Tribological properties of vacuum arc Cr-O-N coatings in macro- and microscale
In this paper the tribological properties of Cr-O-N coatings deposited using vacuum arc plasma flux in macro- (sphere-on-disc test) and microscale (AFM-atomic force microscopy) are investigated. It was found that the specific wear rate determined in AFM measurements (micro scale) is approximatel...
Saved in:
| Date: | 2016 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2016
|
| Series: | Вопросы атомной науки и техники |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/115428 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Tribological properties of vacuum arc Cr-O-N coatings in macro- and microscale / A.S. Kuprin, T.A. Kuznetsova, A. Gilewicz, G.N. Tolmachova, V.D. Ovcharenko,S.O. Abetkovskaia, T.I. Zubar, A.L. Khudoley, S.A. Chizhik, O. Lupicka, B. Warcholinski // Вопросы атомной науки и техники. — 2016. — № 6. — С. 211-214. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-115428 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1154282025-02-23T17:53:38Z Tribological properties of vacuum arc Cr-O-N coatings in macro- and microscale Трибологические свойства вакуумно-дуговых покрытий Cr-O-N на макро- и микроуровнях Трибологічні властивості вакуумно-дугових покриттів Cr-O-N на макро- і мікрорівнях Kuprin, A.S. Kuznetsova, T.A. Gilewicz, A. Tolmachova, G.N. Ovcharenko, V.D. Abetkovskaia, S.O. Zubar, T.I. Khudoley, A.L. Chizhik, S.A. Lupicka, O. Warcholinski, B. Low temperature plasma and plasma technologies In this paper the tribological properties of Cr-O-N coatings deposited using vacuum arc plasma flux in macro- (sphere-on-disc test) and microscale (AFM-atomic force microscopy) are investigated. It was found that the specific wear rate determined in AFM measurements (micro scale) is approximately 2 orders higher than the macroscale. This is probably due to much higher Hertzian contact stress. Исследовались трибологические свойства Cr-O-N-покрытий, осаждённых из потока вакуумно-дуговой плазмы на макро- (тест сфера-на-диске) и микроуровне (AСM-атомно-силовая микроскопия). Было установлено, что удельная скорость износа в измерениях AСM (микроуровень) примерно на 2 порядка выше, чем в макромасштабе. Это, вероятно, связано с гораздо более высокими контактными напряжениями. Досліджувалися трибологічні властивості Cr-O-N-покриттів, осаджених з потоку вакуумно-дугової плазми на макро- (тест сфера-на-диску) і мікрорівні (AСM-атомно-силова мікроскопія). Було встановлено, що питома швидкість зносу у вимірюваннях AСM (мікрорівень) приблизно на 2 порядки вище, ніж в макромасштабі. Це, ймовірно, пов'язано з набагато більш високими контактними напруженнями. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n° IRSES-GA-2013-612593 2016 Article Tribological properties of vacuum arc Cr-O-N coatings in macro- and microscale / A.S. Kuprin, T.A. Kuznetsova, A. Gilewicz, G.N. Tolmachova, V.D. Ovcharenko,S.O. Abetkovskaia, T.I. Zubar, A.L. Khudoley, S.A. Chizhik, O. Lupicka, B. Warcholinski // Вопросы атомной науки и техники. — 2016. — № 6. — С. 211-214. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 07.79.Lh, 52.77.Dq, 52.80.Vp, 62.20.Qp, 81.10.Pq https://nasplib.isofts.kiev.ua/handle/123456789/115428 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
| spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Kuprin, A.S. Kuznetsova, T.A. Gilewicz, A. Tolmachova, G.N. Ovcharenko, V.D. Abetkovskaia, S.O. Zubar, T.I. Khudoley, A.L. Chizhik, S.A. Lupicka, O. Warcholinski, B. Tribological properties of vacuum arc Cr-O-N coatings in macro- and microscale Вопросы атомной науки и техники |
| description |
In this paper the tribological properties of Cr-O-N coatings deposited using vacuum arc plasma flux in macro-
(sphere-on-disc test) and microscale (AFM-atomic force microscopy) are investigated. It was found that the
specific wear rate determined in AFM measurements (micro scale) is approximately 2 orders higher than the
macroscale. This is probably due to much higher Hertzian contact stress. |
| format |
Article |
| author |
Kuprin, A.S. Kuznetsova, T.A. Gilewicz, A. Tolmachova, G.N. Ovcharenko, V.D. Abetkovskaia, S.O. Zubar, T.I. Khudoley, A.L. Chizhik, S.A. Lupicka, O. Warcholinski, B. |
| author_facet |
Kuprin, A.S. Kuznetsova, T.A. Gilewicz, A. Tolmachova, G.N. Ovcharenko, V.D. Abetkovskaia, S.O. Zubar, T.I. Khudoley, A.L. Chizhik, S.A. Lupicka, O. Warcholinski, B. |
| author_sort |
Kuprin, A.S. |
| title |
Tribological properties of vacuum arc Cr-O-N coatings in macro- and microscale |
| title_short |
Tribological properties of vacuum arc Cr-O-N coatings in macro- and microscale |
| title_full |
Tribological properties of vacuum arc Cr-O-N coatings in macro- and microscale |
| title_fullStr |
Tribological properties of vacuum arc Cr-O-N coatings in macro- and microscale |
| title_full_unstemmed |
Tribological properties of vacuum arc Cr-O-N coatings in macro- and microscale |
| title_sort |
tribological properties of vacuum arc cr-o-n coatings in macro- and microscale |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2016 |
| topic_facet |
Low temperature plasma and plasma technologies |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/115428 |
| citation_txt |
Tribological properties of vacuum arc Cr-O-N coatings in macro- and microscale / A.S. Kuprin, T.A. Kuznetsova, A. Gilewicz, G.N. Tolmachova, V.D. Ovcharenko,S.O. Abetkovskaia, T.I. Zubar, A.L. Khudoley, S.A. Chizhik, O. Lupicka, B. Warcholinski // Вопросы атомной науки и техники. — 2016. — № 6. — С. 211-214. — Бібліогр.: 11 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT kuprinas tribologicalpropertiesofvacuumarccroncoatingsinmacroandmicroscale AT kuznetsovata tribologicalpropertiesofvacuumarccroncoatingsinmacroandmicroscale AT gilewicza tribologicalpropertiesofvacuumarccroncoatingsinmacroandmicroscale AT tolmachovagn tribologicalpropertiesofvacuumarccroncoatingsinmacroandmicroscale AT ovcharenkovd tribologicalpropertiesofvacuumarccroncoatingsinmacroandmicroscale AT abetkovskaiaso tribologicalpropertiesofvacuumarccroncoatingsinmacroandmicroscale AT zubarti tribologicalpropertiesofvacuumarccroncoatingsinmacroandmicroscale AT khudoleyal tribologicalpropertiesofvacuumarccroncoatingsinmacroandmicroscale AT chizhiksa tribologicalpropertiesofvacuumarccroncoatingsinmacroandmicroscale AT lupickao tribologicalpropertiesofvacuumarccroncoatingsinmacroandmicroscale AT warcholinskib tribologicalpropertiesofvacuumarccroncoatingsinmacroandmicroscale AT kuprinas tribologičeskiesvojstvavakuumnodugovyhpokrytijcronnamakroimikrourovnâh AT kuznetsovata tribologičeskiesvojstvavakuumnodugovyhpokrytijcronnamakroimikrourovnâh AT gilewicza tribologičeskiesvojstvavakuumnodugovyhpokrytijcronnamakroimikrourovnâh AT tolmachovagn tribologičeskiesvojstvavakuumnodugovyhpokrytijcronnamakroimikrourovnâh AT ovcharenkovd tribologičeskiesvojstvavakuumnodugovyhpokrytijcronnamakroimikrourovnâh AT abetkovskaiaso tribologičeskiesvojstvavakuumnodugovyhpokrytijcronnamakroimikrourovnâh AT zubarti tribologičeskiesvojstvavakuumnodugovyhpokrytijcronnamakroimikrourovnâh AT khudoleyal tribologičeskiesvojstvavakuumnodugovyhpokrytijcronnamakroimikrourovnâh AT chizhiksa tribologičeskiesvojstvavakuumnodugovyhpokrytijcronnamakroimikrourovnâh AT lupickao tribologičeskiesvojstvavakuumnodugovyhpokrytijcronnamakroimikrourovnâh AT warcholinskib tribologičeskiesvojstvavakuumnodugovyhpokrytijcronnamakroimikrourovnâh AT kuprinas tribologíčnívlastivostívakuumnodugovihpokrittívcronnamakroímíkrorívnâh AT kuznetsovata tribologíčnívlastivostívakuumnodugovihpokrittívcronnamakroímíkrorívnâh AT gilewicza tribologíčnívlastivostívakuumnodugovihpokrittívcronnamakroímíkrorívnâh AT tolmachovagn tribologíčnívlastivostívakuumnodugovihpokrittívcronnamakroímíkrorívnâh AT ovcharenkovd tribologíčnívlastivostívakuumnodugovihpokrittívcronnamakroímíkrorívnâh AT abetkovskaiaso tribologíčnívlastivostívakuumnodugovihpokrittívcronnamakroímíkrorívnâh AT zubarti tribologíčnívlastivostívakuumnodugovihpokrittívcronnamakroímíkrorívnâh AT khudoleyal tribologíčnívlastivostívakuumnodugovihpokrittívcronnamakroímíkrorívnâh AT chizhiksa tribologíčnívlastivostívakuumnodugovihpokrittívcronnamakroímíkrorívnâh AT lupickao tribologíčnívlastivostívakuumnodugovihpokrittívcronnamakroímíkrorívnâh AT warcholinskib tribologíčnívlastivostívakuumnodugovihpokrittívcronnamakroímíkrorívnâh |
| first_indexed |
2025-11-24T04:17:28Z |
| last_indexed |
2025-11-24T04:17:28Z |
| _version_ |
1849643864829198336 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2016. №6(106)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 211-214. 211
TRIBOLOGICAL PROPERTIES OF VACUUM ARC Cr-O-N COATINGS
IN MACRO- AND MICROSCALE
A.S. Kuprin
1
, T.A. Kuznetsova
2
, A. Gilewicz
3
, G.N. Tolmachova
1
, V.D. Ovcharenko
1
,
S.O. Abetkovskaia
2
, T.I. Zubar
2
, A.L. Khudoley
2
, S.A. Chizhik
2
, O. Lupicka
3
, B. Warcholinski
3
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2
A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of
Belarus, Minsk Belarus;
3
Koszalin University of Technology, Koszalin Poland
E-mail: bogdan.warcholinski@tu.koszalin.pl
In this paper the tribological properties of Cr-O-N coatings deposited using vacuum arc plasma flux in macro-
(sphere-on-disc test) and microscale (AFM atomic force microscopy) are investigated. It was found that the
specific wear rate determined in AFM measurements (micro scale) is approximately 2 orders higher than the
macroscale. This is probably due to much higher Hertzian contact stress.
PACS: 07.79.Lh, 52.77.Dq, 52.80.Vp, 62.20.Qp, 81.10.Pq
INTRODUCTION
The wear of the tool, particularly premature failure is
a serious technical and economical problem. The
solution to this would be to modify the tool surface by
deposition of a thin hard coating. Such treatment greatly
improves the mechanical, and especially tribological
properties of the tool.
Due to the good tribological and mechanical
properties: high hardness and adhesion to the steel
substrate, low coefficient of friction and excellent wear
and corrosion resistance transition metal nitrides
deposited by PVD methods are used in industry as
protective coatings [1, 2].
Users requirements often exceed the possibilities of
their use caused by the properties of a two-component
coatings. Their modification by adding further elements
can significantly increase the properties of the coatings,
for example thermal stability, resistance to wear and
corrosion. Cr-O-N system was also investigated, but the
main topic of interest was the structure and morphology
of coatings and their mechanical and tribological
properties was not a major subject of investigations [3-5].
Cr-O-N coatings are interesting as protective
coatings because of their resistance to oxidation and
wear, but also due to photo-thermal conversion of solar
energy as a solar selective coating of the absorber [6], or
as a decorative coatings because of their different colors [7].
Friction and wear are the main characteristics of
coatings resistant to abrasion. The investigations of the
properties of thin coatings with a thickness of 1…3 µm
require correction to the relatively soft steel substrate.
Here may be helpful the atomic force microscopy
(AFM) method [8], who meets high requirements for
testing the vacuum deposited thin films on polished
steel substrates.
The goal of the work is to investigate Cr-O-N
coatings deposited using vacuum arc plasma flux with
respect to their tribological properties as friction and
wear both in macro- and microscale using AFM.
1. EXPERIMENTAL
The Cr-O-N deposition process was performed by
unfiltered vacuum arc plasma flux method using Bulat
system. The chemical composition of the HS6-5-2 (DIN
standard) steel substrates is as follows (wt.%): C (0.87),
W (6.4), Mo (5.0), V (1,9), Cr (4.2), Mn (0.3), Si (0.4)
and Fe balanced. Before deposition, the substrates were
quenched and tempered to the hardness of 63 HRC,
ground and polished to a roughness Ra <0.02 µm, and
then ultrasonically cleaned in an alkaline bath. Next,
they were placed on the planetary rotating holder within
the distance of 300 mm from the cathode in vacuum
chamber. Rotation speed was about 30 rpm.
The chamber was evacuated to a pressure of 2×10
-3
Pa.
Prior to the deposition, the substrates were sputter
cleaned at pressure of 0.005 Pa using chromium (Cr
+
)
ions under 1300 V negative substrate bias voltage for 3 min.
The arc current was 90 A. The thin (~ 0.1 µm)
chromium layer was also deposited onto the substrate to
improve the adhesion. A deposition process was
performed at parameters: substrate bias voltage of -150 V,
arc current of 90 A, nitrogen pressure of 1.8 Pa. The
substrate temperature was maintained at about 400
0
C.
In case of Cr-O-N coatings gas mixture (N2+O2) with
different relative oxygen concentrations O2(x)=O2/(N2+O2)
where x equals 0, 5, 20 and 50 % were used. The
deposition time was kept at 45 min in all cases to obtain
about 7…8 μm thick coatings.
Taking into account the relative concentration of
oxygen during deposition of the coatings the samples
will be labeled as follows Cr-O(x)-N. This means that
for example of Cr-O(20)-N coating was obtained at
relative concentration of oxygen of 20 % in gas mixture.
Hardness and adhesion of the coatings were
determined methods and devices described in [9]. The
tribological properties of the coatings in macroscale:
coefficient of friction and specific wear rate were
computed based on studies conducted in the sphere-on-
disc geometry. The parameters of the test were: load of
20 N, sliding speed of about 0.2 m/s, dry friction
conditions, sliding distance of 1000 m, ambient
mailto:Witold.Gulbinski@tu.koszalin.pl
212 ISSN 1562-6016. ВАНТ. 2016. №6(106)
temperature, air atmosphere, a humidity of about 50 %.
The radius in wear tests was 12 mm. The alumina ball
with a diameter of 10 mm and Ra<0.03 μm was used as
a counterpart. Wear track profiles were determined
using the tactile profilograph Hommel Werke T8000
with skid roughness pick-up and an optical surface
profiler MicroXAM-800 (KLA-Tencor). The wear rate
was calculated as a wear volume divided by sliding
distance and normal load [10].
The morphologies, roughness, friction and wear of
Cr-O-N coatings in microscale were characterized by
atomic force microscope (NT-206, produced by MTM
Belarus). The radius of the diamond tip about 200 nm
was used.
2. RESULTS AND DISCUSSION
Roughness of the Cr-O-N coatings investigated using
tactile Hommel tester and AFM are gathered in Table 1.
The coatings deposited at relative oxygen concentration
equal 0, 5 and 20 % shows similar roughness tested in
both methods. It is obvious that roughness investigated
using AFM is lower due to small scanned area
20×20 µm.
Table 1
Roughness of Cr-O-N coatings using tactile Hommel
tester T8000 and AFM
Coating Roughness [nm]
Hommel Werke
T8000
AFM
Cr-O(0)-N 50±5 14.6
Cr-O(5)-N 46±4 9.5
Cr-O(20)-N 50±2 11.4
Cr-O(50)-N 64±2 21.5
Hardness of the coatings generally increase with rise of
relative oxygen concentration during deposition, Fig. 1.
The critical load Lc2 when delamination of the coating
occurs systematically decreases with O2(x) increase,
starting from about 100 N and ending with 58 N. High
hardness, about 30 GPa, for coatings deposited at O2(x)
equal 20 and 50 % is probably the cause of the
brittleness of these coatings and related to it low critical
load Lc2.
Fig. 1. Hardness and critical load Lc2 of Cr-O-N
coatings deposited at different relative oxygen
concentration O2(x)
The wear in macroscale was investigated in sphere-on-
disc geometry. The wear tracks presented in Fig. 2
exhibit decrease in wear depth with relative oxygen
concentration increase.
Fig. 2. Micrographs of wear tracks of the Cr-O-N
coatings investigated
Table 2
Tribological characteristics of the coatings investigated
by sphere-on-disc test
Coating
Average
coefficient
of friction
Specific wear
rate
[m
3
/Nm]
Wear
depth
[µm]
Cr-O(0)-N 0.65±0.03 (4.4±0.1)×10
-15
6.3±0.6
Cr-O(5)-N 0.60±0.05 (3.2±0.3)×10
-15
5.1±0.1
Cr-O(20)-N 0.48±0.01 (9.7±5.2)×10
-16
2.5±1.3
Cr-O(50)-N 0.50±0.01 (6.7±1.6)×10
-17
0.8±0.1
ISSN 1562-6016. ВАНТ. 2016. №6(106) 213
All computed data. i.e.: average coefficient of
friction, specific wear rate and wear depth are collected
in Table 2. It is interesting that all above data decrease
with increasing the relative oxygen concentration. The
main type of wear is abrasion (mechanisms: plowing,
cutting, fragmentation), although adhesive wear or
surface fatigue can't be excluded.
To form visible in optical microscopy track sufficient
load should be applied. For this load a deflection of the
substrate and destruction of the coating not due to wear,
but because of the brittle fracture of the coating occur.
From the other hand lower load does not damage the
coating, but the wear can be so small that the use of
profilometry would be impossible. The depth of the
track of tens of nanometers compared to the height of
droplets on the surface, which can have a height of
hundreds of nanometers is not recognized and is lost in
the "noise" deviation. It is helpful in this case the use of
atomic force microscopy [11]. This allows the study
with resolution of nanometers, the surface topography
of the coating, and for detecting the non-uniformity of
the surface properties, which is associated with the
existence of different phases in the coating.
The test on wear resistance using AFM method was
generally performed on the scan area 5×5 µm in two
regimes: "fast" with load about 1.6 mN, 3 scans at the same
place, 128 lines in scan with velocity 6.0×10
-6
m/s (Fig. 3)
and "slow" with load about 1.2 mN, 4 scans at the same
surface and 256 lines in scan with velocity 3.5×10
-6
m/s.
Cr-O(20)-N the most wear resistant sample of was worn by
13 scans, Fig. 4. The radius of the diamond tip about 200 nm
and load 1…2 m∙N allows to create maximal Hertzian
pressure in contact about 69…77 GPa for "fast" wear and
about 61…69 GPa for "slow" wear. The maximal shear
stresses on the surface of coatings were 21…24 GPa for
"fast" wear and 19…22 GPa for "slow" wear.
Fig. 3. Result of the "fast wear" 3 scans of Cr-O(20)-N
coating
The image of the wear track (see Figs. 3 and 4) is
visualized by the same diamond probe with load about
300 µN. The depth of wear was measured by cross-
section profile of track. In case of "fast" and "slow"
regimes the wear depth was defined as about 3 nm for
3 scans and 40 nm for 13 scans respectively.
Contrary to the sphere-on-disc method, in the AFM
the friction and wear test are conducted at different
loadings. Generally they decrease with relative oxygen
concentration during deposition increases.
Fig. 4. Result of the «slow wear»13 scans
of Cr-O(20)-N coating
To obtain comparable results in wear test after
preliminary attempts to determine the conditions (see
above) the following were chosen: scan area 5×5 µm,
4 scans, 256 lines/scan, load 1.2 mN, scan velocity
3.5×10
-6
m/s. The specific wear rate was calculated
according to Archard's formula. The results are gathered
in Table. 3.
Table 3
Results of the wear, friction and roughness of CrON
coatings obtained by AFM with the diamond tip
Coating
Coefficient of
friction
Specific
wear rate
[m
3
/N·m]
Wear depth
[nm]
Cr-(0)-N 0.29±0.01 1.6·10
-13
80
Cr-(5)-N 0.32±0.03 6.1·10
-14
30
Cr-(20)-N 0.24±0.01 2.5·10
-14
12
Cr-(50)-N 0.133±0.001 2.0·10
-13
100
Both specific wear rate and wear depth decreases with
relative oxygen concentration increase to about O2(x) =
20 %, and next radically increase for O2(x) = 50 %. It is
interesting that specific wear rate is about 2 orders
higher than in macroscale (calculated based on results
from sphere-on-disc geometry). It can be connected
with large difference in Hertzian contact stress, about
1.5 GPa in macroscale and about 60…70 GPa in
microscale.
CONCLUSIONS
Vacuum arc plasma flux deposition method at constant
pressure and with different relative oxygen
concentration in chamber nitrogen atmosphere during
the process allowed to obtain the set of the coatings
characterized by different chemical composition. As a
214 ISSN 1562-6016. ВАНТ. 2016. №6(106)
result of mechanical and tribological tests was found
that:
1. Hardness of Cr-O-N coatings increases and critical
load Lc2 decreases with relative oxygen
concentration increase.
2. The roughness of Cr-O-N coatings tested both by
tactile Hommel tester and using AFN is
approximately similar to O2(x) = 20 % and then
increase.
3. The wear depth defined in sphere-on-disc test
(macroscale) decreases monotonously with increase
of O2(x). In case of measurements made by AFM
(microscale) the wear depth decreases with increase
of O2(x) to 20 % and for O2(x) = 50 % significantly
increases.
4. The specific wear rate calculated in the basis of sphere-
on-disc results (macroscale) monotonically decreases
with increase on relative oxygen concentration to the
lowest value (6.7±1.6)×10
-17
m
3
/Nm. In case of results
from AFM the specific wear rate decreases to the
lowest value 2.5·10
-14
m
3
/Nm for O2(20) and then
increases to value 2.0·10
-13
m
3
/Nm for O2(50). The result
of wear rate in microscale is about 2 to 4 orders higher
than in macroscale. It is probably connected with
significantly higher Hertzian contact stress.
ACKNOWLEDGEMENTS
The research leading to these results has received
funding from the People Programme (Marie Curie
Actions) of the European Union's Seventh Framework
Programme FP7/2007-2013/ under REA grant
agreement n° IRSES-GA-2013-612593.
REFERENCES
1. J. Kopac, M. Sokolic, S. Dolinek. Tribology of coated
tools in conventional and HSC machining // Journal of
Materials Processing Technology. 2001, v. 118, p. 377-
384.
2. J. Bull, D.G. Bhat, M.H. Staia. Properties and
performance of commercial TiCN coatings. Part 2:
tribological performance // Surface & Coatings
Technology. 2003, v. 163-164, p. 507-514.
3. S. Collard, H. Kupfer, G. Hecht, W. Hoyer,
H. Moussaoui. The reactive magnetron deposition of
CrNxOy films: first results of property investigations //
Surface & Coatings Technology. 1999, v. 112, p. 181-
184.
4. L. Castaldi, D. Kurapov, A. Reiter, V. Shklover,
P. Schwaller, J. Patscheider. Effect of the oxygen
content on the structure, morphology and oxidation
resistance of Cr-O-N coatings // Surface & Coatings
Technology 2008, v. 203, p. 545-549.
5. M. Tacikowski, I. Ulbin-Pokorska, T. Wierzchoń.
Microstructure of the composite oxynitrided chromium
layers produced on steel by a duplex method// Surface
& Coatings Technology. 2006, v. 201, p. 2776-2781.
6. L. Wu, J. Gao, Z. Liu, L. Liang, F. Xia, H. Cao.
Thermal aging characteristics of CrNxOy solar selective
absorber coating for flat plate solar thermal collector
applications // Solar Energy Materials & Solar Cells.
2013, v. 114, p. 186-191.
7. S. Agouram, F. Bodart, G. Terwagne. LEEIXS and
XPS studies of reactive unbalanced magnetron sputtered
chromium oxynitride thin films with air // Journal of
Electron Spectroscopy and Related Phenomena. 2004,
v. 134, p. 173-181.
8. B. Bhushan. Nanotribology and nanomechanics, an
introduction / Springer-Verlag, Berlin: ‘Heidelberg”, 2
nd
ed, 2008.
9. A. Gilewicz, B. Warcholinski. Deposition and
characterization of Mo2N/CrN multilayer coatings
prepared by cathodic arc evaporation // Surface &
Coatings Technology. 2015, v. 279, p. 126-133.
10. J.F. Archard. Contact and Rubbing of Flat Surface //
Journall of Applied Physics. 1953, v. 24, № 8, p. 981-
988.
11. H.J. Butt, B. Cappella, M. Kappl. Force
measurements with the atomic force microscope:
Technique, interpretation and applications // Surface
Science Reports. 2005, v. 59, p. 1-152.
Article received 30.09.2016
ТРИБОЛОГИЧЕСКИЕ СВОЙСТВА ВАКУУМНО-ДУГОВЫХ ПОКРЫТИЙ Cr-O-N
НА МАКРО- И МИКРОУРОВНЯХ
А.С. Куприн, T.A. Кузнецова, A. Гилевич, Г.Н. Толмачёва, В.Д. Овчаренко, С.О. Абетковская, Т.И. Зубар,
A.Л. Худолей, С.А. Чижик, O. Лупицка, Б. Вархолинский
Исследовались трибологические свойства Cr-O-N-покрытий, осаждённых из потока вакуумно-дуговой
плазмы на макро- (тест сфера-на-диске) и микроуровне (AСM атомно-силовая микроскопия). Было
установлено, что удельная скорость износа в измерениях AСM (микроуровень) примерно на 2 порядка
выше, чем в макромасштабе. Это, вероятно, связано с гораздо более высокими контактными напряжениями.
ТРИБОЛОГІЧНІ ВЛАСТИВОСТІ ВАКУУМНО-ДУГОВИХ ПОКРИТТІВ Cr-O-N
НА МАКРО- І МІКРОРІВНЯХ
О.С. Купрін, T.A. Кузнєцова, A. Гілевич, Г.М. Толмачова, В.Д. Овчаренко, С.О. Абетковська, Т.І. Зубар,
A.Л. Худолєй, С.А. Чижик, O. Лупіцька, Б. Вархолінський
Досліджувалися трибологічні властивості Cr-O-N-покриттів, осаджених з потоку вакуумно-дугової
плазми на макро- (тест сфера-на-диску) і мікрорівні (AСM атомно-силова мікроскопія). Було встановлено,
що питома швидкість зносу у вимірюваннях AСM (мікрорівень) приблизно на 2 порядки вище, ніж в
макромасштабі. Це, ймовірно, пов'язано з набагато більш високими контактними напруженнями.
|