spectral luminous efficiency function of the photopic vision; srel(λ) – the relative spectral responsivity of the photom- eter head. Table 3 Uncertainty budget for luminous intensity measurements of high-power LED Uncertainty component Type Probability distribution Standard uncertainty of an input quantity Relative sensitivi- ty coefficient Relative standard uncertainty, % Measured signal B Rectangular 0.00015 -0.36229 0.005 Dark signal B Rectangular 3.5·10-6 -0.36229 0.0001 Feedback resistance of amplifier B Normal 84394.26 -1 · 10-8 0.0845 Calibration of sphere- photometer B Normal 7.9·10-13 -5.5·10-9 0.44 Spectral mismatch correction factor B Normal 0.007 0.98814 0.6928 Distance measure- ment B Rectangular 0.00087 3.04535 0.2641 Combined relative standard uncertainty, % 0.87 Expanded uncertainty U (k = 2), % 1.73 For the measurement of luminous flux on gonio- photometer LGF-C-42 the same steps of preparatory work must be performed as for luminous intensity measurements. The only difference is that LED in- tensity is measured in all directions. To calculate the luminous flux the measurement equation used is: ( ) )cos(cos,2 21 0 2 θθϕθπ π θ −= ∑ = ErФv , (4) where r – distance between LED and photome- ter [m]; E – illuminance on sphere-photometer aper- ture [lx]; θ, φ – coordinates of luminous intensity direction in spherical coordinates system. Since most of the factors that affect the measure- ment of luminous flux of LEDs are identical with the corresponding effects in measuring the luminous in- tensity, the latter is used without changes. Additional- ly consideration is only needed for the scanning step and influence of changing the ambient light that de- pend on the position of the LED (see Tables 3, 4). Table 4 Uncertainty budget for luminous flux measurements of high-power LED Uncertainty component Type Probability distribution Relative standard uncer- tainty, % Uncertainty of luminous intensity measurements B Normal 0.87 Scanning step and lumi- nous flux calculation B Rectangular 0.06 Stray light influence B Rectangular 0.12 Combined relative standard uncertainty, % 0.88 Expanded uncertainty U (k = 2), % 1.78 CONCLUSIONS As a result of this work a goniophotometer facility for measuring photometric characteristics of high-power LEDs was designed created and experimentally re- searched. This facility meets all requirements described in CIE 127-2007 and also meets global trends of these type of measurements. The goniophotometer facility allows measuring high-power LEDs at desired junction temperature using the method developed by NIST. All measuring processes are controlled from a PC by using specially developed software. The proposed, created and experimentally re- searched unique sphere-photometer also satisfies the requirements of CIE with regards to measurement pho- tometry of LEDs, and combines the functions of the input optics for photometer and for the spectrometer. The Sphere-photometer calibration was achieved by using developed self-calibrated trap-detector, that pro- vides traceability of measurement results to the primary standards of Ukraine. REFERENCES 1. Measurement of LEDs: CIE 127-2007. 2007, 38 p. 2. C. Cameron Miller, Yuqin Zong, Yoshihiro Ohno. LED photometric calibrations at the National Insti- tute of Standards and Technology and future meas- urement needs of LEDs // Fourth Intern. Conf. on Solid State Lighting: Proc. of SPIE. Bellingham, WA. 2004, v. 5530, p. 69-79. 3. G. Zauter, M. Lindemann, Y. Ohno, A. Sperling. Photometry of LEDs // Svetotekhnyka. 2004, № 3, p. 5-11 (in Russian). 4. Y. Zong, Y. Ohno. New practical method for meas- urement of high-power LEDs // CIE Expert Symp. 2008 on Advances in Photometry and Colorimetry / CIE x033:2008. Turin, 2008. ISSN 1562-6016. ВАНТ. 2015. №6(100) 145 5. Optical Radiometry. Experimental Methods in the Physical Sciences / Ed. by A.C. Parr, R.U. Datla, and J.L. Gardner. 2005, v. 41, San Diego: Academic Press, 586 p. 6. T.C. Larason. Spectroradiometric Detector Meas- urements: Ultraviolet, Visible, and Near-Infrared Detectors for Spectral Power // NIST Special Publi- cation 250-41. Gaithersburg: NIST, 2008, 120 p. 7. L.A. Nazarenko, A.S. Litvinenko, D.P. Zubkov, et al. The reference trap-detector // Lighting engineer- ing and power engineering. 2011, № 2, p. 34-38. Article received 05.06.2015 ИЗМЕРЕНИЕ ФОТОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК СВЕТОДИОДОВ Л.А. Назаренко, Д.П. Зубков Предложен и реализован метод измерения светодиодов, который заключается в самокалибровке гонио- фотометрической установки для измерения светодиодов с помощью трап-детектора. Разработан и изготов- лен автоматизированный гониофотометр, который обеспечивает измерение мощных светодиодов при задан- ной температуре p-n-перехода. Разработан и экспериментально исследован фотометр с фотометрической сферой в качестве диффузора, который отвечает всем требованиям МКО для фотометрических измерений светодиодов. ВИМІРЮВАННЯ ФОТОМЕТРИЧНИХ ХАРАКТЕРИСТИК СВІТЛОДІОДІВ Л.А. Назаренко, Д.П. Зубков Запропоновано та реалізовано метод вимірювання світлодіодів, який полягає в самокалібруванні гоніо- фотометричної установки для вимірювання світлодіодів за допомогою трап-детектора. Розроблено та виго- товлено автоматизований гоніофотометр, який забезпечує вимірювання потужних світлодіодів при заданій температурі p-n-переходу. Розроблено та експериментально досліджено фотометр з фотометричною кулею в якості дифузора, який відповідає всім вимогам МКО для фотометричних вимірювань світлодіодів.