Neutron Diffraction Study of Fe₂MnGa Heusler Alloys

Effect of temperature and magnetic field on the structure and magnetic properties of Fe₅₀.₁Mn₂₂.₇Ga₂₇.₂ і Fe₅₁.₆Mn₁₇.₈Ga₃₀.₆ alloys is investigated in a temperature range 100 К < T < 580 К by using elastic neutron diffraction (ND) and magnetometry. The degree of atomic order as well as magneti...

Full description

Saved in:
Bibliographic Details
Published in:Металлофизика и новейшие технологии
Date:2016
Main Authors: Kudryavtsev, Yu.V., Perekos, A.E., Glavatskyy, I.N., Dubowik, J., Skirta, Yu.B.
Format: Article
Language:English
Published: Інститут металофізики ім. Г.В. Курдюмова НАН України 2016
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/112470
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Neutron Diffraction Study of Fe₂MnGa Heusler Alloys / Yu. V. Kudryavtsev, A. E. Perekos, I. N. Glavatskyy, J. Dubowik, and Yu. B. Skirta // Металлофизика и новейшие технологии. — 2016. — Т. 38, № 1. — С. 53-66. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112470
record_format dspace
spelling Kudryavtsev, Yu.V.
Perekos, A.E.
Glavatskyy, I.N.
Dubowik, J.
Skirta, Yu.B.
2017-01-22T13:35:45Z
2017-01-22T13:35:45Z
2016
Neutron Diffraction Study of Fe₂MnGa Heusler Alloys / Yu. V. Kudryavtsev, A. E. Perekos, I. N. Glavatskyy, J. Dubowik, and Yu. B. Skirta // Металлофизика и новейшие технологии. — 2016. — Т. 38, № 1. — С. 53-66. — Бібліогр.: 18 назв. — англ.
1024-1809
PACS: 61.05.cp, 61.05.fm, 72.15.Eb, 75.30.Cr, 75.30.Kz, 75.40.Cx, 75.50.Ee
DOI: 10.15407/MFiNT.38.0053.
https://nasplib.isofts.kiev.ua/handle/123456789/112470
Effect of temperature and magnetic field on the structure and magnetic properties of Fe₅₀.₁Mn₂₂.₇Ga₂₇.₂ і Fe₅₁.₆Mn₁₇.₈Ga₃₀.₆ alloys is investigated in a temperature range 100 К < T < 580 К by using elastic neutron diffraction (ND) and magnetometry. The degree of atomic order as well as magnetic moments localized at the Mn and Fe sites in the investigated Fe₂MnGa alloys are experimentally evaluated using the ND data. Some disagreement between the experimental and calculated values of magnetic moments localized at the Mn and Fe sites can be explained by noticeable atomic disorder in the prepared Fe₂MnGa alloys. If antiferromagnetic order really exists in L1₂-phase containing Fe₅₀.₁Mn₂₂.₇Ga₂₇.₂ alloy, this order has not a collinear character.
Методами пружньої дифракції нейтронів (ДН) та магнетометрії в температурній області 100 К < T < 580 К було досліджено вплив температури й магнетного поля на структуру та магнетні властивості стопів Fe₅₀,₁Mn₂₂,₇Ga₂₇,₂ і Fe₅₁,₆Mn₁₇,₈Ga₃₀,₆. З використанням даних ДН в роботі було експериментально визначено як ступінь атомового порядку в стопах Fe₂MnGa, так і величини магнетних моментів, що локалізовані на вузлах Mn та Fe. Деяка невідповідність між експериментальними та розрахованими теоретично величинами магнетних моментів, що локалізовані на вузлах Mn та Fе, пояснюється значним ступенем атомового безладу у виготовлених стопах Fe₂MnGa. Якщо антиферомагнетний порядок дійсно формується в L1₂-фазі стопу Fe₅₀,₁Mn₂₂,₇Ga₂₇,₂, цей порядок має неколінеарну структуру.
Методами упругой дифракции нейтронов (ДН) и магнитометрии в температурной области 100 К < T < 580 К было проведено исследование влияния температуры и магнитного поля на структуру и магнитные свойства сплавов Fe₅₀,₁Mn₂₂,₇Ga₂₇,₂ и Fe₅₁,₆Mn₁₇,₈Ga₃₀,₆. С использованием данных ДН были экспериментально определены как степень атомного порядка в сплавах Fe₂MnGa, так и величины магнитных моментов, локализованных на узлах Mn и Fe. Некоторое несоответствие между экспериментальными и теоретически рассчитанными значениями магнитных моментов, локализованных на узлах Mn и Fe, объясняется существенной степенью атомного беспорядка в приготовленных сплавах Fe₂MnGa. Если антиферромагнитный порядок действительно формируется в L1₂-фазе сплава Fe₅₀,₁Mn₂₂,₇Ga₂₇,₂, то этот порядок имеет неколлинеарную структуру.
This work was supported by the project No. 1050/20.15 of the National program ‘The development of the technologies for multilayered nanostructures and composite oxide materials fabrication as magnetic sensors’.
en
Інститут металофізики ім. Г.В. Курдюмова НАН України
Металлофизика и новейшие технологии
Электронные структура и свойства
Neutron Diffraction Study of Fe₂MnGa Heusler Alloys
Дослідження сплавів Гейслера Fe₂MnGa за допомогою дифракції нейтронів
Исследование сплавов Гейслера Fe₂MnGa с помощью дифракции нейтронов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Neutron Diffraction Study of Fe₂MnGa Heusler Alloys
spellingShingle Neutron Diffraction Study of Fe₂MnGa Heusler Alloys
Kudryavtsev, Yu.V.
Perekos, A.E.
Glavatskyy, I.N.
Dubowik, J.
Skirta, Yu.B.
Электронные структура и свойства
title_short Neutron Diffraction Study of Fe₂MnGa Heusler Alloys
title_full Neutron Diffraction Study of Fe₂MnGa Heusler Alloys
title_fullStr Neutron Diffraction Study of Fe₂MnGa Heusler Alloys
title_full_unstemmed Neutron Diffraction Study of Fe₂MnGa Heusler Alloys
title_sort neutron diffraction study of fe₂mnga heusler alloys
author Kudryavtsev, Yu.V.
Perekos, A.E.
Glavatskyy, I.N.
Dubowik, J.
Skirta, Yu.B.
author_facet Kudryavtsev, Yu.V.
Perekos, A.E.
Glavatskyy, I.N.
Dubowik, J.
Skirta, Yu.B.
topic Электронные структура и свойства
topic_facet Электронные структура и свойства
publishDate 2016
language English
container_title Металлофизика и новейшие технологии
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
format Article
title_alt Дослідження сплавів Гейслера Fe₂MnGa за допомогою дифракції нейтронів
Исследование сплавов Гейслера Fe₂MnGa с помощью дифракции нейтронов
description Effect of temperature and magnetic field on the structure and magnetic properties of Fe₅₀.₁Mn₂₂.₇Ga₂₇.₂ і Fe₅₁.₆Mn₁₇.₈Ga₃₀.₆ alloys is investigated in a temperature range 100 К < T < 580 К by using elastic neutron diffraction (ND) and magnetometry. The degree of atomic order as well as magnetic moments localized at the Mn and Fe sites in the investigated Fe₂MnGa alloys are experimentally evaluated using the ND data. Some disagreement between the experimental and calculated values of magnetic moments localized at the Mn and Fe sites can be explained by noticeable atomic disorder in the prepared Fe₂MnGa alloys. If antiferromagnetic order really exists in L1₂-phase containing Fe₅₀.₁Mn₂₂.₇Ga₂₇.₂ alloy, this order has not a collinear character. Методами пружньої дифракції нейтронів (ДН) та магнетометрії в температурній області 100 К < T < 580 К було досліджено вплив температури й магнетного поля на структуру та магнетні властивості стопів Fe₅₀,₁Mn₂₂,₇Ga₂₇,₂ і Fe₅₁,₆Mn₁₇,₈Ga₃₀,₆. З використанням даних ДН в роботі було експериментально визначено як ступінь атомового порядку в стопах Fe₂MnGa, так і величини магнетних моментів, що локалізовані на вузлах Mn та Fe. Деяка невідповідність між експериментальними та розрахованими теоретично величинами магнетних моментів, що локалізовані на вузлах Mn та Fе, пояснюється значним ступенем атомового безладу у виготовлених стопах Fe₂MnGa. Якщо антиферомагнетний порядок дійсно формується в L1₂-фазі стопу Fe₅₀,₁Mn₂₂,₇Ga₂₇,₂, цей порядок має неколінеарну структуру. Методами упругой дифракции нейтронов (ДН) и магнитометрии в температурной области 100 К < T < 580 К было проведено исследование влияния температуры и магнитного поля на структуру и магнитные свойства сплавов Fe₅₀,₁Mn₂₂,₇Ga₂₇,₂ и Fe₅₁,₆Mn₁₇,₈Ga₃₀,₆. С использованием данных ДН были экспериментально определены как степень атомного порядка в сплавах Fe₂MnGa, так и величины магнитных моментов, локализованных на узлах Mn и Fe. Некоторое несоответствие между экспериментальными и теоретически рассчитанными значениями магнитных моментов, локализованных на узлах Mn и Fe, объясняется существенной степенью атомного беспорядка в приготовленных сплавах Fe₂MnGa. Если антиферромагнитный порядок действительно формируется в L1₂-фазе сплава Fe₅₀,₁Mn₂₂,₇Ga₂₇,₂, то этот порядок имеет неколлинеарную структуру.
issn 1024-1809
url https://nasplib.isofts.kiev.ua/handle/123456789/112470
citation_txt Neutron Diffraction Study of Fe₂MnGa Heusler Alloys / Yu. V. Kudryavtsev, A. E. Perekos, I. N. Glavatskyy, J. Dubowik, and Yu. B. Skirta // Металлофизика и новейшие технологии. — 2016. — Т. 38, № 1. — С. 53-66. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT kudryavtsevyuv neutrondiffractionstudyoffe2mngaheusleralloys
AT perekosae neutrondiffractionstudyoffe2mngaheusleralloys
AT glavatskyyin neutrondiffractionstudyoffe2mngaheusleralloys
AT dubowikj neutrondiffractionstudyoffe2mngaheusleralloys
AT skirtayub neutrondiffractionstudyoffe2mngaheusleralloys
AT kudryavtsevyuv doslídžennâsplavívgeislerafe2mngazadopomogoûdifrakcííneitronív
AT perekosae doslídžennâsplavívgeislerafe2mngazadopomogoûdifrakcííneitronív
AT glavatskyyin doslídžennâsplavívgeislerafe2mngazadopomogoûdifrakcííneitronív
AT dubowikj doslídžennâsplavívgeislerafe2mngazadopomogoûdifrakcííneitronív
AT skirtayub doslídžennâsplavívgeislerafe2mngazadopomogoûdifrakcííneitronív
AT kudryavtsevyuv issledovaniesplavovgeislerafe2mngaspomoŝʹûdifrakciineitronov
AT perekosae issledovaniesplavovgeislerafe2mngaspomoŝʹûdifrakciineitronov
AT glavatskyyin issledovaniesplavovgeislerafe2mngaspomoŝʹûdifrakciineitronov
AT dubowikj issledovaniesplavovgeislerafe2mngaspomoŝʹûdifrakciineitronov
AT skirtayub issledovaniesplavovgeislerafe2mngaspomoŝʹûdifrakciineitronov
first_indexed 2025-11-26T00:17:52Z
last_indexed 2025-11-26T00:17:52Z
_version_ 1850599667743588352
fulltext 53 PACS numbers:61.05.cp, 61.05.fm,72.15.Eb,75.30.Cr,75.30.Kz,75.40.Cx, 75.50.Ee Neutron Diffraction Study of Fe2MnGa Heusler Alloys Yu. V. Kudryavtsev, A. O. Perekos, I. N. Glavatskyy*, J. Dubowik**, and Yu. B. Skirta*** G. V. Kurdyumov Institute for Metal Physics, N. A. S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv, Ukraine *Helmholtz Centre Berlin for Materials and Energy, 1 Hahn Meitner Platz, 14109 Berlin, Germany **Institute of Molecular Physics, PAS, 17 Mariana Smoluchowskiego, 60-179 Poznań, Poland ***Institute of Magnetism, N.A.S. of Ukraine, 36-b Academician Vernadsky Blvd., 03142 Kyiv, Ukraine Effect of temperature and magnetic field on the structure and magnetic properties of Fe50.1Mn22.7Ga27.2 and Fe51.6Mn17.8Ga30.6 alloys is investigated in a temperature range 100 K  T  580 K by using elastic neutron diffraction (ND) and magnetometry. The degree of atomic order as well as magnetic mo- ments localized at the Mn and Fe sites in the investigated Fe2MnGa alloys are experimentally evaluated using the ND data. Some disagreement between the experimental and calculated values of magnetic moments localized at the Mn and Fe sites can be explained by noticeable atomic disorder in the prepared Fe2MnGa alloys. If antiferromagnetic order really exists in L12-phase con- taining Fe50.1Mn22.7Ga27.2 alloy, this order has not a collinear character. Key words: neutron diffraction, magnetic properties, atomic order, struc- tural transformations. Методами пружньої дифракції нейтронів (ДН) та магнетометрії в темпе- ратурній області 100 К  T  580К було досліджено вплив температури й Correspondence author: Yuri Vladimirovich Kudryavtsev E-mail: kudr@imp.kiev.ua Please cite this article as: Yu. V. Kudryavtsev, A. O. Perekos, I. N. Glavatskyy, J. Dubowik, and Yu. B. Skirta, Neutron Diffraction Study of Fe2MnGa Heusler Alloys, Metallofiz. Noveishie Tekhnol., 38, No. 1: 53—66 (2016), DOI: 10.15407/MFiNT.38.0053. Металлофиз. новейшие технол. / Metallofiz. Noveishie Tekhnol. 2016, т. 38, № 1, сс. 53—66 / DOI: 10.15407/MFiNT.38.0053 Оттиски доступны непосредственно от издателя Фотокопирование разрешено только в соответствии с лицензией 2016 ИМФ (Институт металлофизики им. Г. В. Курдюмова НАН Украины) Напечатано в Украине. 54 Y. V. KUDRYAVTSEV, A. O. PEREKOS, I. N. GLAVATSKYY et al. магнетного поля на структуру та магнетні властивості стопів Fe50,1Mn22,7Ga27,2 і Fe51,6Mn17,8Ga30,6. З використанням даних ДН в роботі було експериментально визначено як ступінь атомового порядку в стопах Fe2MnGa, так і величини магнетних моментів, що локалізовані на вузлах Mn та Fe. Деяка невідповідність між експериментальними та розрахова- ними теоретично величинами магнетних моментів, що локалізовані на вузлах Mn та Fе, пояснюється значним ступенем атомового безладу у ви- готовлених стопах Fe2MnGa. Якщо антиферомагнетний порядок дійсно формується в L12-фазі стопу Fe50,1Mn22,7Ga27,2, цей порядок має неколінеа- рну структуру. Ключові слова: дифракція нейтронів, магнетні властивості, атомовий по- рядок, структурні перетворення. Методами упругой дифракции нейтронов (ДН) и магнитометрии в темпе- ратурной области 100 К < T < 580 К было проведено исследование влия- ния температуры и магнитного поля на структуру и магнитные свойства сплавов Fe50,1Mn22,7Ga27,2 и Fe51,6Mn17,8Ga30,6. С использованием данных ДН были экспериментально определены как степень атомного порядка в сплавах Fe2MnGa, так и величины магнитных моментов, локализованных на узлах Mn и Fe. Некоторое несоответствие между экспериментальными и теоретически рассчитанными значениями магнитных моментов, лока- лизованных на узлах Mn и Fe, объясняется существенной степенью атом- ного беспорядка в приготовленных сплавах Fe2MnGa. Если антиферро- магнитный порядок действительно формируется в L12-фазе сплава Fe50,1Mn22,7Ga27,2, то этот порядок имеет неколлинеарную структуру. Ключевые слова: дифракция нейтронов, магнитные свойства, атомный порядок, структурные превращения. (Received November 3, 2015) 1. INTRODUCTION Significant interest to the stoichiometric and off-stoichiometric Fe2MnGa alloys is based on the discovery in these alloys of martensitic transformation [1—5], metamagnetic transformation from antiferro- magnetic (AFM) to ferromagnetic (FM) phase [6—9] and giant exchange bias [6—8]. Similarly to the temperature dependence of magnetization under metamagnetic transformation (i.e. growth of magnetization with tem- perature at low magnetic fields), it may be also observed for spin-glass systems. The authors made the conclusion on the formation of AFM magnetic order in the disordered (melt spun ribbons) -Fe2MnGa alloys on the basis of analysis of M(H) dependences taken at different temper- atures after various heat treatments [6, 7]. However, no direct evidence of kind of AFM order (if any) in such alloys has yet been presented. According to Zhu et al., body-centred cubic (b.c.c.) phase in NEUTRON DIFFRACTION STUDY OF Fe2MnGa HEUSLER ALLOYS 55 Fe50.0Mn22.5Ga27.5 alloy is not ferromagnetically ordered at room tem- perature (RT). The FM order in alloy is induced by martensitic trans- formation from b.c.c. phase to tetragonal one, which takes place at T  150 K (on cooling) [1]. Contrary to this statement Shih et al. have shown that melt spun two phases b.c.c.  f.c.c. (face-centred cubic) rib- bon of Fe50Mn24Ga26 alloy which does not exhibit martensitic transfor- mation is ferromagnet due to b.c.c. phase with the Curie temperature of TC  190 K [9]. Thus, ‘Is ferromagnetism of Fe50Mn24Ga26 alloy an entire property of b.c.c. phase or result of martensitic transfor- mation?’ still is an open question. This work aims to study the effect of temperature and magnetic field on the structure and magnetic properties of nearly stoichiometric Fe2MnGa alloys by employing mainly elastic neutron diffraction and magnetometry. 2. EXPERIMENTAL DETAILS Two bulk polycrystalline Heusler Fe2MnGa alloys have been prepared by melting of the Fe, Mn and Ga pieces of 99.99% purity together in an arc- furnace with water-cooled Cu hearth under 1.3 bar Ar atmosphere. The Ar gas in the furnace before melting was additionally purified by multi- ple remelting of Ti50Zr50 alloy getter. To promote the volume homogenei- ty, the ingot was remelted 5 times. Miserable weight losses after ingot meltings were observed. X-ray dispersion spectroscopy analysis re- vealed alloy compositions as Fe50.1Mn22.7Ga27.2 and Fe51.6Mn17.8Ga30.6. Ad- ditionally as cast alloys were annealed at T  1220 K during 96 h. The structural characterization of the samples was carried out at 100, 300 and 580 K for magnetic fields of 0 and 50 kOe by employing elastic neutron diffraction (ND) at Helmholtz Centre Berlin for Mate- rials and Energy using Flat-Cone Diffractometer (E2) with PG (002) monochromator to produce monochromatic unpolarised neutron beam of   0.239 nm wavelength. Bulk Fe2MnGa alloy samples were mount- ed into aluminium container. Therefore, experimental ND spectra may contain diffraction peaks related to Al. Besides ND, the crystalline structure of alloys was also analysed using X-ray diffraction (XRD) in a —2-geometry with CuK-radiation (  0.15406 nm). The magnetic properties of bulk Fe2MnGa alloy samples were investi- gated for a temperature 2  T  400 K and magnetic field 0  H  70 kOe, by using PPMS-14T Quantum Design magnetometer, and for 80  T   825 K, temperature range by measuring DC-magnetic susceptibility. 3. RESULTS AND DISCUSSION According to the results of XRD study, Heusler Fe51.6Mn17.8Ga30.6 alloy has the disordered A2-type of structure (only principle [(h  k  l)/2  56 Y. V. KUDRYAVTSEV, A. O. PEREKOS, I. N. GLAVATSKYY et al.  2n] diffraction peaks 220, 400, and 422 are seen) with a lattice pa- rameter of a  0.5844 nm. At the same time, XRD spectrum for Fe50.1Mn22.7Ga27.2 alloy reveals that it is a mixture of the ordered L12- type phase with a lattice parameter a  0.3703 nm and the disordered A2-type phase with a lattice parameter a  0.5844 nm (see Fig. 1). Tak- ing into account the intensities of the most intense fundamental re- flections for L12- and A2-phases, their relative volume content in Fe50.1Mn22.7Ga27.2 alloy may be estimated as 71 vs. 29%, respectively. At the same time, ND results for Fe51.6Mn17.8Ga30.6 alloy reveal that, at room temperature (RT), it has an ordered crystalline structure of L21-type with a lattice parameter of a  0.5882 nm–additionally to fundamental diffraction (220) peak at 2  70.15, (111) and (200) su- perstructure reflections are clearly seen. The diffraction peaks at 2  61.2 and 71.9 may be definitely ascribed to (111) and (200) re- flections of A1, respectively (see Fig. 2). Fig. 1. Experimental XRD spectra for Fe50.1Mn22.7Ga27.2 (1) and Fe51.6Mn17.8Ga30.6 (2) alloys together with calculated stroke-diagrams for per- fectly ordered L12 (3) and L21 (4) structures with lattice parameters of a  0.3703 nm and a  0.5844 nm, respectively. XRD spectra are shifted rela- tively each other for convenience of observation. NEUTRON DIFFRACTION STUDY OF Fe2MnGa HEUSLER ALLOYS 57 Similarly to XRD results, ND spectrum for Fe50.1Mn22.7Ga27.2 alloy at RT shows that the alloy is a mixture of the ordered L12-type phase with the lattice parameter of a  0.3720 nm [see (100), (110), (210) superlat- tice diffraction lines] and the ordered L21-type phase with the lattice parameter of a  0.5875 nm [(111) and (311) superlattice diffraction lines satisfy the condition that h, k, l are all odd] (see Fig. 3). The co- existence of L21- and L12-phases in the off-stoichiometric Fe2MnGa al- loys was also found in a quite large range of Fe2MnGa alloy composi- tions [1, 9]. L21-structure of full Heusler X2YZ alloys can be comprised as four interpenetrating f.c.c. sublattices A, B, C, and D [10]. In this view, A and C sites of full Heusler Fe2MnGa alloy entirely occupied by X (Fe) atoms, but B and D sites occupied by Y (Mn) and Z (Ga) atoms, respec- tively. For such a structure, permitted Bragg reflections are those for which Miller indices are unmixed, i.e. all odd or all even. They have the following structure amplitudes F: 2 2 Mn Ga (111) 4 | ( ) ( ) | 4 | |,A C B DF f f f f f f      (1) Fe Mn Ga (200) 4 | | 4 | 2 |,A B C DF f f f f f f f       (2) Fe Mn Ga (220) 4 | | 4 | 2 |,A B C DF f f f f f f f       (3) Fig. 2. Experimental ND spectra of Fe51.6Mn17.8Ga30.6 alloy taken at different temperatures and H  0 kOe (symbols) together with simulated stroke- diagrams for L21 (a  0.5882 nm, solid line). ND spectra are shifted relatively each other for convenience of observation. 58 Y. V. KUDRYAVTSEV, A. O. PEREKOS, I. N. GLAVATSKYY et al. where fA, fB, fC, and fD are the average scattering factors for atoms at the sites A, B, C, and D, respectively [10]. Factors fFe, fMn and fGa are equal to 9.52, 3.73 and 7.291013 cm, respectively [11, 12]. Thus, for perfectly ordered Fe2MnGa alloy with L21-type of atomic order, the ratio of the superlattice diffraction peak intensities to main principle one in the ND spectrum should be equal to: 2 2 2 2 (111) (200) 0.2378, 0.4692. (220) (220) F F F F   (4) Experimental ratios of superstructure lines to the most intense ones for L21- and L12-phases of Fe51.6Mn17.8Ga30.6 and Fe50.1Mn22.7Ga27.2 alloys at different temperatures and magnetic fields are shown in Tables 1 and 2. If the atomic disorder appears randomly in ternary alloys (like Fe2MnGa), all the superstructure lines will be reduced in the intensity by factor 2, where  is the degree of long-range order [13]. However, if preferential disorder occurs only between certain sites, then 2 groups of superlattice reflections will be affected differently, and it is not possible to describe the state of order in terms of a single ordering pa- rameter [10, 14]. In such case, the total state of order may be repre- sented by two factors S and  [14]. Fig. 3. Experimental ND spectra of Fe50.1Mn22.7Ga27.2 alloy taken at different temperatures and H  0 kOe (symbols) together with simulated stroke- diagrams for L21 (a  0.5875 nm, dashed line) and L12 (a  0.3727 nm, solid line) types of structure. Inset shows the small-angle parts of the experimental ND spectra. ND spectra are shifted relatively each other for convenience of observation. NEUTRON DIFFRACTION STUDY OF Fe2MnGa HEUSLER ALLOYS 59 In the case of preferential Y  Z (or Mn  Ga in our case) disorder, the intensities of odd superlattice diffraction lines are reduced by fac- tor (1—2)2, where  is an occupation parameter defined as portion of Mn or Ga atoms at improper sites. Thus,  can increase from 0 to 0.5 upon increase in Y  Z disordering of perfectly ordered Heusler alloy. Comparing experimental intensity ratios of (111) reflection to (220) one for Fe50.1Mn22.7Ga27.2 and Fe51.6Mn17.8Ga30.6 alloys taken at T  100 K and H  0 kOe with those calculated for perfectly ordered Fe2MnGa al- loy, the experimental degrees of Mn  Ga disorder was estimated and found to be   0.262 and 0.359, respectively. The even superlattice lines are unaffected by Y  Z disorder; they are only reduced by factor S 2, which characterizes X  Y disorder. The corresponding experimental value of S for Fe50.1Mn22.7Ga27.2 and Fe51.6Mn17.8Ga30.6 alloys calculated for T  100 K and H  0 kOe is equal to S  0.179 and 0.099. S is changed from 1 to 0 upon disordering from perfectly ordered to completely disordered state. Thus, it is seen that both investigated Fe2MnGa alloys are noticeably disordered with X  Y as well as Y  Z types of disorder. Figures 4 and 5 present magnetic properties of investigated TABLE 1. Effect of temperature and magnetic field on the relative intensities of superlattice diffraction lines in the experimental ND spectra for Fe51.6Mn17.8Ga30.6 alloy. Isuper/Ifund T  300 K, H  0 kOe T  100 K, H  0 kOe T  100 K, H  50 kOe I(111)/I(220) 0.0100 0.0190 0.048 I(200)/I(220) 0.0037 0.0046 0.005 I(311)/I(220) 0.0030 0.0040 0.009 TABLE 2. Effect of temperature and magnetic field on the relative intensities of superlattice diffraction lines in the experimental ND spectra for Fe50.1Mn22.7Ga27.2 alloy. Isuper/Ifund, structure T  580 K, H  0 kOe T  300 K, H  0 kOe T  100 K, H  0 kOe T  300 K, H  50 kOe T  100 K, H  50 kOe I(111)/I(220), L21 0.035 0.042 0.054 0.043 0.082 I(200)/I(220), L21 0.007 0.007 0.015 0.007 0.023 I(311)/I(220), L21 0.013 0.014 0.017 0.017 0.023 I(100)/I(111), L12 0.051 0.071 0.088 0.093 0.101 I(110)/I(111), L12 0.031 0.050 0.055 0.063 0.068 I(200)/I(111), L12 0.023 0.036 0.039 0.034 0.049 60 Y. V. KUDRYAVTSEV, A. O. PEREKOS, I. N. GLAVATSKYY et al. Fe2MnGa alloys. The temperature dependence of DC magnetic suscep- tibility for mainly L21-phase containing Fe51.6Mn17.8Ga30.6 alloy looks typical of ferromagnets with the Curie temperature of TC  200 K– increase in temperature from T  80 K causes decrease in  value. A minute increase in susceptibility near T  500 K may be related to the traces of FM at these temperatures L12 phase in the alloy (see inset in Fig. 4). The (T) dependence for Fe50.1Mn22.7Ga27.2 alloy is more compli- cated. Indeed, observed near T  250 K decrease (on warming) in (T) is concerned with the FM-to-PM transformation in L21 phase of Fe50.1Mn22.7Ga27.2 alloy (see Fig. 4). Further increase in temperature causes rapid growth of (T) above T  400 K. Similar temperature de- pendence is also observed for magnetization of Fe2MnGa alloys meas- ured at weak (H  50 Oe) polarizing magnetic field (see Fig. 5). Any structural transformation as a origin of such changes in (T) and/or M(T) at T  300—400 K is unlikely because of lack of any visible qualitative changes in ND spectra with temperature (see Fig. 3). The growth with temperature of (T) or/and M(T) above T  300—400 K was observed earlier in -Fe2MnGa alloys of similar composition and explained mostly by metamagnetic phase transition from AFM to FM magnetic order in L12-phase of alloy [6—9, 18]. Application of the external magnetic field of H  50 kOe drastically changes M(T) dependences for both alloys. Significant polarizing magnetic field suppresses the AFM order in L12-phase of Fig. 4. Temperature dependences of the DC magnetic susceptibility of Fe50.1Mn22.7Ga27.2 and Fe51.6Mn17.8Ga30.6 alloys taken at weak measuring mag- netic field. Inset shows enlarged view of the (T) plot for Fe51.6Mn17.8Ga30.6 al- loy in restricted temperature range. NEUTRON DIFFRACTION STUDY OF Fe2MnGa HEUSLER ALLOYS 61 Fe50.1Mn22.7Ga27.2 alloy making M(T) dependence for this alloy typical for ferromagnets (see Fig. 5). At the same time, significant magnetiza- tion above the Curie temperature is also observed for Fe51.6Mn17.8Ga30.6 alloy due to alignment of magnetic fluctuations. Hence, we conclude that, at 400  T  800 K and a low magnetic field, Fe50.1Mn22.7Ga27.2 alloy contains only FM L12-phase with TC  800 K and PM L21-phase. Near RT, it has AFM L12- and PM L21-phases, and at T  200 K, Fe50.1Mn22.7Ga27.2 alloy comprises of FM L21-and AFM L12-phases. Current opinion on AFM-to-FM transition as the reason of (T) and/or M(T) behaviour at low magnetic fields is supported mainly by the measurements of M(H) hysteresis loops at different temperatures [6, 7]. However, to the best of our knowledge, any direct evidence of AFM order existence at low magnetic fields was presented. The formation of the AFM order with antiparallel alignment of magnetic moments (if any) should be accompanied with doubling of the plane spacing of ‘magnetic lattice’ commensurate with L12-type lattice and hence should lead to an appearance of additional diffraction peaks in the small-angle region. However, it can be seen that no additional reflections appear in the small-angle region of ND spectra taken at T  300 K and even T  100 K without external magnetic field (see Fig. 3). Consequently, if AFM order is really formed in Fe50.1Mn22.7Ga27.2 al- loy, it has not collinear but probably more complicated (like in rare- earth metals) character. The coherent neutron diffraction peaks of ferromagnetic alloys con- Fig. 5. Effect of temperature and polarizing magnetic field on magnetization of Fe50.1Mn22.7Ga27.2 and Fe51.6Mn17.8Ga30.6 alloys. 62 Y. V. KUDRYAVTSEV, A. O. PEREKOS, I. N. GLAVATSKYY et al. tain both nuclear and magnetic contributions to the resulting struc- ture factor of elastic neutron scattering. For unpolarised neutrons, the magnetic and nuclear scattering intensities are additive, and the total structure factor F is given by the equation: 2 2 2 2 tot nucl magn ,F F q F  (5) where q is magnetic interaction vector given by: q2  1  (EM)  sin 2, (6) where  is the angle between magnetization M and scattering vector E. For polycrystalline cubic samples in the absence of external magnetic field only an average value of q 2 is equal to 2 av 2/3q  for all reflections [10]. If, however, the magnetization is aligned along the scattering vector then q 2  0; the magnetic scattering is effectively extinguished and 2 2 tot nucl F F . In our case, magnetic field was directed normally to scattering vector. Therefore, q 2  1. Thus, one can write: 2 2 2 tot nucl magn ( ) 2 /3,F F F  H 0 (7) 2 2 2 tot nucl magn ( ) ,F F F  H E (8) 2 2 2 2 tot tot tot magn ( ) ( ) ( ) /3.F F F F     H E H 0 (9) The intensities of the odd peaks depend only upon the magnetic mo- ments at the Mn sites whereas the intensities of the even superlattice peaks depend upon the difference in the magnetic moments localized at the Mn and Fe sites [14]. Figures 6 and 7 show the effect of polarizing magnetic field on the ND spectra of Fe51.6Mn17.8Ga30.6 and Fe50.1Mn22.7Ga27.2 alloys taken at T  100 K. It is seen that magnetic ordering due to external magnetic field causes increase in the intensities of superlattice diffraction peaks related to L21-phase of Fe51.6Mn17.8Ga30.6 alloy as well as to L21- and L12- phases of Fe50.1Mn22.7Ga27.2 alloy. For magnetic scattering, the structure amplitudes in Eqs. (7)—(9) are written in terms of magnetic scattering length p. The p is related to the atomic moment  (in Bohr magnetons B) by the equation: 0.269 ,p f  (10) where f is the magnetic form factor correction at the angle of reflec- tion [14]. The magnetic form factor corrections f for the Fe and Mn atoms at 2  41.3 (4sin/  1.85 Å1) are equal to 0.8 and 0.75, re- spectively [15, 16]. NEUTRON DIFFRACTION STUDY OF Fe2MnGa HEUSLER ALLOYS 63 Taking into account the magnetic contribution to (111) superlattice reflection of the ND spectra of Fe2MnGa alloy at T  100 K and H  50 kOe [I(111)/I(220)  0.0278 for Fe50.1Mn22.7Ga27.2 and 0.0294 for Fig. 6. Magnetic contribution to ND spectrum of Fe51.6Mn17.8Ga30.6 alloy taken at T  100 K and H  50 kOe (circles, left scale). ND spectrum at T  100 K and H  0 T is shown by line (right scale). Fig. 7. Magnetic contribution to the ND spectrum of Fe50.1Mn22.7Ga27.2 alloy taken at T  100 K and H  50 kOe (circles, left scale). ND spectrum at T  100 K and H  0 Oe is shown by line (right scale). 64 Y. V. KUDRYAVTSEV, A. O. PEREKOS, I. N. GLAVATSKYY et al. Fe51.6Mn17.8Ga30.6], the magnetic moment located at the Mn sites of L21- phase of these alloys was evaluated: Mn  1.43B and Mn  1.47B, re- spectively. Considering magnetic contribution to (200) superlattice reflection in the ND spectrum of Fe50.1Mn22.7Ga27.2 alloy (Mn—Fe  0.84B) the magnetic moment located at the Fe sites of L21-phase was also es- timated: Fe  0.59B. The obtained values of Mn and Fe somewhat dif- fer from calculated ones ( calc. Mn 2.48 B   and calc Fe 0.23 B    ) [17]. Fur- thermore, the experimental practically saturation magnetization val- ue for Fe50.1Mn22.7Ga27.2 alloy at T  4.2 K and H  50 kOe (see Fig. 5) was found to be Msat.  46.4 emu/g or 2.00 B/f.u. Taking into account the content of the L12 and L21 phases in Fe50.1Mn22.7Ga27.2 alloy as well as calculated magnetization values of these phases ( 1 calc 2 2.011 L   B/f.u. and 2 calc 1 6.11 L   B/f.u. [17]) perfectly ordered Fe50.1Mn22.7Ga27.2 alloy should has 1 2 calc 2 1 3.96 L L  B/f.u. The observed difference between experimental and calculated magnetic properties of Fe50.1Mn22.7Ga27.2 alloy can be concerned with significant atomic disorder in it. Some of slightly off-stoichiometric Fe2MnGa alloys, which contain L21 (or B2) phase, exhibit a martensitic transformation in the temper- ature range 50  T  250 K. This phase transition is accompanied with significant changes in resistivity and magnetization [1—5]. However, variation of the temperature within 100  T  580 K range does not lead to any qualitative changes in the ND spectra of Fe50.1Mn22.7Ga27.2 alloy–the ordinary temperature shift of the diffraction peaks is ob- served (see Figs. 2 and 3). Lack of any visible peculiarities in the tem- perature dependences of resistivity for the Fe50.1Mn22.7Ga27.2 and Fe51.6Mn17.8Ga30.6 (see Fig. 8) alloys in a 80  T  400 K temperature range (besides usual temperature dependence with positive tempera- ture coefficient of resistance) together with temperature dependence of ND spectra allows us to conclude that the martensitic transfor- mation does not take place in these alloys. At the same time, both Fe50.1Mn22.7Ga27.2 and Fe51.6Mn17.8Ga30.6 alloys contain L21-phase. Thus, one can conclude that FM order of this phase at low temperatures (see Figs. 4 and 5) is an intrinsic property of L21- phase and not caused by any martensitic transformation. 4. CONCLUSIONS 1. The degree of atomic order in the investigated Fe2MnGa alloys was experimentally estimated. As shown, a long-term annealing did not result in formation of well-ordered alloys. 2. Magnetic moments localized at the Mn and Fe sites of Fe2MnGa al- loys were experimentally evaluated from neutron scattering data. NEUTRON DIFFRACTION STUDY OF Fe2MnGa HEUSLER ALLOYS 65 Some disagreement between experimental and calculated values of magnetic moments located at the Mn and Fe sites can be explained by noticeable atomic disorder in the prepared Fe2MnGa alloys. 3. If antiferromagnetic order is really formed in L12-phase containing Fe50.1Mn22.7Ga27.2 alloy, this order has not collinear character. This work was supported by the project No. 1050/20.15 of the Na- tional program ‘The development of the technologies for multilayered nanostructures and composite oxide materials fabrication as magnetic sensors’. REFERENCES 1. W. Zhu, E. K. Liu, L. Feng, X. D. Tang, J. L. Chen, G. H. Wu, H. Y. Liu, F. B. Meng, and H. Z. Luo, Appl. Phys. Lett., 95: 222512-1 (2009). 2. T. Omori, K. Watanabe, R. Y. Umetsu, R. Kinuma, and K. Ishida, Appl. Phys. Lett., 95: 082508-1 (2009). 3. T. Omori, K. Watanabe, X. Xu, R. Y. Umetsu, R. Kainuma, and K. Ishida, Scr. Mater., 64: 669 (2011). 4. C. A. Jenkins, A. Scholl, R. Kainuma, H. J. Elmers, and T. Omori, Appl. Phys. Lett., 100: 032401-1 (2012). 5. V. V. Khovaylo, T. Omori, K. Endo, X. Xu, R. Kainuma, A. P. Kazakov, Fig. 8. Temperature dependences of the R(T)/R(T  300 K) dependences nor- malized with respect resistance at T  300 K for Fe2MnGa alloys obtained for cooling and warming regimes. 66 Y. V. KUDRYAVTSEV, A. O. PEREKOS, I. N. GLAVATSKYY et al. V. N. Prudnikov, E. A. Gan’shina, A. I. Novikov, Yu. O. Mikhailovsky, D. E. Mettus, and A. B. Granovsky, Phys. Rev. B, 87: 174410-1 (2013). 6. X. D. Tang, W. H. Wang, W. Zhu, E. K. Liu, G. H. Wu, F. B. Meng, H. Y. Liu, and H. Z. Luo, Appl. Phys. Lett., 97: 242513-1 (2010). 7. X. D. Tang, W. H. Wang, G. H. Wu, F. B. Meng, H. Y. Liu, and H. Z. Luo, Appl. Phys. Lett., 99: 222506-1 (2011). 8. T. Gasi, A. K. Nayak, M. Niklas, and C. Felser, J. Appl. Phys., 113: 17E301-1 (2013). 9. C. W. Shih, X. G. Zhao, H. W. Chang, W. C. Chang, and Z. D. Zhang, J. Alloys Compd., 570: 14 (2013). 10. K. R. A. Ziebeck and P. J. Webster, J. Phys. Chem. Solids, 35: 1 (1974). 11. D. J. Hughes, Neutron Optics (New York: Interscience Publishers: 1954), p. 136. 12. S. Singh, K. R. A. Ziebeck, E. Suard, P. Rajput, S. Bhardwaj, A. M. Awasthi, and S. R. Barman, Appl. Phys. Lett., 101: 171904-1 (2012). 13. M. A. Krivoglaz and A. A. Smirnov, Teoriya Uporyadochivayushchikhsya Splavov [Theory of Ordering Alloys] (Moscow: State Publisher of Physical and Mathematical Literature: 1958), p. 388 (in Russian). 14. P. J. Webster, J. Phys. Chem. Solids, 32: 1221 (1971). 15. Y. A. Izyumov and R. P. Ozerov, Magnitnaya Neitronografiya [Magnetic Neu- tronography] (Moscow: Fizmatgiz: 1966), p. 532 (in Russian). 16. L. Corliss, N. Elliot, and J. Hastings, Phys. Rev., 104: 924 (1956). 17. V. Kudryavtsev, N. V. Uvarov, V. N. Iermolenko, I. N. Glavatskyy, and J. Dubowik, Acta Mater., 60: 4780 (2012). 18. E. C. Passamani, C. Larica, G. Viali, J. R. Andrez, A. Y. Takeuchi, V. P. Nascimento, V. A. P. Rodrigez, C. Rojas-Ayala, and E. Baggio-Saitovich, J. Alloys Compd., 628: 164 (2015). << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E> /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice