Concept of Smart Electrohydraulic Press for Impulse Sheet Forming

Electrohydraulic impulse sheet forming (EHF) method proved its high efficiency at pilot, small-batch, and middle-scale production conditions. As the latest achievement, multielectrode discharge blocks provide effective forming of the middle and large size sheet parts. However, wide application of EH...

Full description

Saved in:
Bibliographic Details
Published in:Металлофизика и новейшие технологии
Date:2016
Main Authors: Knyazyev, M.K., Beerwald, Ch.
Format: Article
Language:English
Published: Інститут металофізики ім. Г.В. Курдюмова НАН України 2016
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/112642
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Concept of Smart Electrohydraulic Press for Impulse Sheet Forming / M.K. Knyazyev, Ch. Beerwald // Металлофизика и новейшие технологии. — 2016. — Т. 38, № 12. — С. 1669-1680. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112642
record_format dspace
spelling Knyazyev, M.K.
Beerwald, Ch.
2017-01-24T21:03:34Z
2017-01-24T21:03:34Z
2016
Concept of Smart Electrohydraulic Press for Impulse Sheet Forming / M.K. Knyazyev, Ch. Beerwald // Металлофизика и новейшие технологии. — 2016. — Т. 38, № 12. — С. 1669-1680. — Бібліогр.: 9 назв. — англ.
1024-1809
DOI: 10.15407/mfint.38.12.1669
PACS: 07.07.Tw, 07.10.Pz, 07.35.+k, 52.80.Wq, 62.50.-p, 62.50.Ef, 81.20.Hy, 81.40.Vw
https://nasplib.isofts.kiev.ua/handle/123456789/112642
Electrohydraulic impulse sheet forming (EHF) method proved its high efficiency at pilot, small-batch, and middle-scale production conditions. As the latest achievement, multielectrode discharge blocks provide effective forming of the middle and large size sheet parts. However, wide application of EHF technology in industry is limited mainly by two problems: instability of impulse pressure fields and lack of literature as well as skilled EHF specialists. Now the problem of instability is solved by a qualified EHF specialist with intermediate disclosing of tooling, inspection of intermediate shapes of blank, making corrections in loading diagram (electrodes’ connections), and setting of new level of discharge energies. New approach to this problem includes solutions based on intellectual computer numerical control of EHF equipment: monitoring of intermediate shape of sheet blank after each discharge and making corrections of loading parameters for the next discharge till the final shape of part. Intermediate shape can be determined by measurements with special sensors built in a die in characteristic places (points). Another subsystem should analyse position of several principal segments of blank, compare them with total strategy of forming procedure for a definite type of sheet part, reveal those places, which need higher pressure to harmonise forming process, and give this information to the subsystem controlling a multicircuit current generator for optimised configuration of activated electrodes and energy level, thus, determining new pressure loading diagram for the next discharge. Now, the tests for blank shape measuring system are planned to solve this principal problem for realisation of the submitted concept. In addition, principal design solutions for multicircuit current generator with special unit for reconnections of electrodes are in work.
Спосіб електрогідравлічного імпульсного листового штампування (ЕГШ) довів високу ефективність в умовах пробного, дрібносерійного і середньосерійного виробництва. Новітнє досягнення, – багатоелектродні розрядні блоки, – забезпечує ефективне штампування листових деталів середніх і великих розмірів. Однак широке застосування технології ЕГШ у промисловості обмежується в основному двома проблемами: нестабільністю імпульсних полів тиску і недостачею літератури та кваліфікованих спеціялістів у галузі ЕГШ. У теперішній час проблема нестабільности розв’язується кваліфікованим спеціялістом ЕГШ шляхом розкриття оснащення, оглядом проміжних форм заготованки, внесенням корекцій у схему навантаження (схеми підключення електрод) і встановленням нових рівнів енергії розрядів. Новий підхід до розв’язання цієї проблеми передбачає рішення, які ґрунтуються на використанні інтелектуальної комп’ютерної числової системи керування обладнанням ЕГШ: виявлення проміжної форми листової заготованки після кожного розряду і внесення корекцій у параметри навантаження для кожного наступного розряду до одержання кінцевої форми деталю. Проміжну форму можна визначити шляхом міряння спеціяльними давачами, яких вбудовано в штамп у характерних місцях (точках). Друга підсистема має аналізувати положення декількох принципових ділянок заготованки, порівнювати їх із загальною стратегією процесу штампування для певного типу деталів, виявляти ті ділянки, які потребують більш високий тиск для гармонізації процесу формоутворення, і надавати цю інформацію в підсистеми, які керують багатоконтурним ґенератором струмів для утворення оптимізованої конфіґурації підключених електрод і рівня енергії, таким чином, визначаючи нову схему навантаження для наступного розряду. У теперішній час заплановано досліди по системі міряння форми заготованки для розв’язання цієї принципової проблеми в реалізації запропонованої концепції. Також опрацьовуються принципові конструкторські рішення для багатоконтурного ґенератора імпульсних струмів зі спеціяльним пристроєм для перемикання електрод.
Способ электрогидравлической импульсной листовой штамповки (ЭГШ) доказал высокую эффективность в условиях пробного, мелкосерийного и среднесерийного производства. Новейшее достижение, – многоэлектродные разрядные блоки, – обеспечивает эффективную штамповку листовых деталей средних и больших размеров. Однако широкое применение технологии ЭГШ в промышленности ограничивается в основном двумя проблемами: нестабильностью импульсных полей давления и недостатком литературы и квалифицированных специалистов в области ЭГШ. В настоящее время проблема нестабильности решается квалифицированным специалистом ЭГШ путём раскрытия оснастки, осмотром промежуточных форм заготовки, внесением коррекций в схему нагружения (схемы подсоединения электродов) и установлением новых уровней энергии разрядов. Новый подход к решению этой проблемы предусматривает решения, основанные на применении интеллектуальной компьютерной числовой системы управления оборудованием ЭГШ: определение промежуточной формы листовой заготовки после каждого разряда и внесение коррекций в параметры нагружения для каждого последующего разряда до получения окончательной формы детали. Промежуточную форму можно определить путём измерения специальными датчиками, встроенными в штамп в характерных местах (точках). Вторая подсистема должна анализировать положение нескольких принципиальных участков заготовки, сравнивать их с общей стратегией процесса штамповки для определённого типа деталей, выявлять те участки, которые нуждаются в более высоком давлении для гармонизации процесса формообразования, и подавать эту информацию в подсистемы, которые управляют многоконтурным генератором токов для создания оптимизированной конфигурации подключённых электродов и уровня энергии, таким образом, определяя новую схему нагружения для следующего разряда. В настоящее время запланированы опыты по системе измерения формы заготовки для решения этой принципиальной проблемы в реализации предлагаемой концепции. Также прорабатываются принципиальные конструкторские решения для многоконтурного генератора импульсных токов со специальным устройством для переключения электродов.
en
Інститут металофізики ім. Г.В. Курдюмова НАН України
Металлофизика и новейшие технологии
Физика прочности и пластичности
Concept of Smart Electrohydraulic Press for Impulse Sheet Forming
Концепція інтелектуального електрогідравлічного преса для імпульсного листового штампування
Концепция интеллектуального электрогидравлического пресса для импульсной листовой штамповки
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Concept of Smart Electrohydraulic Press for Impulse Sheet Forming
spellingShingle Concept of Smart Electrohydraulic Press for Impulse Sheet Forming
Knyazyev, M.K.
Beerwald, Ch.
Физика прочности и пластичности
title_short Concept of Smart Electrohydraulic Press for Impulse Sheet Forming
title_full Concept of Smart Electrohydraulic Press for Impulse Sheet Forming
title_fullStr Concept of Smart Electrohydraulic Press for Impulse Sheet Forming
title_full_unstemmed Concept of Smart Electrohydraulic Press for Impulse Sheet Forming
title_sort concept of smart electrohydraulic press for impulse sheet forming
author Knyazyev, M.K.
Beerwald, Ch.
author_facet Knyazyev, M.K.
Beerwald, Ch.
topic Физика прочности и пластичности
topic_facet Физика прочности и пластичности
publishDate 2016
language English
container_title Металлофизика и новейшие технологии
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
format Article
title_alt Концепція інтелектуального електрогідравлічного преса для імпульсного листового штампування
Концепция интеллектуального электрогидравлического пресса для импульсной листовой штамповки
issn 1024-1809
url https://nasplib.isofts.kiev.ua/handle/123456789/112642
citation_txt Concept of Smart Electrohydraulic Press for Impulse Sheet Forming / M.K. Knyazyev, Ch. Beerwald // Металлофизика и новейшие технологии. — 2016. — Т. 38, № 12. — С. 1669-1680. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT knyazyevmk conceptofsmartelectrohydraulicpressforimpulsesheetforming
AT beerwaldch conceptofsmartelectrohydraulicpressforimpulsesheetforming
AT knyazyevmk koncepcíâíntelektualʹnogoelektrogídravlíčnogopresadlâímpulʹsnogolistovogoštampuvannâ
AT beerwaldch koncepcíâíntelektualʹnogoelektrogídravlíčnogopresadlâímpulʹsnogolistovogoštampuvannâ
AT knyazyevmk koncepciâintellektualʹnogoélektrogidravličeskogopressadlâimpulʹsnoilistovoištampovki
AT beerwaldch koncepciâintellektualʹnogoélektrogidravličeskogopressadlâimpulʹsnoilistovoištampovki
first_indexed 2025-12-02T04:15:07Z
last_indexed 2025-12-02T04:15:07Z
_version_ 1850861568807403520
description Electrohydraulic impulse sheet forming (EHF) method proved its high efficiency at pilot, small-batch, and middle-scale production conditions. As the latest achievement, multielectrode discharge blocks provide effective forming of the middle and large size sheet parts. However, wide application of EHF technology in industry is limited mainly by two problems: instability of impulse pressure fields and lack of literature as well as skilled EHF specialists. Now the problem of instability is solved by a qualified EHF specialist with intermediate disclosing of tooling, inspection of intermediate shapes of blank, making corrections in loading diagram (electrodes’ connections), and setting of new level of discharge energies. New approach to this problem includes solutions based on intellectual computer numerical control of EHF equipment: monitoring of intermediate shape of sheet blank after each discharge and making corrections of loading parameters for the next discharge till the final shape of part. Intermediate shape can be determined by measurements with special sensors built in a die in characteristic places (points). Another subsystem should analyse position of several principal segments of blank, compare them with total strategy of forming procedure for a definite type of sheet part, reveal those places, which need higher pressure to harmonise forming process, and give this information to the subsystem controlling a multicircuit current generator for optimised configuration of activated electrodes and energy level, thus, determining new pressure loading diagram for the next discharge. Now, the tests for blank shape measuring system are planned to solve this principal problem for realisation of the submitted concept. In addition, principal design solutions for multicircuit current generator with special unit for reconnections of electrodes are in work. Спосіб електрогідравлічного імпульсного листового штампування (ЕГШ) довів високу ефективність в умовах пробного, дрібносерійного і середньосерійного виробництва. Новітнє досягнення, – багатоелектродні розрядні блоки, – забезпечує ефективне штампування листових деталів середніх і великих розмірів. Однак широке застосування технології ЕГШ у промисловості обмежується в основному двома проблемами: нестабільністю імпульсних полів тиску і недостачею літератури та кваліфікованих спеціялістів у галузі ЕГШ. У теперішній час проблема нестабільности розв’язується кваліфікованим спеціялістом ЕГШ шляхом розкриття оснащення, оглядом проміжних форм заготованки, внесенням корекцій у схему навантаження (схеми підключення електрод) і встановленням нових рівнів енергії розрядів. Новий підхід до розв’язання цієї проблеми передбачає рішення, які ґрунтуються на використанні інтелектуальної комп’ютерної числової системи керування обладнанням ЕГШ: виявлення проміжної форми листової заготованки після кожного розряду і внесення корекцій у параметри навантаження для кожного наступного розряду до одержання кінцевої форми деталю. Проміжну форму можна визначити шляхом міряння спеціяльними давачами, яких вбудовано в штамп у характерних місцях (точках). Друга підсистема має аналізувати положення декількох принципових ділянок заготованки, порівнювати їх із загальною стратегією процесу штампування для певного типу деталів, виявляти ті ділянки, які потребують більш високий тиск для гармонізації процесу формоутворення, і надавати цю інформацію в підсистеми, які керують багатоконтурним ґенератором струмів для утворення оптимізованої конфіґурації підключених електрод і рівня енергії, таким чином, визначаючи нову схему навантаження для наступного розряду. У теперішній час заплановано досліди по системі міряння форми заготованки для розв’язання цієї принципової проблеми в реалізації запропонованої концепції. Також опрацьовуються принципові конструкторські рішення для багатоконтурного ґенератора імпульсних струмів зі спеціяльним пристроєм для перемикання електрод. Способ электрогидравлической импульсной листовой штамповки (ЭГШ) доказал высокую эффективность в условиях пробного, мелкосерийного и среднесерийного производства. Новейшее достижение, – многоэлектродные разрядные блоки, – обеспечивает эффективную штамповку листовых деталей средних и больших размеров. Однако широкое применение технологии ЭГШ в промышленности ограничивается в основном двумя проблемами: нестабильностью импульсных полей давления и недостатком литературы и квалифицированных специалистов в области ЭГШ. В настоящее время проблема нестабильности решается квалифицированным специалистом ЭГШ путём раскрытия оснастки, осмотром промежуточных форм заготовки, внесением коррекций в схему нагружения (схемы подсоединения электродов) и установлением новых уровней энергии разрядов. Новый подход к решению этой проблемы предусматривает решения, основанные на применении интеллектуальной компьютерной числовой системы управления оборудованием ЭГШ: определение промежуточной формы листовой заготовки после каждого разряда и внесение коррекций в параметры нагружения для каждого последующего разряда до получения окончательной формы детали. Промежуточную форму можно определить путём измерения специальными датчиками, встроенными в штамп в характерных местах (точках). Вторая подсистема должна анализировать положение нескольких принципиальных участков заготовки, сравнивать их с общей стратегией процесса штамповки для определённого типа деталей, выявлять те участки, которые нуждаются в более высоком давлении для гармонизации процесса формообразования, и подавать эту информацию в подсистемы, которые управляют многоконтурным генератором токов для создания оптимизированной конфигурации подключённых электродов и уровня энергии, таким образом, определяя новую схему нагружения для следующего разряда. В настоящее время запланированы опыты по системе измерения формы заготовки для решения этой принципиальной проблемы в реализации предлагаемой концепции. Также прорабатываются принципиальные конструкторские решения для многоконтурного генератора импульсных токов со специальным устройством для переключения электродов.