Автоколебания пластины, взаимодействующей с потоком жидкости
Рассмотрены автоколебания пластины при двухстороннем взаимодействии с движущимся потоком жидкости. Перепад давлений, действующий на пластинку, описывается гиперсингулярным интегральным уравнением, которое решается методом Галеркина. В модели колебаний пластины учтена геометрическая нелинейность. Дви...
Збережено в:
| Опубліковано в: : | Прикладна гідромеханіка |
|---|---|
| Дата: | 2011 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут гідромеханіки НАН України
2011
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/116263 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Автоколебания пластины, взаимодействующей с потоком жидкости / К.В. Аврамов, Е.А. Стрельникова, А.А. Киреенков // Прикладна гідромеханіка. — 2011. — Т. 13, № 1. — С. 3-9. — Бібліогр.: 23 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Рассмотрены автоколебания пластины при двухстороннем взаимодействии с движущимся потоком жидкости. Перепад давлений, действующий на пластинку, описывается гиперсингулярным интегральным уравнением, которое решается методом Галеркина. В модели колебаний пластины учтена геометрическая нелинейность. Движение пластины описывается нелинейной динамической системой с конечным числом степеней свободы.
Досліджено автоколивання пластини при двосторонній взаємодії з потоком рідини, що рухається. Перепад тиску, який діє на пластину, описується гіперсингулярним інтегральним рівнянням, яке розв'язано методом Гальоркіна. В моделі коливань пластини враховано геометричну нелінійність. Рух пластини описується нелінійною динамічною системою із скінченним числом ступенів вільності.
Self-sustained vibrations of plates at two-sided interaction with moving fluid are considered. Fluid-structure interaction is described by a hyper singular integral equation, which is solved by Galerkin method. The plate performs geometrical nonlinear vibrations, which is described by finite-degree-of-freedom nonlinear dynamical system.
|
|---|---|
| ISSN: | 1561-9087 |