Producing the planar multiphoton sources by photonuclear technique: 1. A model of gamma-fluorescent source

The possibility is shown to produce the planar -sources with the two and more spectral bands in the photon energy range up to ~100 keV by activating K-lines of the characteristic -ray radiation in the thin layers of the elementary substances by an external single-photon -source. A one-dimensional mo...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2016
Main Author: Uvarov, V.L.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2016
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/115394
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Producing the planar multiphoton sources by photonuclear technique: 1. a model of gamma-fluorescent source / V.L. Uvarov // Вопросы атомной науки и техники. — 2016. — № 3. — С. 139-143. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-115394
record_format dspace
spelling Uvarov, V.L.
2017-04-04T05:51:41Z
2017-04-04T05:51:41Z
2016
Producing the planar multiphoton sources by photonuclear technique: 1. a model of gamma-fluorescent source / V.L. Uvarov // Вопросы атомной науки и техники. — 2016. — № 3. — С. 139-143. — Бібліогр.: 18 назв. — англ.
1562-6016
PACS: 07.05.Tr; 41.50.+h; 41.75.Fr; 78.70.En
https://nasplib.isofts.kiev.ua/handle/123456789/115394
The possibility is shown to produce the planar -sources with the two and more spectral bands in the photon energy range up to ~100 keV by activating K-lines of the characteristic -ray radiation in the thin layers of the elementary substances by an external single-photon -source. A one-dimensional model of a combined planar source in the form of a stack of foils from the inactive and active materials has been developed. The model enables the analysis and optimisation of a source against its intensity and spectral composition. A variant of a production target for manufacturing at an electron accelerator the planar -sources on the basis of the isotopes ⁵⁷Со and ¹⁷⁹Та is offered and investigated by computer simulation. It is shown, that from the viewpoint of yield of the isotopes, suitable for the use in absorptiometry, the photonuclear method is competitive as compared with the reactor and cyclotron technologies.
Показана возможность получения планарных -источников с двумя и более спектральными полосами в диапазоне энергий фотонов до ~100 кэВ путѐм активации К-линий характеристического рентгеновского излучения в тонких слоях простых веществ внешним однофотонным -источником. Разработана одномерная модель комбинированного планарного источника в виде набора тонких слоѐв из неактивных и активных материалов. Модель обеспечивает возможность анализа и оптимизации источника в отношении интенсивности и спектрального состава излучения. Предложен и исследован методом компьютерного моделирования вариант технологической мишени для наработки на ускорителе электронов планарных -источников на основе изотопов ⁵⁷Со и ¹⁷⁹Та. Показано, что в отношении выхода изотопов, пригодных для использования в абсорбциометрии, фотоядерный метод является конкурентоспособным по сравнению с реакторными и циклотронными технологиями.
Показана можливість одержання планарних -джерел з двома і більше спектральними смугами в діапазоні енергій фотонів до ~100 кеВ шляхом активації К-ліній характеристичного рентгенівського випромінювання в тонких шарах простих речовин зовнішнім однофотонним -джерелом. Розроблена одномірна модель комбінованого планарного джерела у вигляді набору тонких шарів неактивних та активних матеріалів. Модель забезпечує можливість аналізу та оптимізації джерела щодо інтенсивності та спектрального складу випромінювання. Запропоновано та досліджено методом комп'ютерного моделювання варіант технологічної мішені для напрацювання на прискорювачі електронів планарных -джерел на основі ізотопів ⁵⁷Со і ¹⁷⁹Та. Показано, що відносно виходу ізотопів, придатних для використання в абсорбціометрії, фотоядерний метод є конкурентоспроможним у порівнянні з реакторними і циклотронними технологіями.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Экспериментальные методы и обработка данных
Producing the planar multiphoton sources by photonuclear technique: 1. A model of gamma-fluorescent source
Получение планарных мультифотонных источников фотоядерным методом: 1. модель гамма-флуоресцентного источника
Одержання планарних мультифотонних джерел фотоядерним методом: 1. модель гамма-флуоресцентного джерела
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Producing the planar multiphoton sources by photonuclear technique: 1. A model of gamma-fluorescent source
spellingShingle Producing the planar multiphoton sources by photonuclear technique: 1. A model of gamma-fluorescent source
Uvarov, V.L.
Экспериментальные методы и обработка данных
title_short Producing the planar multiphoton sources by photonuclear technique: 1. A model of gamma-fluorescent source
title_full Producing the planar multiphoton sources by photonuclear technique: 1. A model of gamma-fluorescent source
title_fullStr Producing the planar multiphoton sources by photonuclear technique: 1. A model of gamma-fluorescent source
title_full_unstemmed Producing the planar multiphoton sources by photonuclear technique: 1. A model of gamma-fluorescent source
title_sort producing the planar multiphoton sources by photonuclear technique: 1. a model of gamma-fluorescent source
author Uvarov, V.L.
author_facet Uvarov, V.L.
topic Экспериментальные методы и обработка данных
topic_facet Экспериментальные методы и обработка данных
publishDate 2016
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Получение планарных мультифотонных источников фотоядерным методом: 1. модель гамма-флуоресцентного источника
Одержання планарних мультифотонних джерел фотоядерним методом: 1. модель гамма-флуоресцентного джерела
description The possibility is shown to produce the planar -sources with the two and more spectral bands in the photon energy range up to ~100 keV by activating K-lines of the characteristic -ray radiation in the thin layers of the elementary substances by an external single-photon -source. A one-dimensional model of a combined planar source in the form of a stack of foils from the inactive and active materials has been developed. The model enables the analysis and optimisation of a source against its intensity and spectral composition. A variant of a production target for manufacturing at an electron accelerator the planar -sources on the basis of the isotopes ⁵⁷Со and ¹⁷⁹Та is offered and investigated by computer simulation. It is shown, that from the viewpoint of yield of the isotopes, suitable for the use in absorptiometry, the photonuclear method is competitive as compared with the reactor and cyclotron technologies. Показана возможность получения планарных -источников с двумя и более спектральными полосами в диапазоне энергий фотонов до ~100 кэВ путѐм активации К-линий характеристического рентгеновского излучения в тонких слоях простых веществ внешним однофотонным -источником. Разработана одномерная модель комбинированного планарного источника в виде набора тонких слоѐв из неактивных и активных материалов. Модель обеспечивает возможность анализа и оптимизации источника в отношении интенсивности и спектрального состава излучения. Предложен и исследован методом компьютерного моделирования вариант технологической мишени для наработки на ускорителе электронов планарных -источников на основе изотопов ⁵⁷Со и ¹⁷⁹Та. Показано, что в отношении выхода изотопов, пригодных для использования в абсорбциометрии, фотоядерный метод является конкурентоспособным по сравнению с реакторными и циклотронными технологиями. Показана можливість одержання планарних -джерел з двома і більше спектральними смугами в діапазоні енергій фотонів до ~100 кеВ шляхом активації К-ліній характеристичного рентгенівського випромінювання в тонких шарах простих речовин зовнішнім однофотонним -джерелом. Розроблена одномірна модель комбінованого планарного джерела у вигляді набору тонких шарів неактивних та активних матеріалів. Модель забезпечує можливість аналізу та оптимізації джерела щодо інтенсивності та спектрального складу випромінювання. Запропоновано та досліджено методом комп'ютерного моделювання варіант технологічної мішені для напрацювання на прискорювачі електронів планарных -джерел на основі ізотопів ⁵⁷Со і ¹⁷⁹Та. Показано, що відносно виходу ізотопів, придатних для використання в абсорбціометрії, фотоядерний метод є конкурентоспроможним у порівнянні з реакторними і циклотронними технологіями.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/115394
citation_txt Producing the planar multiphoton sources by photonuclear technique: 1. a model of gamma-fluorescent source / V.L. Uvarov // Вопросы атомной науки и техники. — 2016. — № 3. — С. 139-143. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT uvarovvl producingtheplanarmultiphotonsourcesbyphotonucleartechnique1amodelofgammafluorescentsource
AT uvarovvl polučenieplanarnyhmulʹtifotonnyhistočnikovfotoâdernymmetodom1modelʹgammafluorescentnogoistočnika
AT uvarovvl oderžannâplanarnihmulʹtifotonnihdžerelfotoâdernimmetodom1modelʹgammafluorescentnogodžerela
first_indexed 2025-11-25T15:40:40Z
last_indexed 2025-11-25T15:40:40Z
_version_ 1850519491547496448
fulltext ISSN 1562-6016. ВАНТ. 2016. №3(103) 139 PRODUCING THE PLANAR MULTIPHOTON SOURCES BY PHOTONUCLEAR TECHNIQUE: 1. A MODEL OF GAMMA-FLUORESCENT SOURCE V.L. Uvarov National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: uvarov@kipt.kharkov.ua The possibility is shown to produce the planar -sources with the two and more spectral bands in the photon en- ergy range up to ~100 keV by activating K-lines of the characteristic x-ray radiation in the thin layers of the elemen- tary substances by an external single-photon -source. A one-dimensional model of a combined planar source in the form of a stack of foils from the inactive and active materials has been developed. The model enables the analysis and optimisation of a source against its intensity and spectral composition. A variant of a production target for man- ufacturing at an electron accelerator the planar -sources on the basis of the isotopes 57Со and 179Та is offered and investigated by computer simulation. It is shown, that from the viewpoint of yield of the isotopes, suitable for the use in absorptiometry, the photonuclear method is competitive as compared with the reactor and cyclotron technolo- gies. PACS: 07.05.Tr; 41.50.+h; 41.75.Fr; 78.70.En INTRODUCTION Single- and multi-photon -sources are widely used in up-to-date medical and industrial diagnostics, inspec- tion check-up, spectrometry, etc. (see, e.g. [1, 2]). For instance, the diagnostics of the osteoporosis, the most widespread age-specific illness of the bone tissue, is based on measuring its mineral density by single- and dual- photon absorptiometry. As it was preliminary specified, the radiation with photon energy in the range 30…60 keV provides the most contrast differentiation between the soft and bone tissues in an introscopic im- age. So initially for the single photon absorptiometry, the 125I isotope (T1/2=59.4 day) having the most inten- sive spectral line 27.5 keV has been chosen, as well as 153Gd (42 and 99 keV; 240.4 day) is used in the more accurate dual photon diagnostics [3, 4]. The both iso- topes are produced by radiochemical extraction from the targets irradiated in reactor [5]. To obtain a sealed - source, a separated isotope product is hermetically en- capsulated. In the sequel, a method of dual absorptiometry based on the use of the X-ray tubes (DEXA-technique) has been developed (see, e.g. [4]). This time the spectrum of radiation is formed with specially chosen filters to pro- vide the intensity maximum in the specified region. In turn, the peripheral quantitative computed tomography (pQCT) appears to be more informative [6]. That meth- od uses the movable X-ray tubes with the filters, provid- ing the spectral maximum near 60 keV. At the same time, obtaining in such a way the dual photon sources with the adequate operation life, high stability and uni- formity of the radiation field, and also with the narrow spectral bands is rather knotty problem. In particular, this circumstance impedes realization of the dual photon variant of pQCT, which is promising for early recogni- tion of the illness. As known, the radionuclides decaying via the elec- tron capture emit Auger electrons and photons of the characteristic X-ray radiation. Its high-energy part cor- responds to the transitions of the orbital electrons on an empty K-state. The X-ray radiation is generated also at interaction of gammas with the bound atomic electrons as a result of photoeffect (see, e.g. [7]). Thus one can obtain a high-energy X-ray source either by selecting an appropriate radionuclide or by acting on an inactive (cold) material with the photons having energy higher than the K-line energy of that material. Their values lay in the range from 13 eV (hydrogen) to ~120 keV (urani- um), i.e. just cover the range suitable for medical intros- copy. The proton-redundant nuclei, decaying through the K-capture, can be generated in the photonuclear reactions realized at an comparatively inexpensive and safe electron accelerator. In this work, the conditions are studied for manufacturing the planar -sources with the specified two and more spectral bands by combining the layers of the cold materials and planar -sources produced by a photonuclear technique. 1. MAIN REACTIONS 57Со (Е =122.1 and 136.5 кeV; Т1/2=271.3 day) is one of the most suitable -activator of the characteristic X-radiation. Therefore it is used in the form of quasi- point sources in the fluorescence elemental analysis [8]. The planar sources on the basis of this isotope with ac- tivity up to 740 MBq and measuring up to 700 500 mm (the flood sources) are applied in medicine for calibrat- ing the gamma-ray chambers (see, e.g. [9]). Commonly, 57Со is produced on cyclotrons by the reactions 56Fe(d,n)57Co and 58Ni(p,2p)57Co [10]. This radionuclide can be generated also by a photonuclear technique in a target from nickel via the two channels simultaneously [11]: 58Ni( ,p)57Co, 58Ni( ,n)57Ni 35h 57Co. The first reaction has the threshold 8.2 MeV at a maximum of the cross section of about 60 mb, the second 12.2 MeV and 23 mb, respectively [12]. A beam of the high-energy photons can be obtained at an electron accelerator as secondary bremsstrahlung radiation. For this, an intermediate target-converter from high-Z material is used. The radiation has a continuous spectrum with end-point photon energy corresponding to the electron energy Е0. mailto:uvarov@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2016. №3(103) 140 At the 57Со photonuclear production with the use of a target from natural nickel (the 58Ni abundance is 68.27%) and electron beam with energy higher than 20 MeV, the channels of the hot admixtures production are also revealed. Besides, the photoneutrons, generat- ing as a result of the ( ,xn) processes in the elements of the accelerator exit devices, can also effect on a produc- tion target. The main reactions of the hot by-product generation in natural nickel are 58Ni( ,2n)56Ni 5.9 day 56Co 77.3day 56Festab; 58Ni( ,np)56Co 77.3day 56Festab; 58Ni(n,p)58Co 70.8day 58Festab; 60Ni( ,np)58Co 70.8day 58Festab. Those admixtures have considerably lesser half-life than 57Со. So by proper target cooling, their relative contribution to the target activity can be reduced to the tolerable value. 179Та (Т1/2=665 day) is the one more isotope promis- ing for medical diagnostics. Its principal К-lines are 54.07 keV (21.9%), 54.61 keV (12.6%), 62.98 keV (2.4%), 63.24 keV (4.7%), and 64.9 keV (1.6%) – [13]. This isotope can be produced by the reaction 181Та( , 2n)179Та with maximum of the cross section 180 mb and threshold 14.2 MeV. A target from natural tantalum (the 181Та abundance makes 99.99%) can be utilized – [14]. At the same time, 180Та is generated also under those conditions as the most active admixture via the reaction 181Та( ,n)180Та with threshold 7.6 MeV. As a result of the decay (Т1/2=8.15 h), 180Та is transformed into the stable isotopes 180Hf (86%) and 180W (14%). The reaction 181Та(n, )182Та 114.4day 182Wstab is induced also in tantalum by photoneutrons. 2. PHOTONUCLEAR ISOTOPE YIELD The expression for the target activity A(t), produced by the end of the irradiation period t, can be presented in the form 0 1( ) ( ) , I A t y tD t e (1) where y1 – is the yield of the new nuclei normalized to the one beam electron, – is their decay constant, I0 – is the average electron beam current, D( t) – is the coeffi- cient of the target deactivation during exposure, 1 exp( ) ( ) . t D t t (2) In case of a channel with the formation of an inter- mediate nucleus, its contribution A (t) to the activity of the target isotope by EOB can be determined from the expression 0 1 '''( ) [ ( ) ( ' )] , ' I A t y t D t D t e (3) where 1 'y – is the normalized yield of the intermediate isotope, – is its decay constant. So at a period of the nickel activation of t >>35 h, the contribution of the channel 58Ni( ,n)57Ni 57Co to the total yield of 57Со can reach 24%. The analytical expression for the normalized photo- nuclear yield of an isotope y1 in a thick production target is presented in Ref. [15]. In particular, it is shown, that the effective isotope generation is provided at a target thickness of about free range ( )iR E of the photons with energy iE , corresponding to the maximum of the cross section of i reaction, where 1 ( ) ( )i iR E E , ( )iE is the mass attenuation coefficient of photons in the target material. So the volumetric distribution of the generated nuclei along the bremsstrahlung axes in a target layer of lesser thickness can be considered as quasi-homogeneous. Commonly, iE corresponds to the region of the giant dipole resonance and makes ~20 MeV. Thus in case of a target from nickel ( )iR E ~1 сm. 3. GAMMA-FLUORESCENCE Consider the type of radiation sources obtained by stacking the thin layers of the cold elementary substanc- es and planar -sources with homogeneous volumetric distribution of the hot nuclei. As known, the principal process of interaction of the gammas having energy up to 100 keV with substance is the photoeffect on bound electrons of the atoms, which probability increases with the grows the of binding en- ergy [7]. The excitation of the atoms is removed by emission of characteristic X-ray (fluorescence), in which the relative contribution of K-lines makes from 84% (indium) to practically 100% (uranium) [8]. Un- der such conditions, the yield of K-lines can be consid- ered as proportional to the mass attenuation coefficient of gammas, given by the formula ( , ) σ ( , ) ,A ph Z N E Z E Z A (4) where ph – the cross section of the photoeffect, NA – is the Avogadro number, АZ – is the average atomic number of the substance. Hereinafter, we will call the cold elements of a com- bined source, fluorescent under external irradiation, as radiators, while its hot elements as activators. We will identify also the combined radiation sources by the ex- pressions like L+M*+…, where L, M,… are the names of the chemical elements of materials in the order of their positioning relative to a radiation detector, while the mark * denotes the presence of -activity at the cor- responding component of the source. 3.1. TWO-COMPONENT SOURCE Let us consider a source of the L+M* type, com- prising a radiator L and activator M* with thicknesses d1 and * 2d , respectively. Taking into account, that the lateral dimension of each element of the source consid- erably exceeds its thickness (the condition of planarity), the analysis of excitation and transfer of the radiation is being conducted using the one-dimensional approxima- tion. Such an approach seems to be substantiated at least ISSN 1562-6016. ВАНТ. 2016. №3(103) 141 at a source thickness of less or about the photon free range. So at a total activator’s activity of А*, the flux of its gammas acting on the radiator L with due regard to the homogeneous depth distribution of hot nuclei, as well as to the self-absorption of their radiation, is de- fined by the expression * 1,2 2 2* 2 2 ( ) * ( ) 1 exp ( ) , 2 ( ) I E A Ф E E d E d (5) where I(E ) – is the quantum yield of the photons with energy E , 2(E ) – is the mass attenuation coefficient of photons in the activator material. The subscript 1, 2 de- notes the boundary between the first and second (L and M*) elements of the source. The analysis of the formula (5) shows, that in case of a planar activator, its optimum thickness, taking into account the self-absorption of radiation, makes ~ [ 2(E )]-1. That corresponds to the free range of the photons with energy Е . Their flux Ф(Е ), leaving the radiator sideway the detector (a high- energy band of the source spectrum), amounts 1,2 1 1( ) ( ) exp ( ) ,Ф E Ф E E d (6) where 1(E ) – is the mass attenuation coefficient of activating gammas in the radiator material. In turn, the flux Ф1,2(Е ), acting on the radiator, ex- cites in its volume characteristic X-rays with photon energy Ех1.The yield of the X-radiation from the source Ф(Ех1), considering self-absorption in the radiator both activating gammas and induced fluorescent photons, makes 1 1 1 1 1 1 1 1,2 1 1 1 ( ) exp ( ) exp ( ) ( ) ( ) , 2 ( ) ( ) x x x E E d E d Ф E Ф E E E (7) where 1(Eх1) – is the mass attenuation coefficient of the fluorescent photons, induced in the radiator, in its material. As it follows from the expression (7), the maximum yield of the fluorescence provides a radiator with thick- ness 1 max 1 1 1 1 1 1 1 ( ) ( ) ( ) ln . ( ) x x E d E E E (8) The formula (8) gives the value of max 1d , that lays between the values of free range of the activating and fluorescent photons in the radiator material. This cir- cumstance corroborates the validity of the developed model at the conditions of practical interest. At the same time, the formula (7) can overestimate the value of the X-ray yield beyond that region, since the offered one- dimensional model does not take into consideration the effects of photon scattering at a radiator thickness ex- ceeding the value of their free range. 3.2. THREE-COMPONENT SOURCE Now we will analyze a source of the L+M*+N type, including the two radiators: the main radiator of d1 thickness and a complementary one, N, d3 thick as well as an activator M* by * 2d in thickness, placed between them. The fluxes of the activator radiation in both sides are equal, or Ф2,3(Е )=Ф1,2(Е ). The radiators can be manufactured either from the same material (to increase a low-energy band in a two-photon variant of the source) or from the different materials (if there is the necessity to create a third band in the spectrum). Firstly, we will study the second variant as more general. In this case, the X-radiation with photon energy Ех3 will be induced in the complementary radiator N. To reduce its self-absorption in the source, we will set a thin activator, that meets the condition * 2d << [ 2(Eх3)] 1, where 2(Eх3) – is the mass attenuation coefficient of photons with energy Eх3 in the activator material. The flux of the X-radiation at the boundary with activator, Ф2,3(Ех3), considering the absorption in this radiator both activating and fluorescent photons, makes 3 3 3 3 3 2,3 3 2,3 3 3 3 ( ) 1 exp ( ) ( ) ( ) ( ) , 2 ( ) ( ) x x x E E E d Ф E Ф E E E (9) where 3(E ) and 3(Eх3) – are the mass attenuation co- efficients of photons with energy E and Eх3 in the mate- rial of the second radiator, respectively. The flux of this X-radiation from the source after its consecutive attenu- ation in the activator and L-radiator, amounts * 3 2 3 2 1 3 1 2,3 3( ) exp ( ) ( ) ( ) ,x x x xФ E E d E d Ф E (10) where 1(Eх3) and 2(Eх3) – are the mass attenuation coefficients of photons with energy Eх3 in the materials of the first radiator and activator, respectively. In case of high-thick complementary radiator, d3 >> [ 3(Eх3)+ 3(E )]-1, the intensity of the third band in the spectrum is maximal, namely, * 3 2 3 2 1 3 1max 3 2,3 3 3 3 ( ) exp ( ) ( ) ( ) ( ) . 2 ( ) ( ) x x x x E E d E d Ф E Ф E E E (11) If the both radiators have been fabricated from simi- lar material ( 1 3), the relative gain of the low-energy band, as compared with the two-component variant, makes * 2 1 2 1 1 1 1 1 1 31 1 11 1 1 1 1 1 1 1 1 1 exp ( ) ( ) 1 exp ( ) ( )( ) ( )( ) . ( ) ( ) ( ) exp ( ) exp ( ) x x xxx x x x E d E d E E dE EФ E Ф E E E E d E d (12) If the second radiator is thick (d3>> [ 1(Eх1)+ 1(E )]-1, its contribution to the radiation of the source is maxi- mal. So in a system Та+Ni*+Ta at a thickness of the two first elements of 0.1 mm the addition of the second radiator can increase the yield of the tantalum fluores- cence up to 64%. The sources with the greater number of components and their various sequence can be analyzed in the same way. The value of the mass attenuation coefficient of the photons with any energy in various materials can be calculated, e.g., using a package ХМuDat [16]. ISSN 1562-6016. ВАНТ. 2016. №3(103) 142 4. DESIGN OF PRODUCTION TARGET In the report [17], a technique for joint production of the planar 179Та and 57Со sources is described. The fea- ture of a proposed target device lays in the usage of the tantalum simultaneously as a converter of the brems- strahlung radiation and a target for generation 179 Та, as well as for photonuclear activating the nickel resulting in the 57Со generation. It should be noted, that the free range of photons with energy above the reaction threshold of 14.2 MeV in tantalum makes ~1 cm. This is by two orders of val- ues higher than the free range of the Ta characteristic photons. As it was shown above, the latter value determi- nates the optimal thickness of the source-see formula (8). The geometry of the accelerator exit device provid- ing the maximal yield of both the target isotopes and minimal self-absorption of their radiation in the ob- tained -sources was determined by means of computer simulation. The target device corresponds a two-layer cylinder with the central passage for cooling water. A tape from tantalum 0.1mm thick by 180 cm in length and coiled into a roll by 23.5 mm in outward diameter forms an outside of the cylinder. A similar tape from nickel, coiled also into a roll, forms an inner layer of the cylinder. To provide even distribution of the surface activity and absorbed dose, the electron beam is scanned along the moving line of the target-cylinder with its simultaneous rotation about the axis of the target. For a comparison, the data on productivity of the known tech- nologies for manufacturing isotopes used in the absorp- tiometry as well as the results of calculation of joint 179Та and 57Со capacity on the basis of an electron ac- celerator are given in Table. It is seen, that photonuclear technology realized even at an accelerator with rather ordinary parameters (40 МeV; 250 µА) is competitive. Capacity of various techniques of isotope production (100 h irradiation run) Isotope Installation Parameters Reaction Yield, GBq Refe- rence 125I Reactor 5 1013 n/сm2 s 124Xe(n, )125Xe 125I 14.0 [5] 153Gd Reactor 6 1013 n/сm2 s 152Gd(n, )153Gd 0.13 [5] 57Co Cyclotron 20 15 МeV 250 µА 58Ni(p,2p)57Co 10 [18] + 179Ta 57Co Electron accelerator 40 МeV 250 µА 181Ta( ,2n)179Ta 58Ni( ,p)57Co 58Ni( ,n)57Ni 57Co + 3.7 8.2 [17] CONCLUSIONS A model has been developed for analysis of the mul- ti-photon sources obtained by mixing the radiation of the thin -active foils, produced at an electron accelera- tor, and the induced characteristic X-radiation in the thin layers of the cold elementary substances, contacting with the active foils. The model makes it possible to calculate the intensity of the bands of the combine sources as well as their optimization with regard to the intensity and spectral composition using the available data on the mass attenuation coefficients of gammas in the materials of the source components. REFERENCES 1. J.E. Adams // Nat. Rev. Endocrinol. 2013, v. 9(1), p. 28. 2. S.V. Naydenov, V.D. Ryzhikov, C.F. Smith // Nucl. Instrum. Meth. Phys. Res. A. 2005, v. 537, iss. 1-2, p. 462. 3. S.K. Saxena, Y. Kumar, K.T. Pillai, A. Dash // Appl. Rad. Isot. 2012, v. 70(3), p. 470. 4. F.H.W. Wong // Med. J. 1990, v. 31, p. 390. 5. IAEA-TECDOC-1340. Vienna: IAEA, 2003. 6. G. Guglielmi, P. Schneider, T.F. Laug, et al. // Eur. Radiol. 1997, v. 7 (Suppl. 2), p. 32. 7. R.D. Schmickley, R.H. Pratt // Phys. Rev. 1967, v. 164, p. 104. 8. N. Langhoff, R. Wedell, H. Wolf. Handbook on Practical X-Ray Fluorescence Analysis. Springer, 2006, ISBN 3540-28603-9. 9. E.B. Sokol, A. Heckenberg, H. Bergmann // Eur. J. Nucl. Med. 1996, v. 23(4), p. 437. 10. M. Al-Abyad, M.N. Comsan, S.M. Qaim // Appl. Rad. Isot. 2009, v. 67, p. 122. 11. N.P. Dikiy, A.N. Dovbnya, O.A. Repikhov, et al. //. PAST. Ser. “NPhI” (39). 2001, №5, p. 200. 12. IAEA-TECDOC-1178. Vienna: IAEA, 2000. 13. www.nndc.bnl.gov/nudat2/. 14. N.P. Dikiy, Yu.V. Lyashko, Yu.V. Rogov, V.L. Uvarov // PAST. Ser. “NPhI”(88). 2013, №6, p. 188. 15. V.I. Nikiforov, V.L. Uvarov // Radioximiya. 2010, v. 52, p. 268 (in Russian). 16. IAEA-NDS-195. Vienna: IAEA, 1998. 17. N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, et al. // Proc. 5th Int. Part. Accel. Conf. IPAC 2014. Dresden (Germany), June 15-20, 2014, p. 2192. 18. S. Spellerberg, P. Reimer, G. Blessing, et al. // Appl. Rad. Isot. 1998, v. 49, p. 1519. Article received 03.03.2016 http://www.nndc.bnl.gov/nudat2/ ISSN 1562-6016. ВАНТ. 2016. №3(103) 143 ПОЛУЧЕНИЕ ПЛАНАРНЫХ МУЛЬТИФОТОННЫХ ИСТОЧНИКОВ ФОТОЯДЕРНЫМ МЕТОДОМ: 1. МОДЕЛЬ ГАММА-ФЛУОРЕСЦЕНТНОГО ИСТОЧНИКА В.Л. Уваров Показана возможность получения планарных -источников с двумя и более спектральными полосами в диапазоне энергий фотонов до ~100 кэВ путѐм активации К-линий характеристического рентгеновского из- лучения в тонких слоях простых веществ внешним однофотонным -источником. Разработана одномерная модель комбинированного планарного источника в виде набора тонких слоѐв из неактивных и активных материалов. Модель обеспечивает возможность анализа и оптимизации источника в отношении интенсив- ности и спектрального состава излучения. Предложен и исследован методом компьютерного моделирования вариант технологической мишени для наработки на ускорителе электронов планарных -источников на ос- нове изотопов 57Со и 179Та. Показано, что в отношении выхода изотопов, пригодных для использования в абсорбциометрии, фотоядерный метод является конкурентоспособным по сравнению с реакторными и цик- лотронными технологиями. ОДЕРЖАННЯ ПЛАНАРНИХ МУЛЬТИФОТОННИХ ДЖЕРЕЛ ФОТОЯДЕРНИМ МЕТОДОМ: 1. МОДЕЛЬ ГАММА-ФЛУОРЕСЦЕНТНОГО ДЖЕРЕЛА В.Л. Уваров Показана можливість одержання планарних -джерел з двома і більше спектральними смугами в діапазо- ні енергій фотонів до ~100 кеВ шляхом активації К-ліній характеристичного рентгенівського випроміню- вання в тонких шарах простих речовин зовнішнім однофотонним -джерелом. Розроблена одномірна модель комбінованого планарного джерела у вигляді набору тонких шарів неактивних та активних матеріалів. Мо- дель забезпечує можливість аналізу та оптимізації джерела щодо інтенсивності та спектрального складу ви- промінювання. Запропоновано та досліджено методом комп'ютерного моделювання варіант технологічної мішені для напрацювання на прискорювачі електронів планарных -джерел на основі ізотопів 57Со і 179Та.. Показано, що відносно виходу ізотопів, придатних для використання в абсорбціометрії, фотоядерний метод є конкурентоспроможним у порівнянні з реакторними і циклотронними технологіями.