Stochastic Model Predictive Control for Hybrid Energy Systems
Microgrids are a promising approach for the integration of renewable energy sources in existing networks and the energy supply of rural areas. A cost effective option for a microgrid is given by a hybrid energy system, which combines e.g. diesel generators, photovoltaic panels and batteries as consi...
Gespeichert in:
| Veröffentlicht in: | Электронное моделирование |
|---|---|
| Datum: | 2017 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України
2017
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/115855 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Stochastic Model Predictive Control for Hybrid Energy Systems / A. Gienger, J. Sachs, O. Sawodny // Электронное моделирование. — 2017. — Т. 39, № 1. — С. 39-49. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-115855 |
|---|---|
| record_format |
dspace |
| spelling |
Gienger, A Sachs, J. Sawodny, O. 2017-04-14T12:52:06Z 2017-04-14T12:52:06Z 2017 Stochastic Model Predictive Control for Hybrid Energy Systems / A. Gienger, J. Sachs, O. Sawodny // Электронное моделирование. — 2017. — Т. 39, № 1. — С. 39-49. — Бібліогр.: 18 назв. — англ. 0204-3572 https://nasplib.isofts.kiev.ua/handle/123456789/115855 Microgrids are a promising approach for the integration of renewable energy sources in existing networks and the energy supply of rural areas. A cost effective option for a microgrid is given by a hybrid energy system, which combines e.g. diesel generators, photovoltaic panels and batteries as considered in this paper. However, the interaction of the components and uncertainties in the load demand and photovoltaic power make the controller design challenging. This paper discusses a Stochastic Model Predictive Control approach which yields promising results regarding effectiveness and reliability as shown in a simulation study. Использование электроэнергетических микрогрид-систем является перспективным подходом к интеграции возобновляемых источников в существующие сети и энергообеспечение сельской местности. Экономическая эффективность электроэнергетических микрогрид-систем зависит от гибридной энергосистемы, объединяющей дизельные генераторы, фотоэлектрические панели и батареи. Однако взаимодействие составляющих и неопределенность графика нагрузки и фотоэлектрической энергии обусловливают необходимость создания блока управления. Рассмотрено применение стохастической модели для интеллектуального управления, что позволит обеспечить эффективность и надежность энергосистемы. en Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України Электронное моделирование Математическое моделирование и вычислительные методы Stochastic Model Predictive Control for Hybrid Energy Systems Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Stochastic Model Predictive Control for Hybrid Energy Systems |
| spellingShingle |
Stochastic Model Predictive Control for Hybrid Energy Systems Gienger, A Sachs, J. Sawodny, O. Математическое моделирование и вычислительные методы |
| title_short |
Stochastic Model Predictive Control for Hybrid Energy Systems |
| title_full |
Stochastic Model Predictive Control for Hybrid Energy Systems |
| title_fullStr |
Stochastic Model Predictive Control for Hybrid Energy Systems |
| title_full_unstemmed |
Stochastic Model Predictive Control for Hybrid Energy Systems |
| title_sort |
stochastic model predictive control for hybrid energy systems |
| author |
Gienger, A Sachs, J. Sawodny, O. |
| author_facet |
Gienger, A Sachs, J. Sawodny, O. |
| topic |
Математическое моделирование и вычислительные методы |
| topic_facet |
Математическое моделирование и вычислительные методы |
| publishDate |
2017 |
| language |
English |
| container_title |
Электронное моделирование |
| publisher |
Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України |
| format |
Article |
| description |
Microgrids are a promising approach for the integration of renewable energy sources in existing networks and the energy supply of rural areas. A cost effective option for a microgrid is given by a hybrid energy system, which combines e.g. diesel generators, photovoltaic panels and batteries as considered in this paper. However, the interaction of the components and uncertainties in the load demand and photovoltaic power make the controller design challenging. This paper discusses a Stochastic Model Predictive Control approach which yields promising results regarding effectiveness and reliability as shown in a simulation study.
Использование электроэнергетических микрогрид-систем является перспективным подходом к интеграции возобновляемых источников в существующие сети и энергообеспечение сельской местности. Экономическая эффективность электроэнергетических микрогрид-систем зависит от гибридной энергосистемы, объединяющей дизельные генераторы, фотоэлектрические панели и батареи. Однако взаимодействие составляющих и неопределенность графика нагрузки и фотоэлектрической энергии обусловливают необходимость создания блока управления. Рассмотрено применение стохастической модели для интеллектуального управления, что позволит обеспечить эффективность и надежность энергосистемы.
|
| issn |
0204-3572 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/115855 |
| citation_txt |
Stochastic Model Predictive Control for Hybrid Energy Systems / A. Gienger, J. Sachs, O. Sawodny // Электронное моделирование. — 2017. — Т. 39, № 1. — С. 39-49. — Бібліогр.: 18 назв. — англ. |
| work_keys_str_mv |
AT giengera stochasticmodelpredictivecontrolforhybridenergysystems AT sachsj stochasticmodelpredictivecontrolforhybridenergysystems AT sawodnyo stochasticmodelpredictivecontrolforhybridenergysystems |
| first_indexed |
2025-12-07T13:26:10Z |
| last_indexed |
2025-12-07T13:26:10Z |
| _version_ |
1850856147047677952 |