Dynamic Response of Gradient Foams

The Voronoi-type density-gradient foams with three layers are numerically simulated, in order to study their dynamic response. The focus of the study is not only on the energy absorption and the distal stress of the gradient foam, but also the impact stress. The results obtained show that reduc...

Full description

Saved in:
Bibliographic Details
Published in:Проблемы прочности
Date:2014
Main Authors: Hu, L.L., Liu, Y.
Format: Article
Language:English
Published: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2014
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/112705
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Dynamic Response of Gradient Foams / L.L. Hu, Y. Liu // Проблемы прочности. — 2014. — № 2. — С. 172-177. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112705
record_format dspace
spelling Hu, L.L.
Liu, Y.
2017-01-26T18:29:40Z
2017-01-26T18:29:40Z
2014
Dynamic Response of Gradient Foams / L.L. Hu, Y. Liu // Проблемы прочности. — 2014. — № 2. — С. 172-177. — Бібліогр.: 9 назв. — англ.
0556-171X
https://nasplib.isofts.kiev.ua/handle/123456789/112705
539.4
The Voronoi-type density-gradient foams with three layers are numerically simulated, in order to study their dynamic response. The focus of the study is not only on the energy absorption and the distal stress of the gradient foam, but also the impact stress. The results obtained show that reduction of both the initial impact peak stress, and the early energy absorption of the gradient foam can be privided by reducing density of the first layer. The undesirable effect on the energy absorption can be alleviated by diminishing the thickness of the first layer. The difference between densities of the first two layers density should be limited to a certain range to avoid the peak stress appearing in the second layer. A weak distal layer can reduce the distal stress of the foam under high-velocity impact, while a high density gradient between the last two layers will result in the early increase of the distal stress under moderate-velocity impact
С помощью численного метода исследованы динамические характеристики градиентных трехслойных пеноматериалов типа Вороного. Исследованы поглощение энергии, дистальные напряжения градиентного пеноматериала и напряжения при ударе. Установлено, что начальное максимальное напряжение при ударе и преждевременное поглощение энергии градиентного пеноматериала уменьшаются при низкой прочности первого слоя. Нежелательное влияние на поглощение энергии можно смягчить путем уменьшения толщины первого слоя. Различие между плотностью первых двух слоев необходимо контролировать в рамках предельного диапазона, чтобы избежать возникновения максимального напряжения во втором слое. Слабый дистальный слой может способствовать снижению дистального напряжения пеноматериала при высокой скорости удара, тогда как значительный градиент плотностей последних двух слоев приводит к преждевременному увеличению дистального напряжения при средней скорости удара.
За допомогою числового методу досліджено динамічні характеристики градієнтних тришарових піноматеріалів типу Вороного. Досліджено поглинання енергії, дистальні напруження градієнтного піноматеріалу і напруження під час удару. Установлено,що початкове максимальне напруження під час удару і передчасне поглинання енергії градієнтного піноматеріалу зменшуються за низької міцності першого шару. Небажаний вплив на поглинання енергії можна зм’якшити шляхом зменшення товщини першого шару. Різницю між щільністю перших двох шарів необхідно контролювати у межах граничного діапазону, щоб запобігти виникненню максимального напруження у другому шарі. Слабкий дистальний шар може сприяти зниженню дистального напруження піноматеріалу за високої швидкості удару, в той час як значний градієнт щільностей останніх двох шарів призведе до передчасного збільшення дистального напруження при середній швидкості удару.
The authors would like to thank the support from the National Natural Science Foundation of China under Grant Nos. 11172335 and 10802100. The support from the Fundamental Research Funds for the Central Universities No. 13lgzd02 is also gratefully acknowledged.
en
Інститут проблем міцності ім. Г.С. Писаренко НАН України
Проблемы прочности
Научно-технический раздел
Dynamic Response of Gradient Foams
Динамическая характеристика градиентных пеноматериалов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Dynamic Response of Gradient Foams
spellingShingle Dynamic Response of Gradient Foams
Hu, L.L.
Liu, Y.
Научно-технический раздел
title_short Dynamic Response of Gradient Foams
title_full Dynamic Response of Gradient Foams
title_fullStr Dynamic Response of Gradient Foams
title_full_unstemmed Dynamic Response of Gradient Foams
title_sort dynamic response of gradient foams
author Hu, L.L.
Liu, Y.
author_facet Hu, L.L.
Liu, Y.
topic Научно-технический раздел
topic_facet Научно-технический раздел
publishDate 2014
language English
container_title Проблемы прочности
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
format Article
title_alt Динамическая характеристика градиентных пеноматериалов
description The Voronoi-type density-gradient foams with three layers are numerically simulated, in order to study their dynamic response. The focus of the study is not only on the energy absorption and the distal stress of the gradient foam, but also the impact stress. The results obtained show that reduction of both the initial impact peak stress, and the early energy absorption of the gradient foam can be privided by reducing density of the first layer. The undesirable effect on the energy absorption can be alleviated by diminishing the thickness of the first layer. The difference between densities of the first two layers density should be limited to a certain range to avoid the peak stress appearing in the second layer. A weak distal layer can reduce the distal stress of the foam under high-velocity impact, while a high density gradient between the last two layers will result in the early increase of the distal stress under moderate-velocity impact С помощью численного метода исследованы динамические характеристики градиентных трехслойных пеноматериалов типа Вороного. Исследованы поглощение энергии, дистальные напряжения градиентного пеноматериала и напряжения при ударе. Установлено, что начальное максимальное напряжение при ударе и преждевременное поглощение энергии градиентного пеноматериала уменьшаются при низкой прочности первого слоя. Нежелательное влияние на поглощение энергии можно смягчить путем уменьшения толщины первого слоя. Различие между плотностью первых двух слоев необходимо контролировать в рамках предельного диапазона, чтобы избежать возникновения максимального напряжения во втором слое. Слабый дистальный слой может способствовать снижению дистального напряжения пеноматериала при высокой скорости удара, тогда как значительный градиент плотностей последних двух слоев приводит к преждевременному увеличению дистального напряжения при средней скорости удара. За допомогою числового методу досліджено динамічні характеристики градієнтних тришарових піноматеріалів типу Вороного. Досліджено поглинання енергії, дистальні напруження градієнтного піноматеріалу і напруження під час удару. Установлено,що початкове максимальне напруження під час удару і передчасне поглинання енергії градієнтного піноматеріалу зменшуються за низької міцності першого шару. Небажаний вплив на поглинання енергії можна зм’якшити шляхом зменшення товщини першого шару. Різницю між щільністю перших двох шарів необхідно контролювати у межах граничного діапазону, щоб запобігти виникненню максимального напруження у другому шарі. Слабкий дистальний шар може сприяти зниженню дистального напруження піноматеріалу за високої швидкості удару, в той час як значний градієнт щільностей останніх двох шарів призведе до передчасного збільшення дистального напруження при середній швидкості удару.
issn 0556-171X
url https://nasplib.isofts.kiev.ua/handle/123456789/112705
citation_txt Dynamic Response of Gradient Foams / L.L. Hu, Y. Liu // Проблемы прочности. — 2014. — № 2. — С. 172-177. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT hull dynamicresponseofgradientfoams
AT liuy dynamicresponseofgradientfoams
AT hull dinamičeskaâharakteristikagradientnyhpenomaterialov
AT liuy dinamičeskaâharakteristikagradientnyhpenomaterialov
first_indexed 2025-11-24T11:37:43Z
last_indexed 2025-11-24T11:37:43Z
_version_ 1850845613170622464
fulltext UDC 539.4 Dynamic Response of Gradient Foams L. L. Hu1 and Y. Liu Department of Applied Mechanics & Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, China 1 hulingl@mail.sysu.edu.cn ÓÄÊ 539.4 Äèíàìè÷åñêàÿ õàðàêòåðèñòèêà ãðàäèåíòíûõ ïåíîìàòåðèàëîâ Ë. Ë. Õó1, É. Ëèó Ôàêóëüòåò ïðèêëàäíîé ìåõàíèêè è ìàøèíîñòðîåíèÿ, êàôåäðà ìàøèíîñòðîåíèÿ, Óíèâåðñèòåò èì. Ñóíü ßòñåíà, ×óàí÷æîó, Êèòàé Ñ ïîìîùüþ ÷èñëåííîãî ìåòîäà èññëåäîâàíû äèíàìè÷åñêèå õàðàêòåðèñòèêè ãðàäèåíòíûõ òðåõñëîéíûõ ïåíîìàòåðèàëîâ òèïà Âîðîíîãî. Èññëåäîâàíû ïîãëîùåíèå ýíåðãèè, äèñòàëüíûå íàïðÿæåíèÿ ãðàäèåíòíîãî ïåíîìàòåðèàëà è íàïðÿæåíèÿ ïðè óäàðå. Óñòàíîâëåíî, ÷òî íà÷àëü- íîå ìàêñèìàëüíîå íàïðÿæåíèå ïðè óäàðå è ïðåæäåâðåìåííîå ïîãëîùåíèå ýíåðãèè ãðàäèåíò- íîãî ïåíîìàòåðèàëà óìåíüøàþòñÿ ïðè íèçêîé ïðî÷íîñòè ïåðâîãî ñëîÿ. Íåæåëàòåëüíîå âëèÿíèå íà ïîãëîùåíèå ýíåðãèè ìîæíî ñìÿã÷èòü ïóòåì óìåíüøåíèÿ òîëùèíû ïåðâîãî ñëîÿ. Ðàçëè÷èå ìåæäó ïëîòíîñòüþ ïåðâûõ äâóõ ñëîåâ íåîáõîäèìî êîíòðîëèðîâàòü â ðàìêàõ ïðå- äåëüíîãî äèàïàçîíà, ÷òîáû èçáåæàòü âîçíèêíîâåíèÿ ìàêñèìàëüíîãî íàïðÿæåíèÿ âî âòîðîì ñëîå. Ñëàáûé äèñòàëüíûé ñëîé ìîæåò ñïîñîáñòâîâàòü ñíèæåíèþ äèñòàëüíîãî íàïðÿæåíèÿ ïåíîìàòåðèàëà ïðè âûñîêîé ñêîðîñòè óäàðà, òîãäà êàê çíà÷èòåëüíûé ãðàäèåíò ïëîòíîñòåé ïîñëåäíèõ äâóõ ñëîåâ ïðèâîäèò ê ïðåæäåâðåìåííîìó óâåëè÷åíèþ äèñòàëüíîãî íàïðÿæåíèÿ ïðè ñðåäíåé ñêîðîñòè óäàðà. Êëþ÷åâûå ñëîâà: ãðàäèåíòíûé ïåíîìàòåðèàë, óäàð, ìàêñèìàëüíîå íàïðÿæåíèå, äèñòàëüíîå íàïðÿæåíèå, ïîãëîùåíèå ýíåðãèè. Introduction. Metallic foams have been developed in recent years and are growing in use as new engineering structural materials. The advantages of these ultra-light metal materials are not only the high relative stiffness and strength, but also the effective energy absorption during accidental impacts while limiting the crushing force [1–3]. It has been recognized that the mechanical properties of the foams are dominated by the relative density [1]. Moreover, the impact velocity has also proved to play an important role in controlling the mechanical properties of cellular materials [3–5]. In the past few years, research interest has been triggered in studying various graded cellular materials. It is shown that a density gradient could significantly change the deformation mode and the energy absorption of cellular structures [6]. Experimental results show that placing the hardest layer as the first impacted layer and the weakest layer as the last layer has some benefits in terms of maximum energy absorption with a minimum force level transmitted to the protected structures under the high-velocity impact [7]. The energy absorption capacity of the double-layer foam cladding under blast load is analytically derived based on a rigid-perfectly plastic-locking (RPPL) foam model [3], in which the gradient foam is assumed to deform in the “shock wave” mode until entirely absorbing the blast energy [8]. © L. L. HU, Y. LIU, 2014 172 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 2 In the previous studies, insufficient attention was paid to the impact peak stress of gradient foams, which is important in case of such car accidents, as the car-to-passenger or car-to-car collisions. The damage of the bumped object depends on the peak stress during impact and on the energy absorption value: the former is required to be low and the latter – high. However, both of these values increase with the foam density. The present paper is focused on the impact peak stress, the energy absorption and the distal stress of the gradient foam. A method is proposed to relief the conflict between the impact peak stress and the energy absorption in designing the gradient foam. The results on the distal stress alert the deficiency of the design method on the gradient foams reported in literature. Numerical Models. To study the dynamic properties of a graded cellular material, a finite element model is constructed using the ANSYS/LS-DYNA software. Three layers of the Voronoi-type foam with random cells are constructed with the different density of each layer. It is known that both the impact stress, and the distal stress of cellular materials increase with the material density [5, 9]. Thus, four kinds of a gradient foam with the strongest foam in the middle layer are considered in the present study, as listed in Table 1. The average relative density � � �r s� * of the four kinds of gradient foams is 0.098, where � * and �s are the density of the foam and the base material, respectively. Moreover, a nongraded foam (N) with the relative density of 0.098 is also studied for comparison. The cell wall material is assumed to be elastic/perfectly plastic with E � 68 GPa, � ys � 130 MPa, �s � 2700 kg/m3, and � � 0 3. , where E and � are the Young modulus and Poisson’s ratio of the base material, respectively. In simulations the foam block is placed on a fixed rigid base at one end (the distal end) and crushed by a rigid plate with a constant crushing velocity V (75 or 120 m/s) at the other end (the impact end). The first layer of the foams is always at the impact end and the third layer is always at the distal end. T a b l e 1 Physical Parameters and the Peak Stress of Foams Foam Layer Thickness (mm) Relative density Peak stress (MPa) 120 m/s 75 m/s A 1st 2nd 3rd 20 20 20 0.099 0.119 0.075 11.28 7.80 6.30 3.83 B 1st 2nd 3rd 20 20 20 0.075 0.119 0.099 9.82 8.57 3.62 2.91 C 1st 2nd 3rd 10 40 10 0.055 0.119 0.055 5.57 11.34 1.74 6.18 D 1st 2nd 3rd 10 40 10 0.075 0.114 0.055 7.77 9.56 3.81 4.57 N 60 0.098 11.16 6.19 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 2 173 Dynamic Response of Gradient Foams Results and Discussion. Impact Stress. Due to shock wave and inertia effects, the cells of the foam will collapse layer-by-layer from the impact end to the distal one under the high-velocity impact, such as 120 m/s, which is similar to propagation of a shock wave in a continuum bar. Here we refer to this deformation mode as a “shock wave” mode. Under the moderate-velocity impact, such as 75 m/s, the foams collapse in this “shock- wave” mode in the early crushing stage, while the third layer usually begins to deform during the compression of the second layer, and even is crushed to densification before the second layer deforms completely, especially for the foams with a high density gradient between the last two layers, such as foams A, C, and D. A typical stress–strain curve of the gradient foam is shown in Fig. 1. The stress before densification (i.e., the plateau stress) is important for the energy absorption of the foam, which is dominated by the foam density [1]. Thus, the plateau stage of the gradient foam consists of three parts, as shown in Fig. 1, while the stress level in each part depends on the density of the crushed foam layer. There is a peak of the stress at the initial impact, which may cause the destruction of the crushing objects in the collision accidents. For the gradient foams, the peak stress is expected to occur at the initial instant of the impact or during the crushing of the foam layer with the largest density. Since the strongest foam is placed in the middle layer in the present design, Table 1 lists the peak stress of the foams during the crushing of the first and the second layers, respectively. It is obvious that the initial impact peak stress (the first peak stress) can be obviously reduced by decreasing the foam density in the first layer. However, provided the difference between densities of the first and the second layers is large enough, the peak stress occurring in the second layer will exceed the initial one, which occurs in foams C and D, as listed in Table 1. This means that the density of the first layer should be reduced within a limit range for the purpose of reducing the peak stress of the gradient foam. Energy Absorption. Cellular materials are frequently used in the energy absorption devices. Figure 2 plots the variety of the absorbed energy per volume (specific energy) of the foams under study versus strain. It is obvious that the energy absorption of the foams is enhanced by the impact velocity, which is exhibited by the two clusters of the energy curves according to the impact velocity, as shown in Fig. 2. This is due to the inertia effects of the foam microstructure, as discussed in [2, 9]. It is shown in Fig. 2 that the specific energy of the nongraded foam linearly increases with strain due to the steady plateau stress, while the energy absorption of the gradient foams undulates depending on the distribution of the foam density. As compared to a nongraded foam, there is a drop at the early stage of the energy curve for the gradient foams with a weak first layer, such as foams B, C, and D, as shown in Fig. 2. The weaker Fig. 1. A typical stress–strain curve of gradient foam B (impact velocity 120 m/s). 174 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 2 L. L. Hu and Y. Liu the first layer, the steeper the drop. The absorbed energy recovers to the average level, i.e., that of the nongraded foam, at the strain of about 20% for foams C and D with the 10mm thickness of the first layer, and at the strain of about 40% for the foam B with the 20 mm thickness of the first layer, which indicates that the early energy absorption of the gradient foam can be improved by decreasing the thickness of the first weak layer while conserving the buffer function of this layer for reducing the impact peak stress. Distal Stress. When the foams perform as the protecting devices, the stress transferred to the protected object is concentrated in the engineering applications, the level of which can be reflected with the distal stress of the foams during crushing, as shown in Fig. 3. The horizontal axis in Fig. 3 denotes the compressed strain of the foams. It is shown that the curve of the distal stress includes three stages, i.e., the elastic stage, the plateau stage and the densification stage, which is similar to that of the stress at the impact end. It is observed that the response of the distal stress manifests a delay in reference to strain, i.e., it begins at a certain (nonzero) strain, which is related to the propagation of the stress wave within the foam from the impact end to the distal one. By comparing the densities of the gradient foams listed in Table 1 and plotting them in Fig. 3, it is shown that the distal stress level of the gradient foams is dominated by the the last layer density. A weak distal layer can effectively reduce the distal stress of the foam under impact. Under high-velocity impact, such as 120 m/s, the distal stress of the foams increases rapidly after the strain exceeds about 0.8, which is close to the densification strain for the impact stress of the foams, as shown in Fig. 1. It is seen from Fig. 3b that, under the impact of 75 m/s, the densification strain for the distal stress of foams A, C, and D is about 0.6 or much less. By comparing the density of the last layer with that of the second one, as listed in Table 1, it is found that there is a high gradient for the three foams A, C, and D (the density of the last layer is by 37% lower than that of the second one in foam A, by 54% in foam C, by 52% in foam D, and only by 17% in foam B). Under the impact with a moderate velocity, such as 75 m/s, the weak distal layer will be deformed before the second layer is compressed completely due to a high gradient between the last two layers, which leads to the early increase of the distal stress. This is more pronounced for foam C with the highest gradient between the last two layers, the distal stress of which increases at strain about 0.4. More attention should be paid to the early increase in the distal stress in the industry applications, otherwise the protected object may be destroyed. Fig. 2. Dependence of the foam specific energy on strain. ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 2 175 Dynamic Response of Gradient Foams It has been already stated that the RPPL foam model [3] was used in work [7] to design the gradient foam under blast load, in which the gradient foam is assumed to deform in the “shock wave” mode until entirely absorbing the blast energy. However, at the later stage of the foam deformation the impact velocity has dropped down since a part of the blast energy has been absorbed. Consequently, the “shock wave” mode ceases to exist with subsequent premature compression of the distal layer, which means that the RPPL model becomes no longer applicable to this case. Conclusions. The initial impact stress of the gradient foam can be diminished by reducing the density of the first layer. However, the difference in the densities of the first and the second layers should be limited to a certain range; otherwise, the higher peak stress will appear during the crushing of the second layer with a higher density, which is even larger than the one at the initial impact. Adopting a lower density for the first layer is beneficial for the impact stress reduction, but it leads to reduction of the energy absorption of the foams. This undesirable effect on the energy absorption can be effectively reduced by diminishing the thickness of the first layer. A weak distal layer can effectively reduce the plateau level of the foam distal stress under impact, which means a lower stress is transferred to the protected object when the foam is used for the protection devices. However, a high density gradient between the last two layers will cause the distal layer to deform before the front layer is compressed completely under the moderate- or low-velocity impact, which would finally result in an early increase in the distal stress. More attention should be paid to this phenomenon in the industry design, since the early increase in the transferred stress may destroy the object being protected. Acknowledgments. The authors would like to thank the support from the National Natural Science Foundation of China under Grant Nos. 11172335 and 10802100. The support from the Fundamental Research Funds for the Central Universities No. 13lgzd02 is also gratefully acknowledged. Ð å ç þ ì å Çà äîïîìîãîþ ÷èñëîâîãî ìåòîäó äîñë³äæåíî äèíàì³÷í³ õàðàêòåðèñòèêè ãðà䳺íòíèõ òðèøàðîâèõ ï³íîìàòåð³àë³â òèïó Âîðîíîãî. Äîñë³äæåíî ïîãëèíàííÿ åíåð㳿, äèñòàëü- í³ íàïðóæåííÿ ãðà䳺íòíîãî ï³íîìàòåð³àëó ³ íàïðóæåííÿ ï³ä ÷àñ óäàðó. Óñòàíîâëåíî, ùî ïî÷àòêîâå ìàêñèìàëüíå íàïðóæåííÿ ï³ä ÷àñ óäàðó ³ ïåðåä÷àñíå ïîãëèíàííÿ åíåð㳿 ãðà䳺íòíîãî ï³íîìàòåð³àëó çìåíøóþòüñÿ çà íèçüêî¿ ì³öíîñò³ ïåðøîãî øàðó. a b Fig. 3. Distal stress of the foams versus strain under the impact of 120 (a) and 75 m/s (b). 176 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 2 L. L. Hu and Y. Liu Íåáàæàíèé âïëèâ íà ïîãëèíàííÿ åíåð㳿 ìîæíà çì’ÿêøèòè øëÿõîì çìåíøåííÿ òîâ- ùèíè ïåðøîãî øàðó. гçíèöþ ì³æ ù³ëüí³ñòþ ïåðøèõ äâîõ øàð³â íåîáõ³äíî êîíòðî- ëþâàòè ó ìåæàõ ãðàíè÷íîãî ä³àïàçîíó, ùîá çàïîá³ãòè âèíèêíåííþ ìàêñèìàëüíîãî íàïðóæåííÿ ó äðóãîìó øàð³. Ñëàáêèé äèñòàëüíèé øàð ìîæå ñïðèÿòè çíèæåííþ äèñòàëüíîãî íàïðóæåííÿ ï³íîìàòåð³àëó çà âèñîêî¿ øâèäêîñò³ óäàðó, â òîé ÷àñ ÿê çíà÷íèé ãðà䳺íò ù³ëüíîñòåé îñòàíí³õ äâîõ øàð³â ïðèçâåäå äî ïåðåä÷àñíîãî çá³ëü- øåííÿ äèñòàëüíîãî íàïðóæåííÿ ïðè ñåðåäí³é øâèäêîñò³ óäàðó. 1. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd edition, Cambridge University Press (1999). 2. L. L. Hu and T. X. Yu, “Dynamic crushing strength of hexagonal honeycombs,” Int. J. Impact. Eng., 37, 467–474 (2010). 3. P. J. Tan, S. R. Reid, J. J. Harrigan, et al., “Dynamic compressive strength properties of aluminium foams. Part II – ‘Shock’ theory and comparison with experimental data and numerical models,” J. Mech. Phys. Solids, 53, 2206–2230 (2005). 4. L. L. Hu, T. X. Yu, Z. Y. Gao, and X. Q. Huang, “The inhomogeneous deformation of polycarbonate circular honeycombs under in-plane compression,” Int. J. Mech. Sci., 50, No. 7, 1224–1236 (2008). 5. L. L. Hu, F. F. You, and T. X. Yu, “Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs,” Mater. Design, 46, 511–523 (2013). 6. A. Ajdari, H. Nayeb-Hashemi, and A. Vaziri, “Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures,” Int. J. Solids Struct., 48, 506–516 (2011). 7. H. B. Zeng, S. Pattofatto, H. Zhao, et al., “Impact behavior of hollow sphere agglomerate with density gradient,” Int. J. Mech. Sci., 52, 680–688 (2010). 8. G. W. Ma and Z. Q. Ye, “Dynamic crushing behavior of random and functionally graded metal hollow sphere foams,” Int. J. Impact. Eng., 34, 329–347 (2007). 9. L. L. Hu and T. X. Yu, “Mechanical behavior of hexagonal honeycombs under low-velocity impact – theory and simulations,” Int. J. Solids Struct., 50, 3152–3165 (2013). Received 22. 11. 2013 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 2 177 Dynamic Response of Gradient Foams