The research of X-ray and gamma radiation absorption by layered structures

Исследуется прохождение рентгеновского и гамма-излучений через сборки, состоящие из слоѐв материалов с различными атомными номерами. Экспериментально измерены и рассчитаны в GEANT спектры излучения, прошедшего через сборку. Использовались различные спектры падающего излучения (в экспериментах источн...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2016
Автори: Deiev, O.S., Mazilov, A.A., Mazilov, A.V., Maslov, N.I., Shulika, M.Yu.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2016
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/115399
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The research of X-ray and gamma radiation absorption by layered structures / O.S. Deiev, A.A. Mazilov, A.V. Mazilov, N.I. Maslov, M.Yu. Shulika // Вопросы атомной науки и техники. — 2016. — № 3. — С. 105-110. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-115399
record_format dspace
spelling Deiev, O.S.
Mazilov, A.A.
Mazilov, A.V.
Maslov, N.I.
Shulika, M.Yu.
2017-04-04T06:06:01Z
2017-04-04T06:06:01Z
2016
The research of X-ray and gamma radiation absorption by layered structures / O.S. Deiev, A.A. Mazilov, A.V. Mazilov, N.I. Maslov, M.Yu. Shulika // Вопросы атомной науки и техники. — 2016. — № 3. — С. 105-110. — Бібліогр.: 13 назв. — англ.
1562-6016
PACS: 07.85.Fv, 61.80.Cb
https://nasplib.isofts.kiev.ua/handle/123456789/115399
Исследуется прохождение рентгеновского и гамма-излучений через сборки, состоящие из слоѐв материалов с различными атомными номерами. Экспериментально измерены и рассчитаны в GEANT спектры излучения, прошедшего через сборку. Использовались различные спектры падающего излучения (в экспериментах источники излучения ²⁴¹Am, ⁵⁷Co, ¹³⁷Cs, ⁶⁰Co), а также комбинации материалов с различными атомными номерами и толщинами. Определены коэффициенты КS и КЕ, характеризующие прохождение частиц через гетерогенные слои. КS и КЕ меняют знак с увеличением энергии квантов и растут с увеличением толщины пластин.
It is investigated the passage of X-ray and gamma radiation through assembly consisting of layers of materials with different atomic numbers. It was experimentally measured and calculated in GEANT the spectra of radiation, passed through the assembly. Various spectra of the incident radiation (in experiments, the radiation sources ²⁴¹Am, ⁵⁷Co, ¹³⁷Cs, ⁶⁰Co), as well as combinations of materials with different atomic numbers and thicknesses were used. Coefficients of КS and КЕ that characterize the passage of particles through heterogeneous layers were defined. КS and КЕ change sign with increasing of photon energy and growth with increase of the plates thickness.
Досліджується проходження рентгенівського і гамма-випромінювань через зборки, що складаються із шарів матеріалів з різними атомними номерами. Експериментально виміряні і розраховані в GEANT спектри випромінювання, що пройшло через зборку. Використовувалися різні спектри падаючого випромінювання (в експериментах джерела випромінювання ²⁴¹Am, ⁵⁷Co, ¹³⁷Cs, ⁶⁰Co), а також комбінації матеріалів з різними атомними номерами й товщинами. Визначено коефіцієнти КS і КЕ, що характеризують проходження часток через гетерогенні шари. КS і КЕ міняють знак зі збільшенням енергії квантів і ростуть зі збільшенням товщини пластин.
The Russian Science Foundation (project № 15-12-10019) supported this work.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Детекторы и детектирование ядерных излучений
The research of X-ray and gamma radiation absorption by layered structures
Исследование поглощения рентгеновского и гамма-излучений слоистыми структурами
Дослідження поглинання рентгенівського і гамма-випромінювань шаруватими структурами
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The research of X-ray and gamma radiation absorption by layered structures
spellingShingle The research of X-ray and gamma radiation absorption by layered structures
Deiev, O.S.
Mazilov, A.A.
Mazilov, A.V.
Maslov, N.I.
Shulika, M.Yu.
Детекторы и детектирование ядерных излучений
title_short The research of X-ray and gamma radiation absorption by layered structures
title_full The research of X-ray and gamma radiation absorption by layered structures
title_fullStr The research of X-ray and gamma radiation absorption by layered structures
title_full_unstemmed The research of X-ray and gamma radiation absorption by layered structures
title_sort research of x-ray and gamma radiation absorption by layered structures
author Deiev, O.S.
Mazilov, A.A.
Mazilov, A.V.
Maslov, N.I.
Shulika, M.Yu.
author_facet Deiev, O.S.
Mazilov, A.A.
Mazilov, A.V.
Maslov, N.I.
Shulika, M.Yu.
topic Детекторы и детектирование ядерных излучений
topic_facet Детекторы и детектирование ядерных излучений
publishDate 2016
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Исследование поглощения рентгеновского и гамма-излучений слоистыми структурами
Дослідження поглинання рентгенівського і гамма-випромінювань шаруватими структурами
description Исследуется прохождение рентгеновского и гамма-излучений через сборки, состоящие из слоѐв материалов с различными атомными номерами. Экспериментально измерены и рассчитаны в GEANT спектры излучения, прошедшего через сборку. Использовались различные спектры падающего излучения (в экспериментах источники излучения ²⁴¹Am, ⁵⁷Co, ¹³⁷Cs, ⁶⁰Co), а также комбинации материалов с различными атомными номерами и толщинами. Определены коэффициенты КS и КЕ, характеризующие прохождение частиц через гетерогенные слои. КS и КЕ меняют знак с увеличением энергии квантов и растут с увеличением толщины пластин. It is investigated the passage of X-ray and gamma radiation through assembly consisting of layers of materials with different atomic numbers. It was experimentally measured and calculated in GEANT the spectra of radiation, passed through the assembly. Various spectra of the incident radiation (in experiments, the radiation sources ²⁴¹Am, ⁵⁷Co, ¹³⁷Cs, ⁶⁰Co), as well as combinations of materials with different atomic numbers and thicknesses were used. Coefficients of КS and КЕ that characterize the passage of particles through heterogeneous layers were defined. КS and КЕ change sign with increasing of photon energy and growth with increase of the plates thickness. Досліджується проходження рентгенівського і гамма-випромінювань через зборки, що складаються із шарів матеріалів з різними атомними номерами. Експериментально виміряні і розраховані в GEANT спектри випромінювання, що пройшло через зборку. Використовувалися різні спектри падаючого випромінювання (в експериментах джерела випромінювання ²⁴¹Am, ⁵⁷Co, ¹³⁷Cs, ⁶⁰Co), а також комбінації матеріалів з різними атомними номерами й товщинами. Визначено коефіцієнти КS і КЕ, що характеризують проходження часток через гетерогенні шари. КS і КЕ міняють знак зі збільшенням енергії квантів і ростуть зі збільшенням товщини пластин.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/115399
citation_txt The research of X-ray and gamma radiation absorption by layered structures / O.S. Deiev, A.A. Mazilov, A.V. Mazilov, N.I. Maslov, M.Yu. Shulika // Вопросы атомной науки и техники. — 2016. — № 3. — С. 105-110. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT deievos theresearchofxrayandgammaradiationabsorptionbylayeredstructures
AT mazilovaa theresearchofxrayandgammaradiationabsorptionbylayeredstructures
AT mazilovav theresearchofxrayandgammaradiationabsorptionbylayeredstructures
AT maslovni theresearchofxrayandgammaradiationabsorptionbylayeredstructures
AT shulikamyu theresearchofxrayandgammaradiationabsorptionbylayeredstructures
AT deievos issledovaniepogloŝeniârentgenovskogoigammaizlučeniisloistymistrukturami
AT mazilovaa issledovaniepogloŝeniârentgenovskogoigammaizlučeniisloistymistrukturami
AT mazilovav issledovaniepogloŝeniârentgenovskogoigammaizlučeniisloistymistrukturami
AT maslovni issledovaniepogloŝeniârentgenovskogoigammaizlučeniisloistymistrukturami
AT shulikamyu issledovaniepogloŝeniârentgenovskogoigammaizlučeniisloistymistrukturami
AT deievos doslídžennâpoglinannârentgenívsʹkogoígammavipromínûvanʹšaruvatimistrukturami
AT mazilovaa doslídžennâpoglinannârentgenívsʹkogoígammavipromínûvanʹšaruvatimistrukturami
AT mazilovav doslídžennâpoglinannârentgenívsʹkogoígammavipromínûvanʹšaruvatimistrukturami
AT maslovni doslídžennâpoglinannârentgenívsʹkogoígammavipromínûvanʹšaruvatimistrukturami
AT shulikamyu doslídžennâpoglinannârentgenívsʹkogoígammavipromínûvanʹšaruvatimistrukturami
AT deievos researchofxrayandgammaradiationabsorptionbylayeredstructures
AT mazilovaa researchofxrayandgammaradiationabsorptionbylayeredstructures
AT mazilovav researchofxrayandgammaradiationabsorptionbylayeredstructures
AT maslovni researchofxrayandgammaradiationabsorptionbylayeredstructures
AT shulikamyu researchofxrayandgammaradiationabsorptionbylayeredstructures
first_indexed 2025-11-26T11:44:08Z
last_indexed 2025-11-26T11:44:08Z
_version_ 1850619881097003008
fulltext ISSN 1562-6016. ВАНТ. 2016. №3(103) 105 THE RESEARCH OF X-RAY AND GAMMA RADIATION ABSORPTION BY LAYERED STRUCTURES O.S. Deiev 1 , A.A. Mazilov 1,2 , A.V. Mazilov 1 , N.I. Maslov 1 , M.Yu. Shulika 1 1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2 Belgorod State University, Belgorod, Russia It is investigated the passage of X-ray and gamma radiation through assembly consisting of layers of materials with different atomic numbers. It was experimentally measured and calculated in GEANT the spectra of radiation, passed through the assembly. Various spectra of the incident radiation (in experiments, the radiation sources 241Am, 57Co, 137Cs, 60Co), as well as combinations of materials with different atomic numbers and thicknesses were used. Coefficients of КS and КЕ that characterize the passage of particles through heterogeneous layers were defined. КS and КЕ change sign with increasing of photon energy and growth with increase of the plates thickness. PACS: 07.85.Fv, 61.80.Cb INTRODUCTION Search of the materials that provide effective protec- tion against ionizing radiation remains a topical area of radiation physics [1 - 5]. Protection of nuclear power plants, reactors and tanks for spent nuclear fuel, neutron sources, electron accelerators – traditional use of biolog- ical protection [2, 4]. In nuclear medicine the protection is necessary when working with highly active radioiso- topes as at the stage of pharmaceuticals preparation, as in the process of medical procedures conducting [6]. Typically, this problem is solved by “force method” – by increasing of the protective layer thickness to a value that provides an acceptable dose to personnel. However, effective protection of electronics, instruments and de- tectors is particularly relevant in the space industry, where criterion of weight minimizing and size protec- tion is important. In most practical tasks the radiation protection of nuclear facilities is a heterogeneous mixture of different environments. Also multilayer protective systems are applied in engineering of screening devices for various types of detectors, for example, their collimating systems. The calculation of such protection by analytical methods is quite difficult because the buildup factors of heterogeneous environments depend on a large number of parameters of the task: energy of gamma radiation, thickness, material, quantity and geometry of the layers and their relative position. In works [3 - 5] the main regularities of buildup factors formation were described and a number of formulas for mathematical calculation were proposed. It is shown that the efficiency of protec- tion against gamma radiation by a heterogeneous as- sembly is better in case when the light material facing to the source. However, obviously, these formulas cannot take into account the variety of practical problems of building and calculation of multilayer defenses. In such cases it is necessary to use computer simulation meth- ods. Now for the computer simulation of radiation pas- sage through heterogeneous media, various computer codes are widely used. In particular GEANT 3 and GEANT 4 [9] offer an adequate and comprehensive simulation of all physical processes of ionizing radiation interaction with the material, taking into account the geometry and elemental composition of protection. The purpose of this work is the numerical descrip- tion and experimental measurement of the spectral and dosimeter characteristics of the radiation passed through pairwise interchanged layers of materials with different nuclear charges Z, and thickness. The values of coeffi- cients determining the noncommutativeness of the quan- ta passing through the heterogeneous layers were meas- ured and calculated. We refused to test the repeated two-layer periodic structures, as in [7, 8] it is shown that the effect of commutativity decreases, and the overall weakening tends to value in a homogeneous medium with averaged Z. Conversely, in the experiments and calculations we have focused on increasing of the materials thicknesses. 1. EXPERIMENTAL TECHNIQUE AND COMPUTER MODEL There were used designed and manufactured in NSC KIPT sealed modules of two types: non-cooled silicon PIN detector and the detection system scintillator CsI(Tl) – silicon PIN photodiode [10, 11]. These mod- ules and readout electronics showed high stability when used in nuclear physics experiments, in control device of element concentrations in medical diagnostic devices [12], spectrometry and dosimetry [13]. The energy range of incident γ-rays was 10 keV…1.33 MeV (the radiation sources 241Am, 57Co, 137Cs, 60Co). Radiation with energy of 5…150 keV for Si detector and 35…1500 keV for the system scintilla- tor-photodiode was registered. Between the radiation source and the detector two plates of different materials were placed, the spectra of the passed radiation while changing the order of plates were measured. The attenuation of gamma radiation when passing through protection, consisting of alternating materials layers, depends ceteris paribus on the gamma radiation energy Еγ and the materials protection thicknesses. Using the software package GEANT 3.21, it was simulated the assembly, consisting of a point source of γ-quanta, of light and heavy metal plates and the total absorption detector. The scheme of experiments is shown on Fig. 1. a b Fig. 1. Schema of computer model ISSN 1562-6016. ВАНТ. 2016. №3(103) 106 The quanta from source, passing a heterogeneous target, enter the detector, which records the number of particles and their total remaining energy. It was simu- lated as a discrete photon energies as an energy spectra. The assembly was located in the air. The detector was close to the last plate. On Fig. 2 it is shown a visual representation in GEANT 4 [7] of the trajectories of X-rays and gamma quanta (green line) for the system Al-Pb (a) and Pb-Al (b). The layers of material are changed places, and radi- ation that passes into the forward hemisphere is detect- ed. a b Al-Pb Pb-Al Fig. 2. Visual representation in GEANT 4 of the trajec- tories of X-rays and γ-quanta (green line) for the system Al-Pb (a) and Pb-Al (b). The layers of material are changed places, and radiation that passes into the forward hemisphere is detected (blue sphere-counter). Green sphere-counter registers electrons The aim of computer simulation was to determine the radiation protection efficiency in case of the se- quence of materials location: light to source and heavy to source. 2. RESULTS AND DISCUSSION Hereinafter, the material on the left (written in text as a part of the pair), is faced to the radiation source, both in calculations and in experiments. For example, writing 1.2 mm Fe-0.3 mm Pb means the arrangement of objects in the following way: radiation source – first foil 1.2 mm Fe – second foil 0.3 mm Pb – Si or CsI detector (in experiment) or counter quanta (in calculations). Let, SLH is a count of quanta Nγ recorded by the de- tector, and ЕLH, MeV – total energy Nγ(Еγ)∙Еγ, in case of location "Source → light material (L) → heavy material (H) → detector" and SHL, ЕHL – in case of location "Source → heavy material (H) → light material (L) →detector". In the experiment and calculations the var- ious sizes, possessing noncommutative feature, are compared. Let us introduce the coefficients of the dif- ferences in the passage КS , КЕ: КS = (SHL / SLH -1)·100%, (1) КЕ = (ЕHL / ЕLH -1)·100%. (2) If the coefficients are greater than zero, then the pro- tection efficiency light material heavy material (LH) above. If less than zero, the protection efficiency of HL above. 2.1. COMPUTER SIMULATION RESULTS Using the software package GEANT 3.21, computer simulation for studying the γ-radiation passage through a combination of tungsten and aluminum foils, in analo- gy to [7, 8], was carried out. The simulation results are shown on Fig. 3. Fig. 3. The change of KE depending on the thickness of tungsten and the energy of incident radiation For thicknesses of Al-4.8 mm and W-0.3 mm in the energy range of incident radiation from 50 to 400 keV (with exception of 70…100 keV) КS > 0 and KE > 0 for 1…6%, that shows a better protection in case of materi- als location of light to source. At the energy range 70…100 keV the opposite effect (noncommutativeness changes sign) is occur. It is con- nected with generation of characteristic X-ray (CXR) in tungsten. K-absorption edge for tungsten is 69.524 keV. By increasing the thickness of tungsten up to 0.6 mm, the influence of CXR on the commutatively value de- creases, and while increasing up to 1 mm, the influence of CXR disappears. Also with the help of the software package GEANT 3.21 the passage of γ-radiation through a com- bination of lead and aluminum foils was studied. The scheme of experiment is shown on Fig. 1, where the light material is taken as aluminum, and heavy as lead. The results of computer simulation for different ma- terials thicknesses and energies of incident radiation are presented on Fig. 4,a,b. a b Fig. 4. The change of KE depending on lead and alumi- num thicknesses and energy of the incident radiation ISSN 1562-6016. ВАНТ. 2016. №3(103) 107 For these calculations the effect of commutativeness sign changing by generating of lead CXR (K absorption edge 88.006 keV) is also occurred. The presented data of computer simulation of gam- ma radiation passage through heterogeneous protection system show that multi-layer protection is more effi- cient in case when the light material facing to the source, as theoretically predicted. The effect can reach 5…25% depending on the energy of incident radiation and combinations of thicknesses of protective materials. However, at energies of incident radiation close to the energy of K absorption edge for heavy material the opposite effect with a change of commutativity sign can be occurred, and it is more significant for thin plates. Typical results of calculations in GEANT 4 are pre- sented on Fig. 5,a-c. a Eγ = 60 keV b Eγ = 122 keV с Eγ = 662 keV Fig. 5. The calculated energy distributions of quanta, depending on the energy of incident radiation for a pair of Pb-Al Some numerical values КS and КЕ are given in Ta- ble 1. Note the change of noncommutativeness sign and its growth with increasing of the plates thickness at a fixed value of the quanta energy. Table 1 The numerical values КS and КЕ, % Eγ, keV Plates combination, mm КS, % КЕ, % 60 Pb 0.3-Al 4 -12.8 -11.83 122 Pb 0.3-Fe 3 -13.71 -7.9 122 Pb 0.6-Fe 6 -22.6 -16.6 122 Pb 0.9-Fe 9 -34.8 -23.22 122 Pb 0.3-Al 4 -5.9 -5.15 490 Pb 0.3-Al 4 0.43 3.07 662 Al 4-Pb 0.3 0.2 0.1 662 Al 8-Pb 0.6 0.9 0.4 662 Al 24-Pb 1.8 6.4 3 662 Al 48-Pb 3.6 13.5 6.81 662 Al 96-Pb 7.2 77.1 32.1 662 Al 120-Pb 9 101.5 43 662 Al 172-Pb 13 156.3 67.14 2 000 Al 4-Pb 0.3 0.18 0.04 2 000 Al 96-Pb 7.2 8.48 1.67 2 000 Al 116-Pb-8.6 26.83 5.14 2 000 Al 126-Pb 9.4 28.76 5.92 2 000 Al 140-Pb 10.4 29.36 5.83 2 000 Al 160-Pb 11.9 30.61 6.42 3 000 Pb 7.2-Al 96 6.2 0. 3 000 Al 160-Pb 11.9 19.49 1.55 5 000 Al 96-Pb 7.2 3.9 -0.8 5 000 Al 160-Pb 11.9 11.08 -1.3 100 000 Al 160-Pb 11.9 1.54 -1.27 100 000 Al 200-Pb 20 6.1 1.1 200 000 Al 200-Pb 20 0.47 9.3 In Table 2 the calculations for КS, and КЕ and Eγ = 662 keV are given, and the quanta percentage N662/N0 passed a couple of plates without interaction is present- ed. The thickness of the lead plate is constant, and the thickness of Al is increased. There is an increase of noncommutativeness effect with increasing of Al thickness, which correlates with the decrease of N662/N0. Accordingly, a greater propor- tion of quanta dissipated, that causes the increase of noncommutativeness. Table 2 The numerical values of КS, КЕ, N662/N0 Plates combination, mm КS, % КЕ, % N662/N0 Pb 12-Al 6 4.6 2.5 0.216 Pb 12-Al 12 10.46 5.84 0.192 Pb 12-Al 24 21.87 11.1 0.15 Pb 12-Al 48 47.64 23.06 0.092 Pb 12-Al 96 96.05 44.6 0.035 Pb 12-Al 120 112.6 49.1 0.022 Pb 12-Al 160 141.2 59.3 0.01 The calculations of gamma-rays passage through the layers of materials were carried out and КS and КЕ for the quanta spectrum of ~ 1/Еγ were counted. On Figs. 6, 7 the calculated spectra of the incident quanta and quanta passed through a couple of plates are shown. ISSN 1562-6016. ВАНТ. 2016. №3(103) 108 Fig. 6. Calculated energy distributions of passed gam- ma-ray for pairs Pb-Fe, and the spectrum of incident quanta ~1/Еγ (0…1 MeV) Fig. 7. Calculated energy distributions of passed gam- ma-ray for pairs Pb-Fe, and the spectrum of incident quanta ~1/Еγ (0…10 MeV) The numerical values of КS, КЕ for gamma-quanta spectrum ~1/Еγ are shown in Table 3. Table 3 The numerical values of КS, КЕ for the quanta spectrum ~1/Еγ Plates combination, mm КS , % КЕ , % ~1/Еγ, MeV Pb 2-Fe 10 11.4 5.86 0…1 Pb 2-Fe 10 6.32 0.95 0…5 Pb 2-Fe 10 5.5 0.25 0…10 Pb 10-Fe 40 8.6 3.6 0…100 Pb 20-Fe 80 10.76 3.0 0…100 Pb 30-Fe 100 5.56 7.52 0…100 2.2. EXPERIMENTAL RESULTS Radiation sources 241Am, 57Co, 137Cs, 60Co were used, the energy range for gamma-rays was 0.06…1.33 MeV. Experimental spectra of radiation passed through a plate pair were measured and КS value was evaluated. Note that within the experiment precision the peaks of total absorption in the calculations and in the experi- ment are equal. On Fig. 8 it is shown the experimental energy spectra of quanta for the radiation source 241Am and a pair Pb-Al, measured by Si-detector. In the left part of the spectrum in case of location pairs Al-Pb by solid material to the detector appears L triplet of Pb CXR (see Fig. 8,a). In this experiment it is significantly influence the lead CXR on the КS value. Moreover, the КS value changes sign. a Al 5.8 mm - Pb 0.3 mm b Pb 0.3 mm - Al 5.8 mm Fig. 8. Experimental energy distributions of quanta for radiation source 241Am and the pair Pb-Al measured by Si-detector On Fig. 9 it is shown the experimental energy spec- tra of quanta for the radiation source 241Am and a pair Pb-Fe, measured by the CsI-detector. Fig. 9. Experimental energy distribution of quanta for radiation source 57Со and the pair Pb-Fe measured by CsI-detector For pair Pb 0.3 mm and Fe 2.55 mm and the energy Еγ =122 keV we have КS = (SHL/SLH -1)·100% = -10.5%. In this experiment it is significantly influence of lead CXR on КS value, and there is a difference – additional peak in the left part of the spectrum (channels 600…800). On Fig. 10 it is shown the experimental energy spec- tra of quanta for the radiation source 137Сs and a pair Pb-Fe, measured by CsI detector. In these experiments, Compton scattering of quanta on КS value is essentially, and there is a distinction on the left part of the spectra. ISSN 1562-6016. ВАНТ. 2016. №3(103) 109 a Pb 10 mm - Fe 8 mm b Pb 1.2 mm - Fe 12 mm c Pb 10 mm - Fe 52 mm Fig. 10. Experimental energy distribution of quanta for radiation source 137Сs and pairs Pb-Fe, measured by CsI-detector On Fig. 11 it is shown the experimental energy spec- tra of quanta for radiation source 60Со and a pair of Pb- Fe, measured by the CsI-detector. The experimental results are shown in Table 4. a Without plates b Pb 1.8 mm - Fe 10 mm Fig. 11. Experimental energy distribution of quanta for radiation source 60Co and the pair of Pb-Fe, measured by the CsI-detector Table 4 Experimental values КS Radiation source Plates combination, mm КS ,% 241Аm 1 Cu - 0.3 Pb -0.5 241Аm 1.2 Fe - 0.3 Pb -6.28 241Аm 2 Fe - 0.3 Pb -9.5 241Аm 4 Al - 0.3 Pb -3.8 241Аm 5.8 Al - 0.3 Pb -7.3 Co57 0.3 Pb - Fe 2.55 -10.5 137Сs 0.3 Pb - 1 Cu 0.7 137Сs 1.2 Pb - 12 Fe 25.4 137Сs 10 Pb - 8 Fe 29.9 137Сs 10 Pb - 52 Fe 113.7 137Сs 40 Pb - 52 Fe 49.8 60Co 1.8 Pb - Fe 10 20.0 As experiment showed a sign of noncommu- tativeness is changed with increasing of photon energy and the plate thickness. This coincides with the data of calculations in GEANT 4 and GEANT 3. CONCLUSIONS The passage of X-ray and gamma radiation through assembly consisting of layers of materials with different atomic numbers was investigated. It was experimentally measured and calculated in GEANT the spectra of ra- diation, passed through the assembly. The various spec- tra of incident radiation (in experiments, the radiation sources 241Am, 57Co, 137Cs, 60Co), as well as combina- tions of materials with different atomic numbers and thicknesses were used. Coefficients КS and КЕ that characterize the passage of particles through heterogeneous layers were defined. КS and КЕ change sign with increasing of photon energy and growth with increase of the plates thickness. The physical causes of the observed commutatively were determined. It occurs only via secondary process- es: Compton scattering, photoelectric effect, electron- positron pairs production. Thus, the effect size growthes with the thickness increas. The data of computer simulation of the gamma radi- ation passage through heterogeneous protection system show that multi-layer protection, usually effective in ISSN 1562-6016. ВАНТ. 2016. №3(103) 110 case of arrangement of a light material to the radiation source. At the incident X-ray radiation energies close to the energy of K-, L-absorption edge for heavy material the noncommutativeness sign is negative and the inverse effect is observed, so in such situation more effective protection is in case of a heavy material location to the radiation source. This effect is most significant for thin foils (~1 mm). The Russian Science Foundation (project № 15-12- 10019) supported this work. REFERENCES 1. J.K. Shultis, R.E. Faw. Radiation Shielding. – Upper Saddle River. NJ: Prentice Hall PTR. 1996, 533 p. 2. M.G. Stabin. Radiation Protection and Dosimetry: An Introduction to Health Physics. New York: Springer Science + Business Media. LLC. 2007, 386 p. 3. N.G. Gusev, V.А. Кlimanov, V.P. Маshkovich, А.P. Suvorow. Physical basis of radiation protection. М.: «Energoatomizdat». 1989, v. 1 (in Russian). 4. Questions reactor physics protection / Sbornik statej pod red. D.L. Broder, et al. М.: «Gosatomizdat». 1963 (in Russian). 5. V.P. Маshkovich, А.V. Кudriavzeva. Protection against Ionizing Radiation: Spravochnik. М.: « En- ergoatomizdat ». 1995 (in Russian). 6. J.M. Boone, A.E. Chavez. Comparison of X-ray Cross Sections for Diagnostic and Therapeutic Med- ical Physics // Med. Phys. 1996, v. 23, № 12, p. 1997-2005. 7. I.I. Aksenov, V.A. Belous, I.G. Goncharov, et al. Laminated material for gamma radiation shielding // Functional Materials. 2009, v. 16, № 3, p. 342-346. 8. B.V. Borts, M.I. Bratchenko, S.V. Dyuldya, I.G. Marchenko, D.A. Sanzharevsky, V.I. Tkachenko. Monte carlo evaluation of the radiation shielding ef- ficiency of laminated composites under electron and photon irradiation // East Eur. J. Phys. 2014, v. 1, № 3, p. 55-67. 9. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, et al. Geant4 – a Simulation Toolkit // NIM. 2003, v. A22, № 3, p. 250-303. 10. G.P. Vasilyev, V.K. Voloshin, S.K. Kiprich, et al. Encapsulated modules of silicon detectors of ionizing radiation // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2010, № 3, p. 200-204. 11. G.L. Bochek, O.S. Deiev, N.I. Maslov, V.K. Voloshyn. X-ray lines relative intensity depending on detector efficiency, foils and cases thickness for primary and scattered spectra // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2011, № 3, p. 42-49. 12. G.P. Vasiliev, V.K. Voloshyn, O.S. Deiev, et al. Measurement of Radiation Energy by Spectrometric Systems Based on Uncooled Silicon Detectors // Journal of Surface Investigation. X-ray. Synchrotron and Neutron Techniques. 2014, v. 8, № 2, p. 391- 397. 13. G.P. Vasiliev, O.S. Deiev, et al. Radiation dose de- termination by dual channel spectrometr in energy range 0.005…1 MeV // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”. 2012, № 4, p. 205-209. Article received 14.01.2016 ИССЛЕДОВАНИЕ ПОГЛОЩЕНИЯ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЙ СЛОИСТЫМИ СТРУКТУРАМИ А.С. Деев, А.А. Мазилов, А.В. Мазилов, Н.И. Маслов, М.Ю. Шулика Исследуется прохождение рентгеновского и гамма-излучений через сборки, состоящие из слоѐв материа- лов с различными атомными номерами. Экспериментально измерены и рассчитаны в GEANT спектры излу- чения, прошедшего через сборку. Использовались различные спектры падающего излучения (в эксперимен- тах источники излучения 241Am, 57Co, 137Cs, 60Co), а также комбинации материалов с различными атомными номерами и толщинами. Определены коэффициенты КS и КЕ, характеризующие прохождение частиц через гетерогенные слои. КS и КЕ меняют знак с увеличением энергии квантов и растут с увеличением толщины пластин. ДОСЛІДЖЕННЯ ПОГЛИНАННЯ РЕНТГЕНІВСЬКОГО І ГАММА-ВИПРОМІНЮВАНЬ ШАРУВАТИМИ СТРУКТУРАМИ О.С. Деєв, О.О. Мазілов, О.В. Мазілов, М.І. Маслов, М.Ю. Шуліка Досліджується проходження рентгенівського і гамма-випромінювань через зборки, що складаються із шарів матеріалів з різними атомними номерами. Експериментально виміряні і розраховані в GEANT спектри випромінювання, що пройшло через зборку. Використовувалися різні спектри падаючого випромінювання (в експериментах джерела випромінювання 241Am, 57Co, 137Cs, 60Co), а також комбінації матеріалів з різними атомними номерами й товщинами. Визначено коефіцієнти КS і КЕ, що характеризують проходження часток через гетерогенні шари. КS і КЕ міняють знак зі збільшенням енергії квантів і ростуть зі збільшенням товщи- ни пластин.