Evolution of Anisotropy in Granular Materials: Effect of Particle Rolling and Particle Crushing

The effect of particle rolling and crushing on the evolutions of the two types of anisotropy, i.e., anisotropy of particle packing (microstructure) and anisotropy of force chains, is investigated numerically using the discrete element method. To this end, the classical fabric tensor is adopted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Проблемы прочности
Datum:2014
Hauptverfasser: Zhou, L.L., Chu, X.H., Xu, Y.J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2014
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/112716
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Evolution of Anisotropy in Granular Materials: Effect of Particle Rolling and Particle Crushing / L.L. Zhou, X.H. Chu, Y.J. Xu // Проблемы прочности. — 2014. — № 2. — С. 73-80. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112716
record_format dspace
spelling Zhou, L.L.
Chu, X.H.
Xu, Y.J.
2017-01-26T19:04:30Z
2017-01-26T19:04:30Z
2014
Evolution of Anisotropy in Granular Materials: Effect of Particle Rolling and Particle Crushing / L.L. Zhou, X.H. Chu, Y.J. Xu // Проблемы прочности. — 2014. — № 2. — С. 73-80. — Бібліогр.: 11 назв. — англ.
0556-171X
https://nasplib.isofts.kiev.ua/handle/123456789/112716
539.4
The effect of particle rolling and crushing on the evolutions of the two types of anisotropy, i.e., anisotropy of particle packing (microstructure) and anisotropy of force chains, is investigated numerically using the discrete element method. To this end, the classical fabric tensor is adopted to describe the anisotropy of microstructure, while two similar orientation tensors defined by the directions of contact forces are used to characterize the anisotropy of force chains. Numerical results show that the evolutions of anisotropy follows the same tendency as the stress–strain curve, and the anisotropy of force chains is more intense than that of the microstructure. In addition, particle rolling exerts different effect on anisotropy before and after the peak stress state, and particle crushing decreases the anisotropy of granular materials.
Представлено чисельне дослідження за допомогою методу дискретних елементів впливу скочування і дроблення частинок на еволюцію анізотропій скочування частинок (мікроструктура) і силового ланцюжка. Для опису анізотропії мікроструктури використовується структурний класичний тензор, а два аналогічних тензора орієнтації, що характеризуються напрямком контактних зусиль, – для визначення анізотропії силового ланцюжка. Результати чисельного дослідження показали, що еволюція анізотропій має той же характер, що і залежність деформації від напруження, однак анізотропія силового ланцюжка є більш інтенсивною порівняно з анізотропією мікроструктури. Більш того, скочування частинок по-різному впливає на анізотропію до і після досягнення максимального значення напруження, в той час як дроблення частинок зменшує анізотропію гранульованих матеріалів.
Представлено численное исследование с помощью метода дискретных элементов влияния скатывания и дробления частиц на эволюцию анизотропий скатывания частиц (микроструктура) и силовой цепочки. Для описания анизотропии микроструктуры используется структурный классический тензор, а два аналогичных тензора ориентации, характеризующихся направлением контактных усилий, – для определения анизотропии силовой цепочки. Результаты численного исследования показали, что эволюция анизотропий имеет тот же характер, что и зависимость деформации от напряжения, однако анизотропия силовой цепочки является более интенсивной по сравнению с анизотропией микроструктуры. Более того, скатывание частиц по-разному влияет на анизотропию до и после достижения максимального значения напряжения, тогда как дробление частиц уменьшает анизотропию гранулированных материалов.
The authors are pleased to acknowledge the support of this work by the National Natural Science Foundation of China through Contract/Grant Nos. 10802060 and 11172216 and the Natural Key Basic Research and Development Program of China (973 Program) through Contract/Grant No. 2010CB731502.
en
Інститут проблем міцності ім. Г.С. Писаренко НАН України
Проблемы прочности
Научно-технический раздел
Evolution of Anisotropy in Granular Materials: Effect of Particle Rolling and Particle Crushing
Влияние скатывания и дробления частиц на эволюцию анизотропии гранулированных материалов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Evolution of Anisotropy in Granular Materials: Effect of Particle Rolling and Particle Crushing
spellingShingle Evolution of Anisotropy in Granular Materials: Effect of Particle Rolling and Particle Crushing
Zhou, L.L.
Chu, X.H.
Xu, Y.J.
Научно-технический раздел
title_short Evolution of Anisotropy in Granular Materials: Effect of Particle Rolling and Particle Crushing
title_full Evolution of Anisotropy in Granular Materials: Effect of Particle Rolling and Particle Crushing
title_fullStr Evolution of Anisotropy in Granular Materials: Effect of Particle Rolling and Particle Crushing
title_full_unstemmed Evolution of Anisotropy in Granular Materials: Effect of Particle Rolling and Particle Crushing
title_sort evolution of anisotropy in granular materials: effect of particle rolling and particle crushing
author Zhou, L.L.
Chu, X.H.
Xu, Y.J.
author_facet Zhou, L.L.
Chu, X.H.
Xu, Y.J.
topic Научно-технический раздел
topic_facet Научно-технический раздел
publishDate 2014
language English
container_title Проблемы прочности
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
format Article
title_alt Влияние скатывания и дробления частиц на эволюцию анизотропии гранулированных материалов
description The effect of particle rolling and crushing on the evolutions of the two types of anisotropy, i.e., anisotropy of particle packing (microstructure) and anisotropy of force chains, is investigated numerically using the discrete element method. To this end, the classical fabric tensor is adopted to describe the anisotropy of microstructure, while two similar orientation tensors defined by the directions of contact forces are used to characterize the anisotropy of force chains. Numerical results show that the evolutions of anisotropy follows the same tendency as the stress–strain curve, and the anisotropy of force chains is more intense than that of the microstructure. In addition, particle rolling exerts different effect on anisotropy before and after the peak stress state, and particle crushing decreases the anisotropy of granular materials. Представлено чисельне дослідження за допомогою методу дискретних елементів впливу скочування і дроблення частинок на еволюцію анізотропій скочування частинок (мікроструктура) і силового ланцюжка. Для опису анізотропії мікроструктури використовується структурний класичний тензор, а два аналогічних тензора орієнтації, що характеризуються напрямком контактних зусиль, – для визначення анізотропії силового ланцюжка. Результати чисельного дослідження показали, що еволюція анізотропій має той же характер, що і залежність деформації від напруження, однак анізотропія силового ланцюжка є більш інтенсивною порівняно з анізотропією мікроструктури. Більш того, скочування частинок по-різному впливає на анізотропію до і після досягнення максимального значення напруження, в той час як дроблення частинок зменшує анізотропію гранульованих матеріалів. Представлено численное исследование с помощью метода дискретных элементов влияния скатывания и дробления частиц на эволюцию анизотропий скатывания частиц (микроструктура) и силовой цепочки. Для описания анизотропии микроструктуры используется структурный классический тензор, а два аналогичных тензора ориентации, характеризующихся направлением контактных усилий, – для определения анизотропии силовой цепочки. Результаты численного исследования показали, что эволюция анизотропий имеет тот же характер, что и зависимость деформации от напряжения, однако анизотропия силовой цепочки является более интенсивной по сравнению с анизотропией микроструктуры. Более того, скатывание частиц по-разному влияет на анизотропию до и после достижения максимального значения напряжения, тогда как дробление частиц уменьшает анизотропию гранулированных материалов.
issn 0556-171X
url https://nasplib.isofts.kiev.ua/handle/123456789/112716
citation_txt Evolution of Anisotropy in Granular Materials: Effect of Particle Rolling and Particle Crushing / L.L. Zhou, X.H. Chu, Y.J. Xu // Проблемы прочности. — 2014. — № 2. — С. 73-80. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT zhoull evolutionofanisotropyingranularmaterialseffectofparticlerollingandparticlecrushing
AT chuxh evolutionofanisotropyingranularmaterialseffectofparticlerollingandparticlecrushing
AT xuyj evolutionofanisotropyingranularmaterialseffectofparticlerollingandparticlecrushing
AT zhoull vliânieskatyvaniâidrobleniâčasticnaévolûciûanizotropiigranulirovannyhmaterialov
AT chuxh vliânieskatyvaniâidrobleniâčasticnaévolûciûanizotropiigranulirovannyhmaterialov
AT xuyj vliânieskatyvaniâidrobleniâčasticnaévolûciûanizotropiigranulirovannyhmaterialov
first_indexed 2025-12-07T16:01:07Z
last_indexed 2025-12-07T16:01:07Z
_version_ 1850865894934183936