Першопорядкові композиційно-номінативні логіки із узагальненими реномінаціями

Досліджено першопорядкові композиційно-номінативні логіки часткових однозначних, тотальних неоднозначних та часткових не-однозначних квазіарних предикатів. Запропоновано розширення цих логік узагальненими реномінаціями та спеціальними предикатами-індикаторами наявності значення для предметних змінни...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Проблеми програмування
Datum:2014
Hauptverfasser: Нікітченко, М.С., Шкільняк, О.С., Шкільняк, С.С.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут програмних систем НАН України 2014
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/113209
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Першопорядкові композиційно-номінативні логіки із узагальненими реномінаціями / М.С. Нікітченко, О.С. Шкільняк, С.С. Шкільняк // Проблеми програмування. — 2014. — № 2-3. — С. 17-28. — Бібліогр.: 9 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Досліджено першопорядкові композиційно-номінативні логіки часткових однозначних, тотальних неоднозначних та часткових не-однозначних квазіарних предикатів. Запропоновано розширення цих логік узагальненими реномінаціями та спеціальними предикатами-індикаторами наявності значення для предметних змінних. Описано мови та семантичні моделі таких логік, досліджено їх семантичні властивості, зокрема, властивості відношень логічного наслідку. First-order composition-nominative logics of partial single-valued, total multi-valued, and partial multi-valued quasiary predicates are investigated. It is proposed to extend these logics with generalized renominations and special predicates that detect if the subject variables have assigned values. Languages and semantic models of such logics are defined, their semantic properties, in particular, properties of relations of logical consequence are studied.
ISSN:1727-4907