Superhydrophobic/superhydrophilic switching on the surface of ZnO microstructures caused by UV irradiation and argon ion etching process
ZnO microstructures of different morphology were investigated using the water contact angle (WCA) analysis. The as-grown ZnO microstructures were found to exhibit pure hydrophobic behavior, which is enhanced with the increase of their surface area. The most hydrophobic structures (WCA = 157°) were f...
Saved in:
| Date: | 2016 |
|---|---|
| Main Authors: | , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Науковий фізико-технологічний центр МОН та НАН України
2016
|
| Series: | Журнал физики и инженерии поверхности |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/116942 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Superhydrophobic/superhydrophilic switching on the surface of ZnO microstructures caused by UV irradiation and argon ion etching process / V.B. Kapustianyk, B.I. Turko, Y.V. Rudyk, R.Y. Serkiz, U.R. Mostovyi // Журнал физики и инженерии поверхности. — 2016. — Т. 1, № 2. — С. 207-212. — Бібліогр.: 35 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-116942 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1169422025-02-09T21:48:16Z Superhydrophobic/superhydrophilic switching on the surface of ZnO microstructures caused by UV irradiation and argon ion etching process Супергидрофобное/супергидрофильное переключения на поверхности микроструктур ZnO, вызванное ультрафиолетовым облучением и травлением ионами аргона Супергідрофобне/супергідрофільне перемикання на поверхні мікроструктур ZnO, викликане ультрафіолетовим опроміненням і травленням іонами аргону Kapustianyk, V.B. Turko, B.I. Rudyk, Y.V. Serkiz, R.Y. Mostovyi, U.R. ZnO microstructures of different morphology were investigated using the water contact angle (WCA) analysis. The as-grown ZnO microstructures were found to exhibit pure hydrophobic behavior, which is enhanced with the increase of their surface area. The most hydrophobic structures (WCA = 157°) were found to be the complex microoctapods, containing both the macro-and nanoscale features. Микроструктуры ZnO различной морфологии были исследованы с помощью анализа угла контакта воды (УКВ). Было установлено, что выращенные непосредственно перед измерением микроструктуры ZnO проявляют гидрофобные свойства, которые усиливаются с увеличением площади их поверхности. Наилучшими гидрофобными свойствами (УКВ = 157°) владели микрооктаподы с микро- и наноразмерными составляющими структуры. Мікроструктури ZnO різної морфології були досліджені за допомогою аналізу кута контакту води (ККВ). Було встановлено, що вирощені безпосередньо перед вимірюванням мікроструктури ZnO проявляють гідрофобні властивості, які посилюються зі збільшенням площі їхньої поверхні. Найкращими гідрофобними властивостями (ККВ = 157°) володіли мікрооктаподи з мікро- і нанорозмірними складовими структури. 2016 Article Superhydrophobic/superhydrophilic switching on the surface of ZnO microstructures caused by UV irradiation and argon ion etching process / V.B. Kapustianyk, B.I. Turko, Y.V. Rudyk, R.Y. Serkiz, U.R. Mostovyi // Журнал физики и инженерии поверхности. — 2016. — Т. 1, № 2. — С. 207-212. — Бібліогр.: 35 назв. — англ. 2519-2485 https://nasplib.isofts.kiev.ua/handle/123456789/116942 532.64, 53.043, 539.25, 539.211, 538.971 en Журнал физики и инженерии поверхности application/pdf Науковий фізико-технологічний центр МОН та НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
ZnO microstructures of different morphology were investigated using the water contact angle (WCA) analysis. The as-grown ZnO microstructures were found to exhibit pure hydrophobic behavior, which is enhanced with the increase of their surface area. The most hydrophobic structures (WCA = 157°) were found to be the complex microoctapods, containing both the macro-and nanoscale features. |
| format |
Article |
| author |
Kapustianyk, V.B. Turko, B.I. Rudyk, Y.V. Serkiz, R.Y. Mostovyi, U.R. |
| spellingShingle |
Kapustianyk, V.B. Turko, B.I. Rudyk, Y.V. Serkiz, R.Y. Mostovyi, U.R. Superhydrophobic/superhydrophilic switching on the surface of ZnO microstructures caused by UV irradiation and argon ion etching process Журнал физики и инженерии поверхности |
| author_facet |
Kapustianyk, V.B. Turko, B.I. Rudyk, Y.V. Serkiz, R.Y. Mostovyi, U.R. |
| author_sort |
Kapustianyk, V.B. |
| title |
Superhydrophobic/superhydrophilic switching on the surface of ZnO microstructures caused by UV irradiation and argon ion etching process |
| title_short |
Superhydrophobic/superhydrophilic switching on the surface of ZnO microstructures caused by UV irradiation and argon ion etching process |
| title_full |
Superhydrophobic/superhydrophilic switching on the surface of ZnO microstructures caused by UV irradiation and argon ion etching process |
| title_fullStr |
Superhydrophobic/superhydrophilic switching on the surface of ZnO microstructures caused by UV irradiation and argon ion etching process |
| title_full_unstemmed |
Superhydrophobic/superhydrophilic switching on the surface of ZnO microstructures caused by UV irradiation and argon ion etching process |
| title_sort |
superhydrophobic/superhydrophilic switching on the surface of zno microstructures caused by uv irradiation and argon ion etching process |
| publisher |
Науковий фізико-технологічний центр МОН та НАН України |
| publishDate |
2016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/116942 |
| citation_txt |
Superhydrophobic/superhydrophilic switching on the surface of ZnO microstructures caused by UV irradiation and argon ion etching process / V.B. Kapustianyk, B.I. Turko, Y.V. Rudyk, R.Y. Serkiz, U.R. Mostovyi // Журнал физики и инженерии поверхности. — 2016. — Т. 1, № 2. — С. 207-212. — Бібліогр.: 35 назв. — англ. |
| series |
Журнал физики и инженерии поверхности |
| work_keys_str_mv |
AT kapustianykvb superhydrophobicsuperhydrophilicswitchingonthesurfaceofznomicrostructurescausedbyuvirradiationandargonionetchingprocess AT turkobi superhydrophobicsuperhydrophilicswitchingonthesurfaceofznomicrostructurescausedbyuvirradiationandargonionetchingprocess AT rudykyv superhydrophobicsuperhydrophilicswitchingonthesurfaceofznomicrostructurescausedbyuvirradiationandargonionetchingprocess AT serkizry superhydrophobicsuperhydrophilicswitchingonthesurfaceofznomicrostructurescausedbyuvirradiationandargonionetchingprocess AT mostovyiur superhydrophobicsuperhydrophilicswitchingonthesurfaceofznomicrostructurescausedbyuvirradiationandargonionetchingprocess AT kapustianykvb supergidrofobnoesupergidrofilʹnoepereklûčeniânapoverhnostimikrostrukturznovyzvannoeulʹtrafioletovymoblučeniemitravleniemionamiargona AT turkobi supergidrofobnoesupergidrofilʹnoepereklûčeniânapoverhnostimikrostrukturznovyzvannoeulʹtrafioletovymoblučeniemitravleniemionamiargona AT rudykyv supergidrofobnoesupergidrofilʹnoepereklûčeniânapoverhnostimikrostrukturznovyzvannoeulʹtrafioletovymoblučeniemitravleniemionamiargona AT serkizry supergidrofobnoesupergidrofilʹnoepereklûčeniânapoverhnostimikrostrukturznovyzvannoeulʹtrafioletovymoblučeniemitravleniemionamiargona AT mostovyiur supergidrofobnoesupergidrofilʹnoepereklûčeniânapoverhnostimikrostrukturznovyzvannoeulʹtrafioletovymoblučeniemitravleniemionamiargona AT kapustianykvb supergídrofobnesupergídrofílʹneperemikannânapoverhnímíkrostrukturznoviklikaneulʹtrafíoletovimopromínennâmítravlennâmíonamiargonu AT turkobi supergídrofobnesupergídrofílʹneperemikannânapoverhnímíkrostrukturznoviklikaneulʹtrafíoletovimopromínennâmítravlennâmíonamiargonu AT rudykyv supergídrofobnesupergídrofílʹneperemikannânapoverhnímíkrostrukturznoviklikaneulʹtrafíoletovimopromínennâmítravlennâmíonamiargonu AT serkizry supergídrofobnesupergídrofílʹneperemikannânapoverhnímíkrostrukturznoviklikaneulʹtrafíoletovimopromínennâmítravlennâmíonamiargonu AT mostovyiur supergídrofobnesupergídrofílʹneperemikannânapoverhnímíkrostrukturznoviklikaneulʹtrafíoletovimopromínennâmítravlennâmíonamiargonu |
| first_indexed |
2025-12-01T03:33:21Z |
| last_indexed |
2025-12-01T03:33:21Z |
| _version_ |
1850275271563804672 |
| fulltext |
Kapustianyk V. B., Turko B. I., Rudyk Y. V., Serkiz R. Y., Mostovyi U. R., 2016 © 207
Журнал фізики та інженерії поверхні, 2016, том 1, № 2, сс. 207–212; Журнал физики и инженерии поверхности, 2016, том 1, № 2, сс. 207–212;
Journal of Surface Physics and Engineering, 2016, vol. 1, No. 2, pp. 207–212
УДК: 532.64, 53.043, 539.25, 539.211, 538.971
SUPERHYDROPHOBIC/SUPERHYDROPHILIC SWITCHING
ON THE SURFACE OF ZnO MICROSTRUCTURES
CAUSED BY UV IRRADIATION AND ARGON ION ETCHING PROCESS
V. B. Kapustianyk1, 2, B. I. Turko2, Y. V. Rudyk1, R. Y. Serkiz2, U. R. Mostovyi1
1Chair of Solid State Physics, Ivan Franko National University,
Lviv, Ukraine,
2Scientific-Technical and Educational Center of Low Temperature Studies,
Lviv, Ukraine
Received 18.03.2016
ZnO microstructures of different morphology were investigated using the water contact angle (WCA)
analysis. The as-grown ZnO microstructures were found to exhibit pure hydrophobic behavior, which
is enhanced with the increase of their surface area. The most hydrophobic structures (WCA = 157°)
were found to be the complex microoctapods, containing both the macro-and nanoscale features.
Keywords: zinc oxide, nanostructures, hydrophobicity.
СУПЕРГИДРОФОБНОЕ/СУПЕРГИДРОФИЛЬНОЕ ПЕРЕКЛЮЧЕНИЯ
НА ПОВЕРХНОСТИ МИКРОСТРУКТУР ZnO,
ВЫЗВАННОЕ УЛЬТРАФИОЛЕТОВЫМ ОБЛУЧЕНИЕМ И ТРАВЛЕНИЕМ
ИОНАМИ АРГОНА
В. Б. Капустяник, Б. И. Турко, Ю. В. Рудык, Р. Я. Серкиз, У. Р. Мостовой
Микроструктуры ZnO различной морфологии были исследованы с помощью анализа угла
контакта воды (УКВ). Было установлено, что выращенные непосредственно перед измере-
нием микроструктуры ZnO проявляют гидрофобные свойства, которые усиливаются с уве-
личением площади их поверхности. Наилучшими гидрофобными свойствами (УКВ = 157°)
владели микрооктаподы с микро- и наноразмерными составляющими структуры.
Ключевые слова: оксид цинка, наноструктуры, гидрофобность.
СУПЕРГІДРОФОБНЕ/СУПЕРГІДРОФІЛЬНЕ ПЕРЕМИКАННЯ
НА ПОВЕРХНІ МІКРОСТРУКТУР ZnO,
ВИКЛИКАНЕ УЛЬТРАФІОЛЕТОВИМ ОПРОМІНЕННЯМ І ТРАВЛЕННЯМ
ІОНАМИ АРГОНУ
В. Б. Капустяник, Б. I. Турко, Ю. В. Рудик, Р. Я. Серкіз, У. Р. Мостовий
Мікроструктури ZnO різної морфології були досліджені за допомогою аналізу кута кон-
такту води (ККВ). Було встановлено, що вирощені безпосередньо перед вимірюванням
мікроструктури ZnO проявляють гідрофобні властивості, які посилюються зі збільшенням
площі їхньої поверхні. Найкращими гідрофобними властивостями (ККВ = 157°) володіли
мікрооктаподи з мікро- і нанорозмірними складовими структури.
Ключові слова: оксид цинку, наноструктури, гідрофобність.
INTRODUCTION
The superhydrophobic materials cause signifi-
cant interest among scientists in recent years be-
cause of their significant potential for application
use. They can be used in the manufacturing of
the devices and things with self-cleaning prop-
erties (solar panels, textiles, building materials,
such as glass, tile, etc.), coatings with a low fric-
tion (such as vehicles), anti-corrosion anti-icing
and anti-sticking coatings, lab-on-chip devices,
drug delivery etc. [1–5]. The superhydrophobic
surfaces are inherent for the materials with the
low surface free energy values, including ZnO
micro- and nanostructures [3, 6, 7].
It is known, that the effect of switching from
the hydrophobic to the hydrophilic surface
condition of the material may be achieved via
optical, magnetic, mechanical, chemical, ther-
mal or electrical activations [2, 7]. There are
a large number of publications, which describes
a reversible light-controlled hydrophobic/hydro-
philic transition for zinc oxide films, micro- and
SUPERHYDROPHOBIC/SUPERHYDROPHILIC SWITCHING ON THE SURFACE OF ZNO MICROSTRUCTURES...
208 ЖФІП ЖФИП JSPE, 2016, т. 1, № 2, vol. 1, No. 2
nanostructures [1, 3, 7–13]. Other methods of
obtaining of the switching effect, in particular
ion etching, have been paid much less attention
[14–17].
This paper presents the wettability properties of
ZnO microstructures with a different surface mor-
phology treated with UV illumination and argon
ion bombardment for various periods of time.
EXPERIMENTAL
The granular-like ZnO microstructures (Fig. 1)
were grown on the n-type silicon (100) substrate
by thermal evaporation of the metallic zinc pow-
der (99.99 % purity) at the temperature 700 °C
[18, 19]. This temperature was maintained for
1 h. Afterwards the oven was shut off and cooled
spontaneously to room temperature. This yield-
ed an uniformly deposited, white layer of zinc
oxide on the substrates.
ZnO microneedles (Fig. 2) and microocta-
pods (Fig. 3) were grown on the n-type silicon
(100) substrates by the method of gas-trans-
port reactions [11]. The mixture of the pow-
dered high purity zinc oxide and graphite in
the proportion of 1:2 was taken as an initial
material for vaporization. This material and
silicon substrates were placed into a quartz
tube. The mixture of the powders was placed
in a sealed end of the tube whereas the sub-
strates - near the open end. The quartz tube
was placed into a horizontal oven. The powder
mixture was heated to the temperature of about
1050°C and the substrates were located into
the zones with the temperatures of 850–900 °C
(for the microrods) and 950–1000 °C (for the
microoctapods). These temperature distributions
were maintained for 4 h. Afterwards the oven
was shut off and cooled spontaneously to room
temperature.
The morphology of the samples was
examined using REMMA-102-02 Scanning
Electron Microscope-Analyzer (JCS SELMI,
Ukraine).
A surface wettability of the ZnO experimental
samples was evaluated by the water contact
angle measurements performed by a sessile
drop method. A 1 μL de-ionized water droplet
was gently positioned on a surface of the
samples using a variable volume single channel
pipette (Thermo Fisher Scientific, Waltham,
Massachusetts, USA). A CCD camera-lens
optical system (3.0 mPix, Ningbo Shengheng
Optics & Electronics Co, LTD, Zhejiang,
China) was used to capture the digital images
of a droplet profile from a location parallel
to a substrate. The images of the drops were
analyzed with the TSview Version 6.2.4.5
software (Tucsen Imaging Technology Co., Ltd.,
Fig. 1. SEM images of granular-like ZnO microstructures
Fig. 2. SEM images of ZnO microneedles
Fig. 3. SEM images of ZnO microoctapods
V. B. KAPUSTIANYK, B. I. TURKO, Y. V. RUDYK, R. Y. SERKIZ, U. R. MOSTOVYI
209ЖФІП ЖФИП JSPE, 2016, т. 1, № 2, vol. 1, No. 2
Fuzhou, China) to compute the contact angles.
A mean value was calculated from at least five
individual measurements.
The direct current (DC) ion etching of the
sample surfaces was performed using a standard
special equipment, which is a part of the vacuum
universal station VUP-5M (SELMI, Sumy,
Ukraine). The etching was performed under the
argon (the working gas) pressure of 0.1 Pa. The
energy of argon ions was approximately equal
1keV.
UV light irradiation was realized in air
ambient via exposure of the samples at certain
time intervals by a low-pressure mercury lamp
«DeLux» of 30 W power with a maxima at the
wavelength λ = 253.7 nm (Shenzhen EUdelux
Industrial Co. Ltd., Xixiang, China). The
reverse transition from the hydrophilic to the
hydrophobic state was performed via the storage
in the dark conditions at room temperature over
24 hours.
RESULTS AND DISCUSSION
Figure 1 shows a SEM-image of the granular-like
ZnO microstructures. The granules were found
to possess the size of 1.5–2 μm. The morphology
of ZnO microneedles and microoctapods are
shown in Fig. 2 and Fig. 3, respectively. ZnO
microneedles with an chaotic orientation were
found to possess a length of 50 μm and diameter
of about 4 μm near the base. The microoctapods
possess the size in the range of 15 to 40 μm.
The ZnO microoctapods consist of the eight
arms branching from a single center, and the
angles between the arms are the same. Each arm
consists of a few hexagonal rods with a diameter
of 0.5 to 3 μm and a length of 5 to 20 μm.
As it was expected, the as-grown structures
represent a superhydrophobic surface: all the
samples demonstrated the superhydrophobic
behavior with a contact angle ranging from
154° to 157°. As it was predicted in [21, 22],
due to the combination of the micro- and
nanoscale structural parameters, the sample
with ZnO microoctapods manifest the best
superhydrophobic properties.
In order to change the wettability character of
ZnO, the two methods were used. In the first case
the experimental samples were irradiated by the
ultraviolet light. The irradiation time was varied
from 2.5 to 70 minutes. After a certain time of
UV irradiation the wetting transition from the
superhydrophobic to the superhydrophilic state
occurs for all the samples (Fig. 4).
According to [3, 7, 9] the change of the wet-
tability under irradiation with UV light with
the photon energy, not lower than the band
gap of ZnO can be described by the following
expressions:
ZnO + 2hν → 2h+ + 2e, (1)
Zn2+ + e → Zns
+ (surface trapped electron), (2)
Zns
+ + O2 → Zns
2+ + O2
–, (3)
O2 - + h+ → O1
– (surface trapped hole), (4)
O1
– + h+ → 1/2O2 + VO, (5)
where h+, e, and VO represent a hole, an electron,
and the oxygen vacancy.
According to [3, 7, 9] the water molecules
may be dissociatively adsorbed at the VO site.
These defect sites are kinetically more favor-
able for the hydroxyl group (OH–) adsorption
than oxygen adsorption, and hence promote an
increased water adsorption at the UV light irra-
diated areas. However, the adsorption of OH - on
the defect sites is followed by distortion of the
electronic structure of the surface and makes its
state energetically unfavorable. Therefore, after
termination of the UV illumination the surface
tries to recover to its original hydrophobic state
by replacing of the adsorbed OH - with the atmo-
spheric oxygen. During this process, OH - and
atmospheric oxygen tend to be dissociatively
adsorbed on the defect sites [9].
160
140
120
100
W
C
A
, d
eg
.
80
60
40
20
0
0 10
Treatment time, min.
20 30 40 50 60 70
microneedles
microoctapots
granular-like ZnO
Fig. 4. Change of the water contact angle with time upon
UV irradiation for ZnO of diverse morphology
SUPERHYDROPHOBIC/SUPERHYDROPHILIC SWITCHING ON THE SURFACE OF ZNO MICROSTRUCTURES...
210 ЖФІП ЖФИП JSPE, 2016, т. 1, № 2, vol. 1, No. 2
At the same time, it would be convenient to
consider the photocatalytic properties of zinc
oxide [23–25]. Since ZnO microstructures are
exposed to air, their surface adsorbs water from
the environment. Therefore, when a ZnO surface
is irradiated with UV light, an electron-hole pair
is generated in the valence and conduction bands
of ZnO, which could react with absorbed H2O
and O2 molecules on the ZnO surface [24–27]:
H2O+ h+ → HO• + H+, (6)
O2 + e → •O2
–, (7)
•O2
– + H+ → HO2, (8)
HO2 + H+ + e → H2O2, (9)
2HO• → H2O2 + O2, (10)
H2O2 + e → OH– + HO•, (11)
where HO• — is the hydroxyl radicals, •O2
– —
the superoxide anions.
Under such circumstances due to the ul-
traviolet illumination the number of the
hydroxyl groups on a ZnO surface will in-
crease. Such an increase was observed using
X-ray photoelectron spectroscopy [28]. The hy-
droxyl groups are adsorbed on the zinc ions and
become the centers for further water adsorption
[29].
In the second case the ion etching of ZnO
samples’ surface was used in order to change
their wettability. Fig. 5 shows the mea-
sured water contact angle as a function of the
time of the argon ion bombardment of ZnO
microstructures.
During the bombardment of the micro-
structures by the low energy Ar+ ions in
a vacuum there occurs a cleaning of a surface
from contaminants and a sputtering of ZnO due
to the destruction of the chemical bonds between
zinc and oxygen in the crystal lattice. The atomic
mass of argon (39.948 u) is larger than the atom-
ic mass of oxygen (15.999 u) and smaller than
the atomic mass of zinc (65.409 u). Therefore,
the momentum transfer from an argon atom to
an oxygen atom is much larger than that from an
argon atom to a zinc atom. Therefore, the oxy-
gen atoms are removed more easily. The number
of oxygen vacancies on the ZnO surface will
increase as a result of ion bombardment [30–33].
Since water vapor is always present even at high
level of vacuum, the hydroxyl groups are imme-
diately adsorbed on these surface defects intro-
duced by Ar ion bombardment [34, 35].
Reducing of the WCA is slower in the case of
UV irradiation than under the plasma treatment,
probably due to differences in the energy level deliv-
ered during treatment and the subsequent surface al-
teration. The differences between the three samples
in times of transition from the superhydrophobic
to the superhydrophilic state (fig. 4, fig. 5) would
be associated with different surface area of ZnO
structures (roughness or surface-to-volume ratio).
CONCLUSION
The effect of a surface morphology on the argon
ion bombardment or UV light-controlled wetta-
bility of ZnO microstructures was investigated.
The samples with a larger surface roughness and
surface-to-volume ratio were found to possess
a considerably higher water contact angle and
a time of transition from the superhydrophobic
to the superhydrophilic state. The highest degree
of hydrophobicity is exhibited by the complex
ZnO structures, containing both micro- and na-
noscaled surface features.
The obtained results would be useful for
designing of the surfaces with a controlled
wettability.
REFERENCES
1. Frysali M. A., Papoutsakis L., Kenanakis G.,
Anastasiadis S. H., Functional Surfaces with
Photocatalytic Behavior and Reversible Wet-
tability: ZnO Coating on Silicon Spikes //
J. Phys. Chem. C. — 2015. — Vol. 119. —
160
140
120
W
C
A
, d
eg
. 100
80
60
40
20
0
0 10
Treatment time, sec.
20 30 40 50 60 70
microneedles
microoctapots
granular-like ZnO
Fig. 5. Change of the water contact angle with time upon
low energy argon ion bombardment for ZnO of diverse
morphology
V. B. KAPUSTIANYK, B. I. TURKO, Y. V. RUDYK, R. Y. SERKIZ, U. R. MOSTOVYI
211ЖФІП ЖФИП JSPE, 2016, т. 1, № 2, vol. 1, No. 2
P. 25401−25407.
2. Verplanck N., Coffinier Y., Thomy V., Boukher-
roub R., Wettability Switching Techniques on
Superhydrophobic Surfaces // Nanoscale Res.
Lett. — 2007. — Vol. 2. — P. 577–596.
3. Barshilia H. C., Sai Tej K. R., Devi L. M., Ra-
jam K. S., Nanometric multiscale rough Zn–
ZnO superhydrophobic thin films: Self-diffu-
sion of zinc and effect of UV irradiation // J.
Appl. Phys. — 2010. — Vol. 108. — P. 074315.
4. Tarwal N. L., Khot V. M., Harale N. S., Pa-
war S. A., Pawar S. B., Patil V. B., Patil P. S.,
Spray deposited superhydrophobic ZnO coa-
tings via seed assisted growth // Surface &
Coatings Technology. — 2011. — Vol. 206. —
P. 1336–1341.
5. Hu H., Ji H. -F., Sun Y., The effect of oxygen
vacancies on water wettability of a ZnO sur-
face // Phys. Chem. Chem. Phys. — 2013. —
Vol. 15. — P. 16557–16565.
6. Gurav A. B., Latthe S. S., Vhatkar R. S., Lee J. G.,
Kim D. Y., Park J. J., Yoon S. S., Superhydro-
phobic surface decorated with vertical ZnO
nanorods modified by stearic acid // Ceramics
International. — 2014. — Vol. 40 — P. 7151–
7160.
7. Khranovskyy V., Ekblad T., Yakimova R.,
Hult man L., Surface morphology effects
on the light-controlled wettability of ZnO
nanostructures // Applied Surface Sci-
ence. — 2012. — Vol. 20. — P 8146–8152.
8. Yao L., Zheng M., Li C., Ma L., Shen W., Facile
synthesis of superhydrophobic surface of ZnO
nanoflakes: chemical coating and UV-induced
wettability conversion // Nanoscale Research
Letters. — 2012. — Vol. 7. — P. 216–224.
9. Bhavsar K., Ross D., Prabhu R., Pollard P.,
LED-controlled tuning of ZnO nanowires’ wet-
tability for biosensing applications // Nano Re-
views. — 2015. — Vol. 6. — P. 26711–26717.
10. Chi P. W., Su C. W., Jhuo B. H., Wei D. H.,
Photoirradiation Caused Controllable Wet-
tability Switching of Sputtered Highly
Aligned c-Axis-Oriented Zinc Oxide Colum-
nar Films // International Journal of Photoen-
ergy. — 2014. — Vol. 2014. — P. 765209–
765219.
11. Kenanakisa G., Vernardou D., Katsara-
kis N., Light-induced self-cleaning proper-
ties of ZnO nanowires grown at low
tem peratures // Applied Catalysis A: Gener-
al. — 2012. — Vol. 411. — P. 7–14.
12. Feng X., Feng L., Jin M., Zhai J., Jiang L., Zhu D.,
Reversible Super-hydrophobicity to Super-
hydrophilicity Transition of Aligned ZnO Na-
norod Films // J. Am. Chem. Soc. — 2004. —
Vol. 126. — P. 62–63.
13. Myint M. T. Z., Kumar N. S., Hornyaka G. L.,
Dutta J., Hydrophobic/hydrophilic switching
on zinc oxide micro-textured surface // Ap-
plied Surface Science. — 2013. — Vol. 264. —
P. 344–348.
14. Subedi D. P., Madhup D. K., Sharma A.,
Joshi U. M., Huczko A., Study of the wettabil-
ity of ZnO nanofilms // International Nano Let-
ters. — 2012. — Vol. 2. — P. 1–5.
15. Meng X. Q., Zhao D. X., Zhang J. Y.,
Shen D. Z., Lu Y. M., Dong L., Xiao Z. Y.,
Liu Y. C., Fan X. W., Wettability conversion on
ZnO nanowire arrays surface modified by oxy-
gen plasma treatment and annealing // Chemi-
cal Physics Letters. — 2005. — Vol. 413. —
P. 450–453.
16. Sliz R., Suzuki Y., Nathan A., Myllyla R., Jab-
bour G., Organic solvent wetting properties of
UV and plasma treated ZnO nanorods-print-
ed electronics approach // Proc. of SPIE. —
2012. — Vol. 6. — P. 8471–8477.
17. Li J., Wan H., Liu X., Yinping Ye, Zhou H.,
Chen J., Facile fabrication of superhydrophobic
ZnO nanoparticle surfaces with erasable and
rewritable wettability // Applied Surface Sci-
ence. — 2012. — Vol. 258. — P. 8585–8589.
18. Fan H. J., Scholz R., Kolb F. M., Zacharias M.,
Gosele U., Growth mechanism and charac-
terization of zinc oxide microcages, Solid State
Communications. — 2004. — Vol. 130. —
P. 517–521.
19. Lu H., Liao L., Li J., Wang D., High Surface-
to-Volume Ratio ZnO Microberets: Low Tem-
perature Synthesis, Characterization, and
Photoluminescence // J. Phys. Chem. B. —
2006. — Vol. 110. — P. 23211–23214.
20. Panasiuk M. R., Turko B. I., Kapustia-
nyk V. B., Stanko O. P., Mandryka A. V.,
Serkiz R. Y., Dubov Y. H., Photo- and thermo-
stimulated luminescence of ZnO nanowires
// J. Appl. Spectrosc. — 2013. — Vol. 80. —
P. 240–243.
21. Zhang J., Huang W, Han T., Wettability of Zinc
Oxide Surfaces with Controllable Structures //
Langmuir. — 2006. — Vol. 22. — P. 2946–2950.
SUPERHYDROPHOBIC/SUPERHYDROPHILIC SWITCHING ON THE SURFACE OF ZNO MICROSTRUCTURES...
212 ЖФІП ЖФИП JSPE, 2016, т. 1, № 2, vol. 1, No. 2
22. Latthe S. S., Terashima C., Nakata K., Fujishi-
ma A., Superhydrophobic Surfaces Developed
by Mimicking Hierarchical Surface Morphol-
ogy of Lotus Leaf // Molecules. — 2014. —
Vol. 19. — P. 4256–4283.
23. Kołodziejczak-Radzimska A., Jesionowski T.,
Zinc Oxide -From Synthesis to Applica tion:
A Review, Materials. — 2014. — Vol. 7. —
P. 2833–2881.
24. Dodd A. C., McKinley A. J., Saunders M., Tsu-
zuki T., Effect of particle size on the photocata-
lytic activity of nanoparticulate zinc oxide //
Journal of Nanoparticle Research. — 2006. —
Vol. 8. — P. 43–51.
25. Sirelkhatim A., Mahmud S., Seeni A., Ka-
us N. H. M., Ann L. C., Bakhori S. K. M.,
Hasan H., Mohamad D., Review on Zinc Ox-
ide Nanoparticles: Antibacterial Activity and
Toxicity Mechanism // Nano-Micro Lett. —
2015. — Vol. 7, No. 3. — P. 219–242.
26. Soboleva N. M., Nosovich A. A., Goncha-
ruk V. V., The Heterogenic Photocatalysis in
Water Treatment Processes // J. Water Chem.
Tech. — 2007. — Vol. 29, No. 2. — P. 72–89.
27. Baruah S., Pal S. K., Dutta J., Nanostructured
Zinc Oxide for Water Treatment // Nanoscience
& Nanotechnology-Asia. — 2012. — Vol. 2,
No. 2. — P. 90–102.
28. Zhu X., Zhang Z., Men X., Yang J., Xu X.,
Fabrication of an intelligent superhydropho-
bic surface based on ZnO nanorod arrays with
switchable adhesion property // Applied Sur-
face Science. — 2010. — Vol. 256. — P. 7619–
7622.
29. Farahani H., Wagiran R., Hamidon M. N.,
Humidity Sensors Principle, Mechanism, and
Fabrication Technologies: A Comprehensive
Review // Sensors. — 2014. — Vol. 14. —
P. 7881–7939.
30. Lee J.-M., Kim K. -K., Park S. -J., Choi W. -K.,
Low-resistance and nonalloyed ohmic con-
tacts to plasma treated ZnO // Appl. Phys.
Lett. —2001. — Vol. 78, No. 24. — P. 3842–
3844.
31. Sulyok A., Menyhard M., Malherbe J. B., Sta-
bility of ZnO{0001} against low energy ion
bombardment // Surface Science. — 2007. —
Vol. 601. — P. 1857–1861.
32. Ra H. W., Choi K. S., Ok C. W., Jo S. Y.,
Bai K. H., Im Y. H., Ion bombardment effects
on ZnO nanowires during plasma treatment //
Appl. Phys. — 2008. — Vol. 93. — P.033112.
33. Park J. S., Jeong J. K., Mo Y. G., Kim H. D.,
Kim S. I., Improvements in the device charac-
teristics of amorphous indium gallium zinc ox-
ide thin-film transistors by Ar plasma treatment
// Appl. Phys. Lett. — 2007. — Vol. 90. —
P. 262106.
34. Sun R., Nakajima A., Fujishima A., Wata-
nabe T., Hashimoto K., Photoinduced Surface
Wettability Conversion of ZnO and TiO2 Thin
Films // J. Phys. Chem. — 2001. — Vol. 105. —
P. 1984–1990.
35. Yamada T., Kuroda Y., Fukuoka A., Ichika-
wa M., Tanaka K., Reactivity of Surface Hy-
droxyl Groups with Metal Complex Com-
pounds // Journal of Electron Spectroscopy
and Related Phenomena. — 1990. — Vol. 54–
55. —P. 845–854.
|