Распространение поверхностных гравитационных волн при наличии донных неоднородностей

Рассмотрена задача о распространении нелинейных волн на воде над неоднородным дном, характеризуемая параметрами нелинейности α и дисперсии β. Получена система двух связанных эволюционных уравнений в случае малых одного порядка α∼β. Недетерминированность задачи о распаде солитона при распространении...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Прикладна гідромеханіка
Дата:2016
Автори: Селезов, И.Т., Савченко, С.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут гідромеханіки НАН України 2016
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/116560
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Распространение поверхностных гравитационных волн при наличии донных неоднородностей / И.Т. Селезов, С.А. Савченко // Прикладна гідромеханіка. — 2016. — Т. 18, № 2. — С. 64-68. — Бібліогр.: 24 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-116560
record_format dspace
spelling Селезов, И.Т.
Савченко, С.А.
2017-04-29T09:43:31Z
2017-04-29T09:43:31Z
2016
Распространение поверхностных гравитационных волн при наличии донных неоднородностей / И.Т. Селезов, С.А. Савченко // Прикладна гідромеханіка. — 2016. — Т. 18, № 2. — С. 64-68. — Бібліогр.: 24 назв. — рос.
1561-9087
https://nasplib.isofts.kiev.ua/handle/123456789/116560
532.59
Рассмотрена задача о распространении нелинейных волн на воде над неоднородным дном, характеризуемая параметрами нелинейности α и дисперсии β. Получена система двух связанных эволюционных уравнений в случае малых одного порядка α∼β. Недетерминированность задачи о распаде солитона при распространении над неоднородным дном следует из представленных в этой статье и полученных Перегрином и Гримшоу нелинейно-дисперсионных аппроксимаций. Как результат асимптотического анализа получены эволюционные уравнения в случае донной неоднородности, зависящей от времени. Исследовано влияние основания Винклера и более общего двухпараметрического основания Пастернака на распространение волн.
Розглянуто задачу про поширення нелінійних хвиль на воді над неоднорідним дном, яка характеризується параметрами нелінійності α та дисперсії β. Одержано систему двох зв'язаних еволюційних рівнянь у випадку малих одного порядку (α∼β). Недетермінованість задачі про розпад солітона при поширенні над неоднорідним дном випливає із наведених у цій статті та одержаних Перегріном і Грімшоу нелінійно-дисперсійних апроксимацій. Як результат асимптотичного аналізу одержано еволюційні рівняння у випадку донної неоднорідності, яка залежить від часу. Досліджено вплив основи Вінклера й більш загальної двопараметричної основи Пастернака на поширення хвиль.
The problem of nonlinear water waves propagation over the inhomogeneous bottom, characterized by the parameters of nonlinearity α and dispersion β is considered. The system of two coupled evolution equations is obtained for the case of small parameters of the same order (α~β). A non-determination of the problem on soliton disintegration at propagation over an inhomogeneous bottom follows from presented in this paper the nonlinear-dispersive approximations and obtained by Peregrine and Grimshow. The evolution equations in the case of bottom inhomogeneity depending on time are obtained by the asymptotic analysis. The effect of the Winkler's foundation and more general two-parameter Pasternak's foundation on wave propagation is investigated.
ru
Інститут гідромеханіки НАН України
Прикладна гідромеханіка
Науковi статтi
Распространение поверхностных гравитационных волн при наличии донных неоднородностей
Поширення поверхневих гравітаційних хвиль при наявності донних неоднорідностей
Propagation of surface gravity waves at the presence of bottom inhomogeneities
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Распространение поверхностных гравитационных волн при наличии донных неоднородностей
spellingShingle Распространение поверхностных гравитационных волн при наличии донных неоднородностей
Селезов, И.Т.
Савченко, С.А.
Науковi статтi
title_short Распространение поверхностных гравитационных волн при наличии донных неоднородностей
title_full Распространение поверхностных гравитационных волн при наличии донных неоднородностей
title_fullStr Распространение поверхностных гравитационных волн при наличии донных неоднородностей
title_full_unstemmed Распространение поверхностных гравитационных волн при наличии донных неоднородностей
title_sort распространение поверхностных гравитационных волн при наличии донных неоднородностей
author Селезов, И.Т.
Савченко, С.А.
author_facet Селезов, И.Т.
Савченко, С.А.
topic Науковi статтi
topic_facet Науковi статтi
publishDate 2016
language Russian
container_title Прикладна гідромеханіка
publisher Інститут гідромеханіки НАН України
format Article
title_alt Поширення поверхневих гравітаційних хвиль при наявності донних неоднорідностей
Propagation of surface gravity waves at the presence of bottom inhomogeneities
description Рассмотрена задача о распространении нелинейных волн на воде над неоднородным дном, характеризуемая параметрами нелинейности α и дисперсии β. Получена система двух связанных эволюционных уравнений в случае малых одного порядка α∼β. Недетерминированность задачи о распаде солитона при распространении над неоднородным дном следует из представленных в этой статье и полученных Перегрином и Гримшоу нелинейно-дисперсионных аппроксимаций. Как результат асимптотического анализа получены эволюционные уравнения в случае донной неоднородности, зависящей от времени. Исследовано влияние основания Винклера и более общего двухпараметрического основания Пастернака на распространение волн. Розглянуто задачу про поширення нелінійних хвиль на воді над неоднорідним дном, яка характеризується параметрами нелінійності α та дисперсії β. Одержано систему двох зв'язаних еволюційних рівнянь у випадку малих одного порядку (α∼β). Недетермінованість задачі про розпад солітона при поширенні над неоднорідним дном випливає із наведених у цій статті та одержаних Перегріном і Грімшоу нелінійно-дисперсійних апроксимацій. Як результат асимптотичного аналізу одержано еволюційні рівняння у випадку донної неоднорідності, яка залежить від часу. Досліджено вплив основи Вінклера й більш загальної двопараметричної основи Пастернака на поширення хвиль. The problem of nonlinear water waves propagation over the inhomogeneous bottom, characterized by the parameters of nonlinearity α and dispersion β is considered. The system of two coupled evolution equations is obtained for the case of small parameters of the same order (α~β). A non-determination of the problem on soliton disintegration at propagation over an inhomogeneous bottom follows from presented in this paper the nonlinear-dispersive approximations and obtained by Peregrine and Grimshow. The evolution equations in the case of bottom inhomogeneity depending on time are obtained by the asymptotic analysis. The effect of the Winkler's foundation and more general two-parameter Pasternak's foundation on wave propagation is investigated.
issn 1561-9087
url https://nasplib.isofts.kiev.ua/handle/123456789/116560
citation_txt Распространение поверхностных гравитационных волн при наличии донных неоднородностей / И.Т. Селезов, С.А. Савченко // Прикладна гідромеханіка. — 2016. — Т. 18, № 2. — С. 64-68. — Бібліогр.: 24 назв. — рос.
work_keys_str_mv AT selezovit rasprostraneniepoverhnostnyhgravitacionnyhvolnprinaličiidonnyhneodnorodnostei
AT savčenkosa rasprostraneniepoverhnostnyhgravitacionnyhvolnprinaličiidonnyhneodnorodnostei
AT selezovit poširennâpoverhnevihgravítacíinihhvilʹprinaâvnostídonnihneodnorídnostei
AT savčenkosa poširennâpoverhnevihgravítacíinihhvilʹprinaâvnostídonnihneodnorídnostei
AT selezovit propagationofsurfacegravitywavesatthepresenceofbottominhomogeneities
AT savčenkosa propagationofsurfacegravitywavesatthepresenceofbottominhomogeneities
first_indexed 2025-12-07T21:06:19Z
last_indexed 2025-12-07T21:06:19Z
_version_ 1850885096494596096