Bose–Einstein condensation in a decorated lattice: an application to the problem of supersolid He
The Bose–Einstein condensation of vacancies in a three-dimensional decorated lattice is considered. The model describes possible scenario of superfluidity of solid helium, caused by the presence of zero-point vacancies in a dislocation network. It is shown that the temperature of Bose–Einstein con...
Збережено в:
| Опубліковано в: : | Физика низких температур |
|---|---|
| Дата: | 2008 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2008
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/116910 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Bose–Einstein condensation in a decorated lattice: an application to the problem of supersolid He / D.V. Fil, S.I. Shevchenko // Физика низких температур. — 2008. — Т. 34, № 4-5. — С. 440–446. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | The Bose–Einstein condensation of vacancies in a three-dimensional decorated lattice is considered. The
model describes possible scenario of superfluidity of solid helium, caused by the presence of zero-point vacancies
in a dislocation network. It is shown that the temperature of Bose–Einstein condensation decreases
under increase of the length of the network segments, and the law of decrease depends essentially on the
properties of the vertexes of the network. If the vertexes correspond to barriers with a small transparency,
the critical temperature is inversely as the square of the length of the segment. On the contrary, if the vertexes
correspond to traps for the vacancies (it is energetically preferable for the vacancies to be localized at
the vertexes), an exponential lowering of the temperature of transition takes place. The highest temperature
of Bose–Einstein condensation is reached in the intermediate case of vertexes with large transparency, but in
the absence of tendency of localization at them. In the latter case the critical temperature is inversely as the
length of the segment.
|
|---|---|
| ISSN: | 0132-6414 |