Динамические солитоны в ферромагнетике со спином S=1

Построена квазиклассическая теория спиновой динамики для ферромагнетика со спином S=1 при учете изотропного обменного взаимодействия. Для такого ферромагнетика в основном состоянии квантовое среднее значение спина на узле m принимает свое максимальное значение, но в динамике существенно проявляют...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Физика низких температур
Datum:2008
Hauptverfasser: Иванов, Б.А., Химин, Р.С.
Format: Artikel
Sprache:Russian
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2008
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/116860
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Динамические солитоны в ферромагнетике со спином S=1 / Б.А. Иванов, Р.С. Химин // Физика низких температур. — 2008. — Т. 34, № 3. — С. 236–247. — Бібліогр.: 28 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-116860
record_format dspace
spelling Иванов, Б.А.
Химин, Р.С.
2017-05-16T19:41:28Z
2017-05-16T19:41:28Z
2008
Динамические солитоны в ферромагнетике со спином S=1 / Б.А. Иванов, Р.С. Химин // Физика низких температур. — 2008. — Т. 34, № 3. — С. 236–247. — Бібліогр.: 28 назв. — рос.
0132-6414
PACS: 05.45.Yv;75.10.Hk;75.10.Jm
https://nasplib.isofts.kiev.ua/handle/123456789/116860
Построена квазиклассическая теория спиновой динамики для ферромагнетика со спином S=1 при учете изотропного обменного взаимодействия. Для такого ферромагнетика в основном состоянии квантовое среднее значение спина на узле m принимает свое максимальное значение, но в динамике существенно проявляются эффекты квантового сокращения спина. Однако для таких ферромагнетиков существует особый класс спиновых колебаний, в которых m сохраняет свое направление, но существенно изменяется по длине. Такие возбуждения отсутствуют для обычных гейзенберговских ферромагнетиков, описание которых базируется на уравнении Ландау–Лифшица или на обычном спиновом гамильтониане Гейзенберга. Аналитически в континуальном приближении и численно получены спиновые возбуждения с конечной энергией, или солитоны, которые можно рассматривать как связанные состояния большого числа магнонов N. Найдена зависимость энергии солитона E(P,N) с заданным числом связанных магнонов от его импульса P. Континуальное приближение дает хорошее описание солитонов в той области параметров, в которой намагниченность в солитоне существенно отличается для соседних узлов решетки, и эффекты дискретности должны быть значительны.
Побудовано квазикласичну теорію спінової динаміки для феромагнетику зі спіном S=1з урахуванням ізотропної обмінної взаємодії. Для такого феромагнетику в основному стані квантове середнє значення спіну на вузлі m приймає своє максимальне значення, але в динаміці значно проявляються ефекти квантового скорочення спіну. Проте для таких феромагнетиків існує особливий клас спінових коливань, у яких m зберігає свій напрямок, але суттєво змінюється по довжині. Такі збудження відсутні для звичайних гейзенбергівських феромагнетиків, опис яких базується на рівнянні Ландау– Ліфшица або на звичайному спіновому гамільтоніані Гейзенберга. Аналітично в континуальному наближенні та чисельно отримано спінові збудження з cкінченною енергією, або солітони, які можна розглядати як зв’язані стани великої кількості магнонів N. Знайдено залежність енергії солітону E(P,N) із заданим числом зв’язаних магнонів від його імпульсу P. Континуальне наближення дає гарний опис солітонів у тій області параметрів, де намагніченість у солітоні істотно відрізняється для сусідніх вузлів гратки, і ефекти дискретності повинні бути значні.
A quasi-classical theory of spin dynamics for a S=1 ferromagnet is developed with taking into account the isotropic exchange interaction. For such a ferromagnet in the ground state, the quantum mean value of the spin in site m takes its maximum, but the dynamics shows significant effects of quantum shrinkage of the spin. For such ferromagnets, however, there exists a special class of spin vibrations where m retains its direction but varies essentially in length. Such excitations do not occur in normal Heisenberg ferromagnets, the description of which is based on the Landau–Lifshitz equation, or in normal Heisenberg spin Hamiltonians. Spin excitations of a finite energy or solitons considered as bound states of a great number of magnons N are derived analytically in the continuous approximation and obtained numerically. The pulse dependence of energy E(P,N) for a soliton with a given number of bound magnons is found out P. The continuous approximation offers an appropriate treadment of solitons in the parameters range where magnetization in the soliton differs essentially from those in neighboring lattice sites and the effects of discreteness are significant.
Мы благодарны А.К. Колежуку за полезные обсуждения результатов работы/ Работа частично поддержана грантом INTAS-05-1000008-8112 и совместным грантом Министерства образования и науки Украины и Государственного фонда фундаментальных исследований Ф25.2/081.
ru
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Физика низких температур
Низкотемпеpатуpный магнетизм
Динамические солитоны в ферромагнетике со спином S=1
Dynamic solitons in a S=1 ferromagnet
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Динамические солитоны в ферромагнетике со спином S=1
spellingShingle Динамические солитоны в ферромагнетике со спином S=1
Иванов, Б.А.
Химин, Р.С.
Низкотемпеpатуpный магнетизм
title_short Динамические солитоны в ферромагнетике со спином S=1
title_full Динамические солитоны в ферромагнетике со спином S=1
title_fullStr Динамические солитоны в ферромагнетике со спином S=1
title_full_unstemmed Динамические солитоны в ферромагнетике со спином S=1
title_sort динамические солитоны в ферромагнетике со спином s=1
author Иванов, Б.А.
Химин, Р.С.
author_facet Иванов, Б.А.
Химин, Р.С.
topic Низкотемпеpатуpный магнетизм
topic_facet Низкотемпеpатуpный магнетизм
publishDate 2008
language Russian
container_title Физика низких температур
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
title_alt Dynamic solitons in a S=1 ferromagnet
description Построена квазиклассическая теория спиновой динамики для ферромагнетика со спином S=1 при учете изотропного обменного взаимодействия. Для такого ферромагнетика в основном состоянии квантовое среднее значение спина на узле m принимает свое максимальное значение, но в динамике существенно проявляются эффекты квантового сокращения спина. Однако для таких ферромагнетиков существует особый класс спиновых колебаний, в которых m сохраняет свое направление, но существенно изменяется по длине. Такие возбуждения отсутствуют для обычных гейзенберговских ферромагнетиков, описание которых базируется на уравнении Ландау–Лифшица или на обычном спиновом гамильтониане Гейзенберга. Аналитически в континуальном приближении и численно получены спиновые возбуждения с конечной энергией, или солитоны, которые можно рассматривать как связанные состояния большого числа магнонов N. Найдена зависимость энергии солитона E(P,N) с заданным числом связанных магнонов от его импульса P. Континуальное приближение дает хорошее описание солитонов в той области параметров, в которой намагниченность в солитоне существенно отличается для соседних узлов решетки, и эффекты дискретности должны быть значительны. Побудовано квазикласичну теорію спінової динаміки для феромагнетику зі спіном S=1з урахуванням ізотропної обмінної взаємодії. Для такого феромагнетику в основному стані квантове середнє значення спіну на вузлі m приймає своє максимальне значення, але в динаміці значно проявляються ефекти квантового скорочення спіну. Проте для таких феромагнетиків існує особливий клас спінових коливань, у яких m зберігає свій напрямок, але суттєво змінюється по довжині. Такі збудження відсутні для звичайних гейзенбергівських феромагнетиків, опис яких базується на рівнянні Ландау– Ліфшица або на звичайному спіновому гамільтоніані Гейзенберга. Аналітично в континуальному наближенні та чисельно отримано спінові збудження з cкінченною енергією, або солітони, які можна розглядати як зв’язані стани великої кількості магнонів N. Знайдено залежність енергії солітону E(P,N) із заданим числом зв’язаних магнонів від його імпульсу P. Континуальне наближення дає гарний опис солітонів у тій області параметрів, де намагніченість у солітоні істотно відрізняється для сусідніх вузлів гратки, і ефекти дискретності повинні бути значні. A quasi-classical theory of spin dynamics for a S=1 ferromagnet is developed with taking into account the isotropic exchange interaction. For such a ferromagnet in the ground state, the quantum mean value of the spin in site m takes its maximum, but the dynamics shows significant effects of quantum shrinkage of the spin. For such ferromagnets, however, there exists a special class of spin vibrations where m retains its direction but varies essentially in length. Such excitations do not occur in normal Heisenberg ferromagnets, the description of which is based on the Landau–Lifshitz equation, or in normal Heisenberg spin Hamiltonians. Spin excitations of a finite energy or solitons considered as bound states of a great number of magnons N are derived analytically in the continuous approximation and obtained numerically. The pulse dependence of energy E(P,N) for a soliton with a given number of bound magnons is found out P. The continuous approximation offers an appropriate treadment of solitons in the parameters range where magnetization in the soliton differs essentially from those in neighboring lattice sites and the effects of discreteness are significant.
issn 0132-6414
url https://nasplib.isofts.kiev.ua/handle/123456789/116860
citation_txt Динамические солитоны в ферромагнетике со спином S=1 / Б.А. Иванов, Р.С. Химин // Физика низких температур. — 2008. — Т. 34, № 3. — С. 236–247. — Бібліогр.: 28 назв. — рос.
work_keys_str_mv AT ivanovba dinamičeskiesolitonyvferromagnetikesospinoms1
AT himinrs dinamičeskiesolitonyvferromagnetikesospinoms1
AT ivanovba dynamicsolitonsinas1ferromagnet
AT himinrs dynamicsolitonsinas1ferromagnet
first_indexed 2025-12-07T15:47:50Z
last_indexed 2025-12-07T15:47:50Z
_version_ 1850865060169121792