Новые доказательства важных теорем бестипового экстенсионального λ–исчисления
Построены новые доказательства двух теорем бестипового экстенсионального λ-исчисления: теоремы Карри о том, что произвольный λ-терм имеет βŋ-нормальную форму тогда и только тогда, когда он имеет β-нормальную форму, и теоремы нормализации для βŋ-редукции. Приведенный подход базируется на двух широко...
Збережено в:
| Опубліковано в: : | Кибернетика и системный анализ |
|---|---|
| Дата: | 2014 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2014
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/115820 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Новые доказательства важных теорем бестипового экстенсионального λ–исчисления / А.А. Лялецкий // Кибернетика и системный анализ. — 2014. — Т. 50, № 4. — С. 53-63. — Бібліогр.: 5 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Построены новые доказательства двух теорем бестипового экстенсионального λ-исчисления: теоремы Карри о том, что произвольный λ-терм имеет βŋ-нормальную форму тогда и только тогда, когда он имеет β-нормальную форму, и теоремы нормализации для βŋ-редукции. Приведенный подход базируется на двух широко известных результатах: теореме об откладывании ŋ-редукции и свойстве сильной нормализуемости ŋ-редукции, которые позволяют естественным образом распространить некоторые утверждения с обычного λ-исчисления на экстенсиональный случай.
Наведено нові доведення двох теорем безтипового екстенсіонального λ-числення: теореми Каррі про те, що будь-який λ-терм має βŋ-нормальну форму тоді й тільки тоді, коли він має β-нормальну форму, та теореми нормалізації для βŋ-редукції. Даний підхід грунтується на двох широко відомих результатах: теоремі про відкладання ŋ-редукції та властивості сильної нормалізовності ŋ-редукції, які дозволяють природним чином розповсюдити деякі твердження зі звичайного λ-числення на екстенсіональний випадок.
The paper contains new proofs of the following two theorems for the untyped extensional λ-calculus: the Curry theorem that any λ-term has a βŋ-normal form if and only if it has a β-normal form, and the normalization theorem for βŋ-reduction. Our approach is based on the following well-known results: the postponement theorem of ŋ-reduction and the strong normalization property of ŋ-reduction, which allow one to extend, in a natural way, some propositions from the usual λ-calculus onto the extensional case.
|
|---|