Erosion features of tungsten surfaces under combined steady-state and transient plasma loads

The paper presents the experimental research on damage of the tungsten surfaces under combined plasma exposures. Steady-state hydrogen exposures (particle flux of 2×10²² m⁻²s⁻¹ , heat flux of 1.7 MW/m² , fluence of 1026 m⁻² , average ion energy of 2 keV) were provided by FALCON ion source. The pulse...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Herashchenko, S.S., Makhlaj, V.A., Girka, O.I., Aksenov, N.N., Bizyukov, I.A., Malykhin, S.V., Surovitskiy, S.V., Sereda, K.N., Bizyukov, A.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2016
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/115316
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Erosion features of tungsten surfaces under combined steady-state and transient plasma loads / S.S. Herashchenko , V.A. Makhlaj , O.I. Girka , N.N. Aksenov , I.A. Bizyukov , S.V. Malykhin , S.V. Surovitskiy , K.N. Sereda , A.A. Bizyukov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 69-72. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-115316
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1153162025-02-23T18:16:48Z Erosion features of tungsten surfaces under combined steady-state and transient plasma loads Свойства вольфрама после облучения стационарными и импульсными плазменными нагрузками Властивості вольфраму після опромінення стаціонарними та імпульсними плазмовими навантаженнями Herashchenko, S.S. Makhlaj, V.A. Girka, O.I. Aksenov, N.N. Bizyukov, I.A. Malykhin, S.V. Surovitskiy, S.V. Sereda, K.N. Bizyukov, A.A. ITER and fusion reactor aspects The paper presents the experimental research on damage of the tungsten surfaces under combined plasma exposures. Steady-state hydrogen exposures (particle flux of 2×10²² m⁻²s⁻¹ , heat flux of 1.7 MW/m² , fluence of 1026 m⁻² , average ion energy of 2 keV) were provided by FALCON ion source. The pulsed plasma loads below the tungsten melting threshold (hydrogen plasma streams with surface heat load of 0.45 MJ/m² and the pulse duration of 0.25 ms) were performed by means of QSPA Kh-50 device. The behavior of structure, sub- structure and stress-state of tungsten samples have been studied after each cycle of pulsed and steady-state plasma loads. Представлено экспериментальное исследование повреждения вольфрамовых поверхностей, подверженных комбинированному плазменному воздействию. Стационарные водородные ионные потоки (поток частиц 2×10²² м⁻² с⁻¹ , тепловой поток 1,7 МВт м⁻² , флюенс 1026 ·м⁻² , средняя энергия ионов 2 кэВ) получены с помощью источника ионов FALCON. Импульсные плазменные нагрузки ниже порога плавления вольфрама (потоки водородной плазмы с удельной энергией 0,45 МДж·м⁻² и длительностью импульса 0,25 мс) создавались на КСПУ Х-50. Изучено изменение структуры, субструктуры и напряженно- деформированного состояния вольфрамовых образцов под влиянием многоцикличных плазменных нагрузок. Представлено експериментальне дослідження пошкодження вольфрамових поверхонь під дією комбінованого плазмовому впливу. Стаціонарні водневі іонні потоки (потік частинок 2×10²² м⁻² с⁻¹, тепловий потік 1,7 МВт·м⁻² , флюенс 1026 м⁻² , середня енергія іонів 2 кеВ) отримані за допомогою джерела іонів FALCON. Імпульсні плазмові навантаження нижче порога плавлення вольфраму (потоки водневої плазми з питомою енергією 0,45 МДж·м⁻² і тривалістю імпульсу 0,25 мс) створювалися на КСПП Х-50. Вивчено зміну структури, субструктури і напружено-деформованого стану вольфрамових зразків під впливом багатоциклічних плазмових навантажень. This work is supported in part by NAS of Ukraine project П-5/24-2016 2016 Article Erosion features of tungsten surfaces under combined steady-state and transient plasma loads / S.S. Herashchenko , V.A. Makhlaj , O.I. Girka , N.N. Aksenov , I.A. Bizyukov , S.V. Malykhin , S.V. Surovitskiy , K.N. Sereda , A.A. Bizyukov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 69-72. — Бібліогр.: 14 назв. — англ. 1562-6016 PACS: 52.40.Hf https://nasplib.isofts.kiev.ua/handle/123456789/115316 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic ITER and fusion reactor aspects
ITER and fusion reactor aspects
spellingShingle ITER and fusion reactor aspects
ITER and fusion reactor aspects
Herashchenko, S.S.
Makhlaj, V.A.
Girka, O.I.
Aksenov, N.N.
Bizyukov, I.A.
Malykhin, S.V.
Surovitskiy, S.V.
Sereda, K.N.
Bizyukov, A.A.
Erosion features of tungsten surfaces under combined steady-state and transient plasma loads
Вопросы атомной науки и техники
description The paper presents the experimental research on damage of the tungsten surfaces under combined plasma exposures. Steady-state hydrogen exposures (particle flux of 2×10²² m⁻²s⁻¹ , heat flux of 1.7 MW/m² , fluence of 1026 m⁻² , average ion energy of 2 keV) were provided by FALCON ion source. The pulsed plasma loads below the tungsten melting threshold (hydrogen plasma streams with surface heat load of 0.45 MJ/m² and the pulse duration of 0.25 ms) were performed by means of QSPA Kh-50 device. The behavior of structure, sub- structure and stress-state of tungsten samples have been studied after each cycle of pulsed and steady-state plasma loads.
format Article
author Herashchenko, S.S.
Makhlaj, V.A.
Girka, O.I.
Aksenov, N.N.
Bizyukov, I.A.
Malykhin, S.V.
Surovitskiy, S.V.
Sereda, K.N.
Bizyukov, A.A.
author_facet Herashchenko, S.S.
Makhlaj, V.A.
Girka, O.I.
Aksenov, N.N.
Bizyukov, I.A.
Malykhin, S.V.
Surovitskiy, S.V.
Sereda, K.N.
Bizyukov, A.A.
author_sort Herashchenko, S.S.
title Erosion features of tungsten surfaces under combined steady-state and transient plasma loads
title_short Erosion features of tungsten surfaces under combined steady-state and transient plasma loads
title_full Erosion features of tungsten surfaces under combined steady-state and transient plasma loads
title_fullStr Erosion features of tungsten surfaces under combined steady-state and transient plasma loads
title_full_unstemmed Erosion features of tungsten surfaces under combined steady-state and transient plasma loads
title_sort erosion features of tungsten surfaces under combined steady-state and transient plasma loads
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2016
topic_facet ITER and fusion reactor aspects
url https://nasplib.isofts.kiev.ua/handle/123456789/115316
citation_txt Erosion features of tungsten surfaces under combined steady-state and transient plasma loads / S.S. Herashchenko , V.A. Makhlaj , O.I. Girka , N.N. Aksenov , I.A. Bizyukov , S.V. Malykhin , S.V. Surovitskiy , K.N. Sereda , A.A. Bizyukov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 69-72. — Бібліогр.: 14 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT herashchenkoss erosionfeaturesoftungstensurfacesundercombinedsteadystateandtransientplasmaloads
AT makhlajva erosionfeaturesoftungstensurfacesundercombinedsteadystateandtransientplasmaloads
AT girkaoi erosionfeaturesoftungstensurfacesundercombinedsteadystateandtransientplasmaloads
AT aksenovnn erosionfeaturesoftungstensurfacesundercombinedsteadystateandtransientplasmaloads
AT bizyukovia erosionfeaturesoftungstensurfacesundercombinedsteadystateandtransientplasmaloads
AT malykhinsv erosionfeaturesoftungstensurfacesundercombinedsteadystateandtransientplasmaloads
AT surovitskiysv erosionfeaturesoftungstensurfacesundercombinedsteadystateandtransientplasmaloads
AT seredakn erosionfeaturesoftungstensurfacesundercombinedsteadystateandtransientplasmaloads
AT bizyukovaa erosionfeaturesoftungstensurfacesundercombinedsteadystateandtransientplasmaloads
AT herashchenkoss svojstvavolʹframaposleoblučeniâstacionarnymiiimpulʹsnymiplazmennyminagruzkami
AT makhlajva svojstvavolʹframaposleoblučeniâstacionarnymiiimpulʹsnymiplazmennyminagruzkami
AT girkaoi svojstvavolʹframaposleoblučeniâstacionarnymiiimpulʹsnymiplazmennyminagruzkami
AT aksenovnn svojstvavolʹframaposleoblučeniâstacionarnymiiimpulʹsnymiplazmennyminagruzkami
AT bizyukovia svojstvavolʹframaposleoblučeniâstacionarnymiiimpulʹsnymiplazmennyminagruzkami
AT malykhinsv svojstvavolʹframaposleoblučeniâstacionarnymiiimpulʹsnymiplazmennyminagruzkami
AT surovitskiysv svojstvavolʹframaposleoblučeniâstacionarnymiiimpulʹsnymiplazmennyminagruzkami
AT seredakn svojstvavolʹframaposleoblučeniâstacionarnymiiimpulʹsnymiplazmennyminagruzkami
AT bizyukovaa svojstvavolʹframaposleoblučeniâstacionarnymiiimpulʹsnymiplazmennyminagruzkami
AT herashchenkoss vlastivostívolʹframupíslâopromínennâstacíonarnimitaímpulʹsnimiplazmoviminavantažennâmi
AT makhlajva vlastivostívolʹframupíslâopromínennâstacíonarnimitaímpulʹsnimiplazmoviminavantažennâmi
AT girkaoi vlastivostívolʹframupíslâopromínennâstacíonarnimitaímpulʹsnimiplazmoviminavantažennâmi
AT aksenovnn vlastivostívolʹframupíslâopromínennâstacíonarnimitaímpulʹsnimiplazmoviminavantažennâmi
AT bizyukovia vlastivostívolʹframupíslâopromínennâstacíonarnimitaímpulʹsnimiplazmoviminavantažennâmi
AT malykhinsv vlastivostívolʹframupíslâopromínennâstacíonarnimitaímpulʹsnimiplazmoviminavantažennâmi
AT surovitskiysv vlastivostívolʹframupíslâopromínennâstacíonarnimitaímpulʹsnimiplazmoviminavantažennâmi
AT seredakn vlastivostívolʹframupíslâopromínennâstacíonarnimitaímpulʹsnimiplazmoviminavantažennâmi
AT bizyukovaa vlastivostívolʹframupíslâopromínennâstacíonarnimitaímpulʹsnimiplazmoviminavantažennâmi
first_indexed 2025-11-24T06:13:02Z
last_indexed 2025-11-24T06:13:02Z
_version_ 1849651135968706560
fulltext ISSN 1562-6016. ВАНТ. 2016. №6(106) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 69-72. 69 EROSION FEATURES OF TUNGSTEN SURFACES UNDER COMBINED STEADY-STATE AND TRANSIENT PLASMA LOADS S.S. Herashchenko 1 , V.A. Makhlaj 1 , O.I. Girka 2 , N.N. Aksenov 1 , I.A. Bizyukov 2 , S.V. Malykhin 3 , S.V. Surovitskiy 3 , K.N. Sereda 2 , A.A. Bizyukov 2 1 Institute of Plasma Physics of the NSC KIPT, Kharkov, Ukraine; 2 V.N. Karazin Kharkiv National University, Kharkov, Ukraine; 3 National Technical University “Kharkiv Polytechnical Institute”, Kharkov, Ukraine E-mail: gerashchenko@kipt.kharkov.ua The paper presents the experimental research on damage of the tungsten surfaces under combined plasma exposures. Steady-state hydrogen exposures (particle flux of 2×10 22 m -2 s -1 , heat flux of 1.7 MW/m 2 , fluence of 10 26 m -2 , average ion energy of 2 keV) were provided by FALCON ion source. The pulsed plasma loads below the tungsten melting threshold (hydrogen plasma streams with surface heat load of 0.45 MJ/m 2 and the pulse duration of 0.25 ms) were performed by means of QSPA Kh-50 device. The behavior of structure, sub- structure and stress-state of tungsten samples have been studied after each cycle of pulsed and steady-state plasma loads. PACS: 52.40.Hf INTRODUCTION Lifetime of plasma-facing components (PFCs) defines work time of fusion reactors such as ITER and DEMO [1]. Erosion of PFCs restricts the operation time of next-step fusion reactors, leads to contamination of the hot plasma by heavy impurities and can produce a substantial amount of the dust. Main degradation of PFCs causes by steady-state heat and particles fluxes from plasma and transient events (disruptions, Edge Localized Modes (ELMs), Vertical Displacement of Edge (VDE) etc.) [1, 2]. The experimental studies of erosion plasma facing materials (PFMs) in present-day fusion devices are quite problematic. Therefore, stationary and transient ITER relevant loads are reproduced with other facilities, such as electron and ion beam facilities, quasi-stationary plasma accelerators (QSPAs), linear devices [3-8]. In particular, it has been experimentally shown that the combination of transient heating and hydrogen plasma exposure lead to severe surface damage and modifications, such as crack formation, enhanced erosion/ejection, roughening, formation of melt layers and blisters [5-7]. The damage behavior strongly depends on the loading conditions and the sequence of the particle and heat flux exposure. The stress-free surface demonstrates a high resistant to cracking under transient heat loads. Twinning deformation and dynamic recrystallization can be major mechanism for surface roughening and related microstructure evolution [9]. For small number of plasma pulses combined with steady-state irradiation a faster relaxation of residual stresses occurs. The damage of exposed surface was caused by physical sputtering and cracks appearing [7]. Nevertheless, contribution of combined steady-state and transient heat and particles loads to damage of tungsten need to further researches in course of large number of powerful plasma pulses. Paper presents the studies of tungsten damage features under combined steady-state and transient hydrogen plasma loads. 1. EXPERIMENTAL CONDITIONS The combined plasma exposures have been performed using the quasi-stationary plasma accelerator QSPA Kh-50 [7, 8] and FALCON ion source [10]. Tungsten targets are made of polycrystalline tungsten manufactured by Plansee with a purity of 99.999% wt. This material is proposed for ITER. The dimensions of the samples were 12×15×0.8 mm. The grain sizes were estimated to be in the range of 5…20 µm. All specimens were mechanically polished to the mirror-like surface. The main parameters of the QSPA Kh-50 plasma streams are following: ion impact energy is about 0.4 keV, maximum plasma pressure 0.32 MPa, and the stream diameter 18 cm. The surface energy load measured with a calorimeter achieved 0.45 MJ/m 2 that corresponds to ITER type I ELMs. The plasma pulse shape is approximately triangular with pulse duration of 0.25 ms. The FALCON ion source generated hydrogen ion beam with a diameter of 3 mm and an average energy of 2 keV. The samples have been exposed to relatively high particle (10 22 m -2 s -1 ) and heat (1.7 MW/m 2 ) fluxes allowed to reach a fluence of 10 26 m 2 and higher. The temperature of the samples was evaluated basing on Stephan-Boltzmann law and preliminary measurements with thermocouple. Temperature of the samples increased from room temperature to 890 K during the exposure due to relatively high heat flux and an absence of water cooling. The samples temperature has been evaluated also using measurement of the ion beam current. The dependence of the sample temperature on the current has been studied previously [11]. Surface analysis was carried out with an optical microscope MMR-4 equipped with a CCD camera and Scanning Electron Microscopy (SEM) JEOL JSM- 840. Measurements of weight losses and roughness of the surface were also performed. X-ray diffraction technique (XRD) has been used to study micro- structural evolution of exposed W targets. So called 70 ISSN 1562-6016. ВАНТ. 2016. №6(106) “θ-2θ scans” were performed using a monochromatic Kα line of Cu anode radiation [12]. Diffraction peaks intensity, their profiles, and their angular positions were analyzed in order to evaluate the texture, the coherent scattering region size [12-14]. Residual macro-stresses and the lattice parameter in the stress free state (a0) were determined using а- sin 2 ψ – plots by the peaks (400) located in the precision area of angles. The absolute errors for the stress and the lattice spacing measurements are ±30 MPa and ±510 -5 nm, respectively [12, 14]. Performed measurements demonstrate that values of principal stresses σ1, σ2 and σφ are within the error range of the measurements, i.e. strain is symmetrical. 2. EXPERIMENTAL RESULTS The behavior of non-texture tungsten during combined irradiation has been studied with 10 QSPA Kh-50 plasma pulses of 0.45 MJ/m 2 (fluence of 5×10 24 m -2 ) and steady-state hydrogen ion flux (SSHIF) of 0.43 MW/m 2 (fluence of 9.6×10 24 m -2 ) of FALCON ion source in earlier experiments [7] . Such influence results in faster relaxation of residual stresses in comparison with only pulsed plasma exposures [13]. As the next step of such researches, the behavior non- texture tungsten has been studied in course of large number (300 pulses) of pulsed plasma irradiation combined with steady-state exposes (section 2.1). The influence of different texture of tungsten on surface modification and structure changes was researched also after steady-state irradiation (section 2.2). 2.1. EVOLUTION OF NON-TEXTURE TUNGSTEN UNDER COMBINED PLASMA IRRADIATION The small number of pulsed plasma heat loads created the symmetrical tensile stresses in the surface of exposed samples (Fig. 1) [7]. -300 0 300 600 900 654 2 3 1 R es id u a l st re ss , M P a Initial Fig. 1. Results of residual stress measurements under combined irradiation: 1 – 5 QSPA pulses (2.5×10 24 m -2 ); 2 – 5 QSPA pulses and SSHIF (4.8×10 24 m -2 ); 3 – 10 QSPA pulses (5×10 24 m -2 ) and SSHIF (4.8×10 24 m -2 ); 4 – 10 QSPA pulses and SSHIF (9.6×10 24 m -2 ); 5 – 300 QSPA pulses and SSHIF (9.6×10 24 m -2 ); 6 – 300 QSPA pulses (1.5×10 26 m -2 ) and SSHIF(1.5×10 25 m -2 ) After small number (10) of QSPA plasma irradiation and SSHIF of 9.6×10 24 m -2 the residual stresses relaxed till 300 MPa. Thus, the combined plasma irradiation causes relaxation of residual stresses faster than for pulsed plasma irradiation only [7]. The future irradiation with 300 QSPA plasma pulses results in increase of stresses up to 720 MPa. Steady- state exposure leads to decrease of stresses by 25 % only. That means the value of stresses decreases slower in comparison with result obtained after small number of plasma pulses. Large number of plasma pulses caused the change of surface morphology. In particular, the roughness of exposed surface increased to Ra ≈ 0.0 μm, Rz ≈ 0.6 μm, Rmax ≈1.0 μm (in the initial state: Ra ≈0.0 μm, Rz≈0.0 μm, Rmax ≈ 0.1 μm). Fig. 2 shows the isolated cracks and pores on irradiated surface as well as molten re-deposited particles. Additionally, some of grain boundaries are grown and melted due to the degradation of thermophysical properties. a b Fig. 2. SEM images of different parts of tungsten surface exposed to combined plasma irradiation (a, b) 2.2. STEADY-STATE IRRADIATION OF TEXTURE TUNGSTEN Two samples of different texture have been studied in course of steady-state loads (1.7 MW/m 2 ) with fluence achieved 2×10 26 m -2 . First sample has texture of [100] and second sample has texture of [110]. The compressive residual macro stresses of (-340 to-350) MPa were registered in surface layers of all chosen targets in initial state (Fig. 3). All targets had very small initial surface roughness (Ra ≈ 0.0 μm, Rz ≈ 0.0 μm, Rmax ≈ 0.1 μm). First sample is characterized by: lattice parameter a0 is less than reference value (aref= 3.165 Å) i.e. excess vacancies presents in structure (Fig. 4). It agrees with sign of asymmetry parameter (δВ ≈ (2…3)% > 0) associated with excess number of vacancies complex. Width of diffraction line is B(400) ≈ 0.65º that means the ISSN 1562-6016. ВАНТ. 2016. №6(106) 71 samples have a large number of linear defects (dislocations) (Figs. 5, 6). Fig. 3. Dependences of residual stresses vs. irradiation dose Fig. 4. Dependences of lattice spacing vs. irradiation dose Fig. 5. Dependences of width of diffraction profile (400) vs. irradiation dose Second sample is characterized by a0 ≈ 3.1649 Å i.e near of reference value aref (see Fig. 4) but the width of diffraction line B(400) ≈ 0.81º and asymmetry δВ ≈ 22% indicate a large number of linear defects and a large number of vacancies complex (Fig. 5). Stationary heat loads caused minor changes in surface roughness (Ra ≈ 0.0 μm, Rz ≈ 0.1 μm, Rmax ≈ 0.1 μm) and relaxation of residual compressive stresses (-35 to -45) MPa for both tungsten samples (Fig. 3). Width of diffraction line in the targets is B(400) ≈ 0.50º (Fig. 5) that is near width of line (400) in material with perfect structure [13, 14]. The number of linear defects is negligible as well as the number of point defects complex (δВ < 3 %) (Fig. 6). The lattice parameter is near to reference value for both samples also (Fig. 4). Therefore, the tungsten structure is improved by SSHIF with FALCON irradiation. Fig. 6. Dependences of asymmetry of diffraction profile (400) vs. irradiation dose The surface analysis for both tungsten samples with texture [100] and [110] after steady-state irradiation showed the typical sputter erosion morphology (Fig. 7). a b Fig 6. SEM images of tungsten surfaces exposed to steady-state plasma irradiation of samples with different texture: [100] (a) and [110] (b) 72 ISSN 1562-6016. ВАНТ. 2016. №6(106) CONCLUSIONS The damage features of the tungsten surfaces have been studied under combined exposure of steady-state hydrogen ion fluxes generated by FALCON ion source and the pulsed plasma loads generated by QSPA Kh-50 facility. The energy of pulsed plasma loads were chosen to remain the surface temperature below the tungsten melting point. Symmetrical thermal residual stresses in exposed surfaces are created mainly due to pulsed irradiations. Stationary heat loads (1.7 MW·m 2 ) cause slower relaxation of tensile residual stresses developed after numerous pulsed plasma loads in comparison to the relaxation after a small number of pulsed plasma loads (5 pulses of 0.45 MJ/m 2 ). Steady-state exposure leads to annealing of both linear and complex of point defects with the amount of residual stresses decreased. The lattice parameter increased negligibly, i.e. impurities have not been introduced into the lattice during the irradiation. The combined plasma loads result in development of tungsten surfaces roughness. Rise of surface roughness is caused by cracks appearing and growth of grain edges on exposed surfaces. It has been shown that the tungsten structure could be improved by steady-state plasma irradiation with slight differences in structure evolution of samples with different textures. This work is supported in part by NAS of Ukraine project П-5/24-2016. REFERENCES 1. J.W. Coenen et al. // Phys. Scr. 2016, v. T167, p. 014002. 2. R. Pitts et al. // J. Nucl. Mater. 2013, v. 438, p. S48. 3. Th. Loewenhoff et al. // Fusion Eng. and Design. 2012, v. 87, p. 1201-1205. 4. N.S. Klimov et al. // Phys. Scr. 2011, v. T145, . 014064. 5. G.De. Temmerman et al. // Nucl. Fusion. 2013, v. 53, p. 023008. 6. M. Wirtz et al. // J. Nucl. Mater. 2013, v. 443, p. 497- 501. 7. V.A. Makhlaj et al. // Problems of Atomic Science and Technology. 2013, v. 1(83), p. 70-72. 8. V.A. Makhlaj et al. // Phys. Scr. 2014, v. T161, p. 014040. 9. Y. Yuan et al. // Nucl. Fusion 2016, v. 56, p. 036021. 10. O. Girka et al. // Rev. Sci. Instrum. 2012, v. 83, p. 083501. 11. O. Girka et al. // 21st International Conference Nuclear Energy for New Europe Ljubljana 2012, Conference Proceedings. 2012, p. 165.1-165.6. 12. I.C. Noyan, J.B. Cohen. // Residual Stress. New York: “Springer”, 1987, p. 274. 13. V.A. Makhlaj et al. // Phys. Scr. 2009, v. T138, p. 014060. 14. I.E. Garkusha et al. // Tech. Phys. 2014, v. 59, p. 1620-1625. Article received 10.11.2016 СВОЙСТВА ВОЛЬФРАМА ПОСЛЕ ОБЛУЧЕНИЯ СТАЦИОНАРНЫМИ И ИМПУЛЬСНЫМИ ПЛАЗМЕННЫМИ НАГРУЗКАМИ С.С. Геращенко, В.А. Махлай, А.И. Гирка, Н.Н. Аксенов, И.А. Бизюков, С.В. Малыхин, С.В. Суровицкий, К.Н. Середа, А.А. Бизюков Представлено экспериментальное исследование повреждения вольфрамовых поверхностей, подверженных комбинированному плазменному воздействию. Стационарные водородные ионные потоки (поток частиц 2×10 22 м -2 с -1 , тепловой поток 1,7 МВт м -2 , флюенс 10 26 ·м -2 , средняя энергия ионов 2 кэВ) получены с помощью источника ионов FALCON. Импульсные плазменные нагрузки ниже порога плавления вольфрама (потоки водородной плазмы с удельной энергией 0,45 МДж·м -2 и длительностью импульса 0,25 мс) создавались на КСПУ Х-50. Изучено изменение структуры, субструктуры и напряженно- деформированного состояния вольфрамовых образцов под влиянием многоцикличных плазменных нагрузок. ВЛАСТИВОСТІ ВОЛЬФРАМУ ПІСЛЯ ОПРОМІНЕННЯ СТАЦІОНАРНИМИ ТА ІМПУЛЬСНИМИ ПЛАЗМОВИМИ НАВАНТАЖЕННЯМИ С.С. Геращенко, В.О. Махлай, О.І. Гірка, М.М. Аксенов, І.О. Бізюков, С.В. Малихін, С.В. Суровицький, К.Н. Середа, О.А. Бізюков Представлено експериментальне дослідження пошкодження вольфрамових поверхонь під дією комбінованого плазмовому впливу. Стаціонарні водневі іонні потоки (потік частинок 2×10 22 м -2· с -1 , тепловий потік 1,7 МВт·м -2 , флюенс 10 26 м -2 , середня енергія іонів 2 кеВ) отримані за допомогою джерела іонів FALCON. Імпульсні плазмові навантаження нижче порога плавлення вольфраму (потоки водневої плазми з питомою енергією 0,45 МДж·м -2 і тривалістю імпульсу 0,25 мс) створювалися на КСПП Х-50. Вивчено зміну структури, субструктури і напружено-деформованого стану вольфрамових зразків під впливом багатоциклічних плазмових навантажень.