Development of complex technology of strengthening of thin-walled cutting tools
The complex technology to strengthen thin-walled cutting tools by coating for a long, stable operation of disk knives has been proposed. The cutting tools for crushing nuts used in the confectionery industry made of cold-rolled steel sheet of 65 G and X20Cr13 types were used for coatings applicati...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2016 |
| Hauptverfasser: | , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2016
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/115465 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Development of complex technology of strengthening of thin-walled cutting tools/ T.S. Skoblo, S.P. Romaniuk, A.I. Sidashenko, V.S. Taran, Yu.N. Nezovibat’ko, N.N. Pilgui // Вопросы атомной науки и техники. — 2016. — № 6. — С. 286-290. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-115465 |
|---|---|
| record_format |
dspace |
| spelling |
Skoblo, T.S. Romaniuk, S.P. Sidashenko, A.I. Taran, V.S. Nezovibat’ko, Yu.N. Pilgui, N.N. 2017-04-05T06:43:25Z 2017-04-05T06:43:25Z 2016 Development of complex technology of strengthening of thin-walled cutting tools/ T.S. Skoblo, S.P. Romaniuk, A.I. Sidashenko, V.S. Taran, Yu.N. Nezovibat’ko, N.N. Pilgui // Вопросы атомной науки и техники. — 2016. — № 6. — С. 286-290. — Бібліогр.: 14 назв. — англ. 1562-6016 PACS: 81.40.-z https://nasplib.isofts.kiev.ua/handle/123456789/115465 The complex technology to strengthen thin-walled cutting tools by coating for a long, stable operation of disk knives has been proposed. The cutting tools for crushing nuts used in the confectionery industry made of cold-rolled steel sheet of 65 G and X20Cr13 types were used for coatings application. Two methods of cleaning and strengthening of such tools were proposed and investigated: ion bombardment with titanium ions (PVD) and vacuum-arc method using RF-discharge (RF). The structure and chemical composition of knifes with TiN coating were investigated using scanning electron microscopy and X-ray microanalysis. A new way to strengthen thin disk knives with TiN nanocoating was patented in Ukraine. Предложена комплексная технология упрочнения тонкостенного режущего инструмента с помощью покрытий для обеспечения более длительной стабильной работы дисковых ножей. Покрытия наносили на режущий инструмент, изготовленный из холоднокатаной тонколистовой стали 65Г и 20Х13, для дробления орехов в кондитерском производстве. Предложены и исследованы два метода очистки и упрочнения таких инструментов: ионная бомбардировка ионами титана и вакуумно-дуговой метод с использованием ВЧ- разряда. Исследованы структура и химический состав ножей с покрытием TiN с помощью сканирующей электронной микроскопии и микрорентгеноспектрального анализа. Новый способ упрочнения тонкостенных дисковых ножей нанопокрытиями TiN защищён патентом Украины. Запропоновано комплексну технологію зміцнення тонкостінного ріжучого інструмента з допомогою покриттів для забезпечення більш тривалої стабільної роботи дискових ножів. Покриття наносили на ріжучий інструмент, виготовлений з холоднокатаної тонколистової сталі 65Г і 20Х13, для подрібнення горіхів в кондитерському виробництві. Запропоновано та досліджено два методи очищення і зміцнення таких інструментів: іонне бомбардування іонами титану і вакуумно-дуговий метод з використанням ВЧ- розряду. Досліджено структуру та хімічний склад ножів з покриттям TiN за допомогою скануючої електронної мікроскопії та мікрорентгеноспектрального аналізу. Новий спосіб зміцнення тонкостінних дискових ножів нанопокриттям TiN захищений патентом України. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Low temperature plasma and plasma technologies Development of complex technology of strengthening of thin-walled cutting tools Разработка комплексной технологии упрочнения тонкостенного режущего инструмента Розробка комплексної технології зміцнення тонкостінного ріжучого інструмента Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Development of complex technology of strengthening of thin-walled cutting tools |
| spellingShingle |
Development of complex technology of strengthening of thin-walled cutting tools Skoblo, T.S. Romaniuk, S.P. Sidashenko, A.I. Taran, V.S. Nezovibat’ko, Yu.N. Pilgui, N.N. Low temperature plasma and plasma technologies |
| title_short |
Development of complex technology of strengthening of thin-walled cutting tools |
| title_full |
Development of complex technology of strengthening of thin-walled cutting tools |
| title_fullStr |
Development of complex technology of strengthening of thin-walled cutting tools |
| title_full_unstemmed |
Development of complex technology of strengthening of thin-walled cutting tools |
| title_sort |
development of complex technology of strengthening of thin-walled cutting tools |
| author |
Skoblo, T.S. Romaniuk, S.P. Sidashenko, A.I. Taran, V.S. Nezovibat’ko, Yu.N. Pilgui, N.N. |
| author_facet |
Skoblo, T.S. Romaniuk, S.P. Sidashenko, A.I. Taran, V.S. Nezovibat’ko, Yu.N. Pilgui, N.N. |
| topic |
Low temperature plasma and plasma technologies |
| topic_facet |
Low temperature plasma and plasma technologies |
| publishDate |
2016 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Разработка комплексной технологии упрочнения тонкостенного режущего инструмента Розробка комплексної технології зміцнення тонкостінного ріжучого інструмента |
| description |
The complex technology to strengthen thin-walled cutting tools by coating for a long, stable operation of disk
knives has been proposed. The cutting tools for crushing nuts used in the confectionery industry made of cold-rolled
steel sheet of 65 G and X20Cr13 types were used for coatings application. Two methods of cleaning and
strengthening of such tools were proposed and investigated: ion bombardment with titanium ions (PVD) and
vacuum-arc method using RF-discharge (RF). The structure and chemical composition of knifes with TiN coating
were investigated using scanning electron microscopy and X-ray microanalysis. A new way to strengthen thin disk
knives with TiN nanocoating was patented in Ukraine.
Предложена комплексная технология упрочнения тонкостенного режущего инструмента с помощью
покрытий для обеспечения более длительной стабильной работы дисковых ножей. Покрытия наносили на
режущий инструмент, изготовленный из холоднокатаной тонколистовой стали 65Г и 20Х13, для дробления
орехов в кондитерском производстве. Предложены и исследованы два метода очистки и упрочнения таких
инструментов: ионная бомбардировка ионами титана и вакуумно-дуговой метод с использованием ВЧ-
разряда. Исследованы структура и химический состав ножей с покрытием TiN с помощью сканирующей
электронной микроскопии и микрорентгеноспектрального анализа. Новый способ упрочнения тонкостенных
дисковых ножей нанопокрытиями TiN защищён патентом Украины.
Запропоновано комплексну технологію зміцнення тонкостінного ріжучого інструмента з допомогою
покриттів для забезпечення більш тривалої стабільної роботи дискових ножів. Покриття наносили на
ріжучий інструмент, виготовлений з холоднокатаної тонколистової сталі 65Г і 20Х13, для подрібнення
горіхів в кондитерському виробництві. Запропоновано та досліджено два методи очищення і зміцнення
таких інструментів: іонне бомбардування іонами титану і вакуумно-дуговий метод з використанням ВЧ-
розряду. Досліджено структуру та хімічний склад ножів з покриттям TiN за допомогою скануючої
електронної мікроскопії та мікрорентгеноспектрального аналізу. Новий спосіб зміцнення тонкостінних
дискових ножів нанопокриттям TiN захищений патентом України.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/115465 |
| citation_txt |
Development of complex technology of strengthening of thin-walled cutting tools/ T.S. Skoblo, S.P. Romaniuk, A.I. Sidashenko, V.S. Taran, Yu.N. Nezovibat’ko, N.N. Pilgui // Вопросы атомной науки и техники. — 2016. — № 6. — С. 286-290. — Бібліогр.: 14 назв. — англ. |
| work_keys_str_mv |
AT skoblots developmentofcomplextechnologyofstrengtheningofthinwalledcuttingtools AT romaniuksp developmentofcomplextechnologyofstrengtheningofthinwalledcuttingtools AT sidashenkoai developmentofcomplextechnologyofstrengtheningofthinwalledcuttingtools AT taranvs developmentofcomplextechnologyofstrengtheningofthinwalledcuttingtools AT nezovibatkoyun developmentofcomplextechnologyofstrengtheningofthinwalledcuttingtools AT pilguinn developmentofcomplextechnologyofstrengtheningofthinwalledcuttingtools AT skoblots razrabotkakompleksnoitehnologiiupročneniâtonkostennogorežuŝegoinstrumenta AT romaniuksp razrabotkakompleksnoitehnologiiupročneniâtonkostennogorežuŝegoinstrumenta AT sidashenkoai razrabotkakompleksnoitehnologiiupročneniâtonkostennogorežuŝegoinstrumenta AT taranvs razrabotkakompleksnoitehnologiiupročneniâtonkostennogorežuŝegoinstrumenta AT nezovibatkoyun razrabotkakompleksnoitehnologiiupročneniâtonkostennogorežuŝegoinstrumenta AT pilguinn razrabotkakompleksnoitehnologiiupročneniâtonkostennogorežuŝegoinstrumenta AT skoblots rozrobkakompleksnoítehnologíízmícnennâtonkostínnogorížučogoínstrumenta AT romaniuksp rozrobkakompleksnoítehnologíízmícnennâtonkostínnogorížučogoínstrumenta AT sidashenkoai rozrobkakompleksnoítehnologíízmícnennâtonkostínnogorížučogoínstrumenta AT taranvs rozrobkakompleksnoítehnologíízmícnennâtonkostínnogorížučogoínstrumenta AT nezovibatkoyun rozrobkakompleksnoítehnologíízmícnennâtonkostínnogorížučogoínstrumenta AT pilguinn rozrobkakompleksnoítehnologíízmícnennâtonkostínnogorížučogoínstrumenta |
| first_indexed |
2025-11-27T04:17:23Z |
| last_indexed |
2025-11-27T04:17:23Z |
| _version_ |
1850796045582204928 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2016. №6(106)
286 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 286-290.
DEVELOPMENT OF COMPLEX TECHNOLOGY OF STRENGTHENING
OF THIN-WALLED CUTTING TOOLS
T.S.
Skoblo
1
, S.P. Romaniuk
1
, A.I. Sidashenko
1
, V.S. Taran
2
, Yu.N. Nezovibat’ko
2
,
N.N. Pilgui
3
1
Kharkov Petro Vasylenko National Technical University of Agriculture, Kharkov, Ukraine;
2
Institute of Plasma Physics of NSC KIPT, Kharkov, Ukraine;
3
National Technical University “Kharkiv Polytechnic Institute”, Kharkov, Ukraine
E-mail: tservis@ticom.kharkov.ua
The complex technology to strengthen thin-walled cutting tools by coating for a long, stable operation of disk
knives has been proposed. The cutting tools for crushing nuts used in the confectionery industry made of cold-rolled
steel sheet of 65 G and X20Cr13 types were used for coatings application. Two methods of cleaning and
strengthening of such tools were proposed and investigated: ion bombardment with titanium ions (PVD) and
vacuum-arc method using RF-discharge (RF). The structure and chemical composition of knifes with TiN coating
were investigated using scanning electron microscopy and X-ray microanalysis. A new way to strengthen thin disk
knives with TiN nanocoating was patented in Ukraine.
PACS: 81.40.-z
INTRODUCTION
Crushers, mills and cutting machines are currently
used in processing raw materials in the food industry.
Their specific use depends on the process purpose,
material properties, the type and the shape of raw
materials and the cutting device operating principle. In
the confectionery industry one type of tools for
mechanical processing of food products is an edge
cutting tool. Its operational stability is insufficient; it is
no more than 1-2 days (processing to 1.8 t nuts).
The operational stability of a cutting tool can be
increased by using specific types of processing,
providing durability, fatigue strength, corrosion
resistance of parts depending on material and operating
conditions. One of promising strengthening methods is
the vacuum ion-plasma coating technology [1-4]. In
manufacturing process the most widely-spread ion-
plasma sedimentation methods are as follows:
magnetron sputtering [5]; vacuum-arc [6]. Each of these
sedimentation methods has its characteristics
determined by natural processes and specific
technological parameters.
Ion bombardment allows to obtain surface layers
with nanocrystalline structure, characterized by high
hardness, strength, durability and others
characteristics [7]. Except coating sediments, which
have improved characteristics, ion bombardment is used
to clean and activate the surface to be coated. Devices
as "Bulat" and other various modifications based on
them are used for coating products by the vacuum ion-
plasma method [8].
The process of coating on the surface of a cutting
tool is defined by coating material properties and
operating conditions of the instrument as well as
specific processes of hardened layer formation. Coating
characteristics depend on the method of their
application to the work surface, whereas operational
stability depends on its thickness and quality.
In the paper, the cutting tools for crushing nuts have
been coated by TiN on Bulat-6 type device by means of
ion-bombardment of Ti target as well as RF discharge.
The structure and chemical composition of the obtained
samples were investigated.
1. MATERIALS AND EXPERIMENT
The disk knives were initially subjected to grinding,
polishing and ultrasonic pretreatment (within 5 min.) to
clean the surface of the disk knives from contamination
after their production and activation of the surface in
creating optimal conditions for coating adhesion with a
cutting tool.
The cutting tools for crushing nuts in the
confectionery industry made of cold-rolled steel sheet
65 G (domestic production) and X20Cr13 have been
used for coatings application. The blade diameter was
76 mm with 32 mm aperture and 0.64 mm thickness.
X20Cr13 steel knives differ structurally. They have
thickened rim (along the tool perimeter of the cutting
blade) with thickness of 0.9 mm.
TiN coatings are obtained in the "Bulat-6"-type
device with production of special tools developed at
Institute of Plasma Physics of National Science Center,
Kharkov Institute of Physics and Technology [9].
Two methods of cleaning and strengthening of the
cutting tool were proposed and investigated: using ion
bombardment ions titanium (PVD) end using RF
discharge (RF). Strengthening was performed to ensure
sharpening effect in operation, on the one hand.
In the first method, TiN coating was obtained by the
vacuum-arc method using ion bombardment titanium
(PVD). To clean the tool surface in a vacuum chamber
it was created pressure no less than P = 5.3×10
-3
Pa. The
negative shift on the substrate was Ushift = -1000 V,
titanium cathode arc current was Id = 100 A,
Ifok = 0.3 A. Cleaning was performed pulsed to avoid
overheating of the instrument. For better adhesion of
TiN coating with a cutting tool we applied the pure
sublayer of Ti (for 1.5 min.) at a pressure of
P = 4×10
-3
Pa, Id = 100 A, Ifok = 0.3 A and Ushift =
-200 V. To get TiN nanocoating the vacuum chamber
mailto:tservis@ticom.kharkov.ua
ISSN 1562-6016. ВАНТ. 2016. №6(106) 287
was filled with nitrogen at purity 99.99 % up to pressure
P = 4×10
-1
Pa. TiN nanocoating deposition time was
24 min under the cyclic mode of sedimentation (3 min
deposition and 3 min pause). The thickness of the TiN
coating was 4 microns.
In the second method, TiN coating was obtained by
the vacuum-arc method using RF discharge. To clean
the tool surface of RF-discharge in a vacuum chamber it
was established argon pressure P = 0.1…0.09 Pa. The
negative shift on the substrate was Ushift = - 500 V. Tool
cleaning with RF-discharge was performed within
10 minutes. Pure Ti underlayer was applied within 3
minutes at a pressure of P = 2×10
-1
Pa, Id = 110 A,
IfokUshift= 0.65 and = - 100 V. To get TiN nanocoating
the vacuum chamber was also filled with nitrogen at
purity 99.99 % to pressure P = 1×10
-1
Pa. The negative
shift on the substrate was Ushift = - 100 V, and vacuum
arc parameters: Id = 110 А, Ifok= 0.65 А. Total time TiN
coating deposition was 15 minutes at the cyclic mode of
sedimentation (5 min deposition with 3 min pauses
(cycle 3)). The deposited TiN coating thickness was
measured by an interference microscope MYY-4-0 and
it comprised 3.3 µm.
2. RESULTS AND DISCUSSION
The exterior surface of the disk knives coated with
TiN after PVD is presented in Fig. 1.
Fig. 1. Hardened disk blade surface made from steel
X20Cr13 with TiN coating (4 µm)
The exterior surface of the disk knives coated with
TiN coating obtained by the vacuum-arc method using
RF discharge is presented in Fig. 2.
a b
c d
Fig. 2. The design of new reinforced knives from steel
65 G (a) and X20Cr13 (c) coated with TiN 3.3 µm with
RF treatment; reverse, not hardened side knife from
steel 65G (b) and X20Cr13 (d)
A new way to strengthen thin disk knives with TiN
nanocoating was patented in Ukraine [10].
The study of structure and chemical composition
heterogeneity of a knife coated with TiN was done in
scanning electron microscope JEOL JSM-6390LV.
With thermionic emission it was investigated
homogeneous distribution of components and
composition of the cutting tool surface layer hardened
with coating TiN PVD (Fig. 3) and RF (Fig. 4).
a
b c
Fig. 3. SEM image (a), distributions: of nitrogen (b) and
titanium (c) on knife surface treated with PVD method
The proportion of distributed components on the
disk knife surface strengthened with TiN is 71.21 %
Titan, 25.59 % Nitrogen, 1.88 % Carbon, 1.32%
Oxygen (see Fig. 3).
a
b c
d e
Fig. 4. SEM image (a), distributions: of oxygen (b),
carbon (c), nitrogen (d) and titanium (c) on knife
surface treated with RF processing
From the findings presented in Fig. 3, we can
conclude that components Ti and N, forming
superdispersed nitrides TiN, distribute evenly across the
surface. However, there is the presence of a droplet
288 ISSN 1562-6016. ВАНТ. 2016. №6(106)
phase, reduced the physical and mechanical properties
of the coating, which is a weak way of applying ion-
plasma coating technology using PVD. For high-tech
processes micro particles can be removed using filters.
Applying filters reduces productivity of the deposition
process, complicates facility operation [11].
The proportion of distributed components on the
knife surface strengthened with TiN under RF
processing is 63.43 % Titan, 31.76 % Nitrogen, 2.25 %
Carbon, 1.84 % Oxygen, 0.03% Silicon and 0.69 % Iron
(see Fig. 4).
The initial state of the surface layer of the product
significantly affects the quality of strengthening. Tables
1 and 2 present all components that are recognized in
local areas on the strengthened surface (Fig. 5).
а
b
Fig. 5. SEM images of structure of the strengthened
surface layer after PVD (a) and RF processing (b)
Through a comparative analysis of the modified TiN
coating surface during various deposition technologies,
it should be noted that the degree of purification is about
the same in both treatments. There is a presence of
residual oxides, sulfates, aluminosilicate, covered with
TiN coating. Thus, the results are significantly better
than the original surface condition (Table 3, Fig. 6). It
proves the number of microelements remained under
cover. The part of oxides is significantly bigger from the
reverse side of the knife (not strengthened). According
to the differences in these parameters we can assess the
initial surface condition of the tool, purification degree
and its efficiency.
Table 1
The results of micro X-ray analysis after PVD
(according to Fig. 5,a)
Spec-
trum
C N O Al Si S Ca Ti
1 1.64 25.63 1.82 70.91
2 13.47 19.19 10.02 0.21 0.65 0.34 1.57 54.54
3 18.17 21.10 14.29 0.64 3.87 41.93
4 2.40 20.45 2.26 0.31 74.58
5 1.59 26.16 1.29 0.08 0.08 70.79
Date analysis shows that the concentration of
alloying elements Si and Mn greatly exceed their share
according to GOST (Russian: ГОСТ) 14959,
characterizing the heterogeneity degree of alloying
elements distribution and their diffusion in the process
of consolidation.
Fig. 6. The structure of the not-strengthened knife
surface (back side)
Microanalysis found that brown and blue areas on
the back side of the cutting edge of the knife (see Fig. 2)
differ in chemical composition. At the edge there are the
following: C 5.74 %, O 12.48 %, Si 0.45%,
Ti 1.16%, Mn 4.51%, Fe 75.66%. In the next area
of the cutting edge (blue) there is much less oxygen
(almost 2 times: O 6.25 %), and reduced the
concentration of components: 4.84 C %, 0.47 Si%,
4.07 Mn%, 84.38 Fe%.
It should be noted, that due to color variability we can
assess the heating temperature of cutting edge tools.
These results confirm that maximum heating under
cyclic mode of coating on the knife made from steel
65 G is at a depth of 0.3 mm and corresponds to
200…240°C, whereas during the same period of time
the ion bombardment leads to overheating of 600°C, not
only cutting edge but also the entire blade with
thickness 0.64 mm (65 G) and 0.9 (steel X20Cr13).
Table 2
The results of micro X-ray analysis after RF (according to Fig. 5,b)
Spectrum C N O Na Al Si S Cl Fe K Ca Ti
1 4.47 39.32 5.01 0.44 0.03 0.07 0.43 50.24
2 5.45 26.40 4.78 0.38 0.09 0.09 12.2 50.62
3 35.56 4.73 16.27 5.13 0.04 0.17 0.34 3.13 0.68 0.64 0.43 32.88
4 27.41 8.20 13.96 1.59 0.02 0.07 0.12 0.58 0.43 0.21 0.17 47.23
5 5.71 31.06 5.61 0.57 0.05 0.64 56.37
6 3.00 32.05 2.13 0.27 0.68 61.85
ISSN 1562-6016. ВАНТ. 2016. №6(106) 289
TiN coating on disc blades made from steel 65 G
obtained by vacuum-arc method using titanium ion
bombardment led to overheating and loss of tool
flatness (they were deformed) in strengthening process.
This tool is unsuitable for further use. Overheat of
the tool also occurred during strengthening X20Cr13
steel knives, but thanks to their thick rim, flatness was
not violated. Lifetime of X20Cr13 steel knives coated
with TiN (4 mm) after PVD was 12 days, during which
10.8 t of products (nuts) were processed. Industrial tests
were carried out on the equipment for processing nuts –
Model CD-A Dicer of Urschel Laboratories,
Incorporated in terms of production of JSC
"Confectionary" Kharkovchanka". The design of
hardened TiN (PVD) coating of cutting tools made from
Steel X20Cr13 after operation in processing of 10.8 t
nuts is presented in Fig. 7. There is a plastic
deformation and a bend of the overheated cutting edge
of the knife. This type of damage is also typical for a
thin-walled tool without strengthening [12, 13].
Table 3
The chemical composition of not strengthened knife
surface
Spectrum C O Si Mn Fe
1 4.76 13.98 1.73 3.74 75.78
2 4.16 1.97 0.41 3.88 89.59
Lifetime of X20Cr13 steel knives coated with TiN
(3.3 mm) after PVD was 47 days, during which 42.5 t of
products were processed.
а
b
Fig. 7. The design of the knife made from X20Cr13 steel
coated with TiN (PVD) after operation with a hardened
(a) and its reverse (b) side
The study found that the best technology is a
vacuum-arc method using RF-discharge. Therefore,
further studies are being carried out on the machine that
had been strengthened in this way.
To determine physical and mechanical properties of
TiN coatings, the method of nanoindenter indentation
with recording depth, increasing load and recording
diagrams has been applied. We used «Nanoindenter
G200» with diamond Berkovich pyramid [14]. The
values of nanohardness, modulus of elasticity, material
resistance to elastic deformation by destruction
(estimated relative hardness to modulus H / E, called
plasticity index) and the material resistance of plastic
deformation (H3 / E2) are presented in Table 4.
The comparative analysis of loads diagrams during
nanoindentationconcludes that the sample coated with
TiN all indicators are much higher than the source
material. This indicates increase in elastic and plastic
properties of the product. Average value of
nanohardness for the initial sample was 3.91 GPa.
Average value of nanohardness for the sample coated
with TiN was 25.66 GPa. According to the test results,
mean value of modulus of elasticity of the sample
coated with TiN was 389.28 GPa, and data variation
reached 27.19 % due to the formation of inclusions
containing nitride. Average value of modulus of
elasticity for the virgin sample was 203.41 GPa with
9.52 % data spread. Resistance to plastic deformation of
the metal knife coated with TiN increased 77 times
compared to the original one.
Table 4
Physical and mechanical properties of samples
Sam-
ple
№
experi-
ment
Physical and mechanical properties of
the samples
Н,
GPa Е, GPa Н/Е H
3
/E
2
,GPa
Ini-
tial
1 3.915 204.382 0.019 0.0014
2 3.727 204.496 0.018 0.0012
3 4.084 184.049 0.022 0.0020
4 3.872 203.588 0.019 0.0014
5 3.99 205.773 0.019 0.0015
6 3.61 198.272 0.018 0.0012
7 3.8 209.751 0.018 0.0012
8 4.355 217.001 0.020 0.0018
With
TiN
1 16.338 283.446 0.058 0.054
2 28.724 423.457 0.068 0.132
3 23.694 366.271 0.065 0.099
4 30.499 451.878 0,067 0.139
5 24.406 369.622 0.066 0.106
6 34.314 483.028 0.071 0.173
7 27.16 401.275 0.068 0.124
8 20.19 335.307 0.060 0.073
CONCLUSIONS
Two technologies of strengthening a thin-walled TiN
coated cutting tool were investigated. It has been shown,
TiN coating on thin-walled disc knives made from steel
65 G by vacuum-arc method using titanium ion
bombardment leads to overheating and loss of tool
flatness in strengthening process. This tool is unsuitable
for further use. Strengthening TiN coated knives by
vacuum-arc method with HF treatment saves flatness
and increased operational stability of thin-walled tools.
For industrial production JSC "Confectionary"
Kharkovchanka" a new strengthening technology has
290 ISSN 1562-6016. ВАНТ. 2016. №6(106)
been developed. It allows to prolong the service life of
products in 47 times. Basic physical and mechanical
characteristics of the initial sample and the sample
coated with TiN were estimated. Comparative data
analysis has shown a significant increase of physical
and mechanical properties of TiN coating.
REFERENCES
1. V.I. Tereshin et al. Coating deposition and surface
modification under combined plasma processing //
Vacuum. 2004, v. 73, № 3-4, p. 555-560.
2. I.E. Garkusha et al. Properties of modified surface
layers of industrial steel samples processed by pulsed
plasma streams // Vacuum. 2000, v. 58, № 2, p. 195-
201.
3. V.I. Tereshin et al. Pulsed plasma accelerators of
different gas ions for surface modification // Review of
Scientific Instruments. 2002, v. 73, № 2, p. 831.
4. V.S. Taran et al. Recent developments of plasma-
based technologies for medicine and industry//
Nukleonika. 2012, v. 57, 2, p. 277-282 (in Russian).
5. J. Musil, H. Hruby. Superhard nanocomposite Ti1-
xAlxN films prepared by magnetron sputtering // Thin
Solid Films. 2000, v. 365, p. 104-109.
6. А.А. Аndreev et al. Vacuumno-dugovie pokrutija.
Kharkov: NCS KIPT, 2010, p. 318 (in Russian).
7. N.N. Belash et al. Vliyanie predvariteloy obrabotki i
sostava kompozitsionnyh pokrutij na stojkost’
tverdosplavnuh rezushih plastin // J. Physical surface
engineering. 2003, № 2, p. 23-25 (in Russian).
8. I.I. Aksenov et al. Vacuum arc: plasma source,
deposition of coatings, surface modification. Kiev:
"Naukova Dumka" NAS of Ukraine. 2012, p. 727 (in
Russian).
9. I.I. Aksenov et al // Vacuum plasma technology for
high energy.1980, v. 6, p. 918-924.
10. Patent No. 101699 Ukraine, IPC (2006.01) С23С
14/48, С23С 14/16. Key paviment exploitatio stycast
concocting reusage instrumento/ T.S. Skoblo,
S.P. Romanyuk, O.I. Stasenko, I. Garkusha, V.S. Taran,
Yu.M. Nezovybatko; Savnik patentbureau Romanyuk S.
P. No. u201503179. Appl. 06.04.2015.; publ. 25.09.15,
Bull. № 18.
11. V.V. Gasilin et al. Application of coatings in the
ARC discharges with plasma flow filtration // Problems
of Atomic Science and Technology. Series “Plasma
Physics”. 2006, v. 12, № 6, p. 210-212.
12. T.S. Skoblo, S.P. Romanyuk. Statistical analysis of
wear of cutting tools in the processing industry //
Storage and processing of agricultural products. 2013,
№ 7, p. 46-48.
13. T.S. Skoblo et al. Kinetics of structural changes of
the knives in the process of friction in the processing of
products // Scientific review. 2014, № 4, p. 197-204.
14. T.S. Skoblo, S.P. Romaniuk, A.I. Sidorenko. Study
of the properties of nano-coating on the cutting tool by
the method of nanoindentation // Agriculture and energy
supply. 2014, № 4, p. 92-100.
Article received 15.10.2016
РАЗРАБОТКА КОМПЛЕКСНОЙ ТЕХНОЛОГИИ УПРОЧНЕНИЯ ТОНКОСТЕННОГО
РЕЖУЩЕГО ИНСТРУМЕНТА
T.C. Скобло, С.П. Романюк, А.И. Сидашенко, В.С. Таран, Ю.Н. Незовибатько, Н.Н. Пильгуй
Предложена комплексная технология упрочнения тонкостенного режущего инструмента с помощью
покрытий для обеспечения более длительной стабильной работы дисковых ножей. Покрытия наносили на
режущий инструмент, изготовленный из холоднокатаной тонколистовой стали 65Г и 20Х13, для дробления
орехов в кондитерском производстве. Предложены и исследованы два метода очистки и упрочнения таких
инструментов: ионная бомбардировка ионами титана и вакуумно-дуговой метод с использованием ВЧ-
разряда. Исследованы структура и химический состав ножей с покрытием TiN с помощью сканирующей
электронной микроскопии и микрорентгеноспектрального анализа. Новый способ упрочнения тонкостенных
дисковых ножей нанопокрытиями TiN защищён патентом Украины.
РОЗРОБКА КОМПЛЕКСНОЇ ТЕХНОЛОГІЇ ЗМІЦНЕННЯ ТОНКОСТІННОГО РІЖУЧОГО
ІНСТРУМЕНТА
T.C.
Скобло, С.П. Романюк, О.I. Сідашенко, В.С. Таран, Ю.М. Незовибатько, Н.М. Пільгуй
Запропоновано комплексну технологію зміцнення тонкостінного ріжучого інструмента з допомогою
покриттів для забезпечення більш тривалої стабільної роботи дискових ножів. Покриття наносили на
ріжучий інструмент, виготовлений з холоднокатаної тонколистової сталі 65Г і 20Х13, для подрібнення
горіхів в кондитерському виробництві. Запропоновано та досліджено два методи очищення і зміцнення
таких інструментів: іонне бомбардування іонами титану і вакуумно-дуговий метод з використанням ВЧ-
розряду. Досліджено структуру та хімічний склад ножів з покриттям TiN за допомогою скануючої
електронної мікроскопії та мікрорентгеноспектрального аналізу. Новий спосіб зміцнення тонкостінних
дискових ножів нанопокриттям TiN захищений патентом України.
|