Линейная авторегрессия на основе метода группового учета аргументов в условиях квазиповторных наблюдений

МГУА с разбиением наблюдений на обучающие и проверочные подвыборки в условиях квазиповторных наблюдений. Доказано существование оптимального множества регрессоров. Получено условие редукции оптимальной авторегрессионной модели, которое зависит от параметров авторегрессионной модели и объёмов выборок...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Штучний інтелект
Datum:2015
1. Verfasser: Сарычев, А.П.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут проблем штучного інтелекту МОН України та НАН України 2015
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/117210
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Линейная авторегрессия на основе метода группового учета аргументов в условиях квазиповторных наблюдений / А.П. Сарычев // Штучний інтелект. — 2015. — № 3-4. — С. 105-123. — Бібліогр.: 16 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:МГУА с разбиением наблюдений на обучающие и проверочные подвыборки в условиях квазиповторных наблюдений. Доказано существование оптимального множества регрессоров. Получено условие редукции оптимальной авторегрессионной модели, которое зависит от параметров авторегрессионной модели и объёмов выборок. Для моделювання в класі авторегресійних рівнянь розроблено критерій регулярності МГУА з розбиттям спостережень на навчальні й перевірні підвибірки в умовах квазіповторних спостережень. Доведено існування оптимальної множини регресорів. Встановлено умову редукції оптимальної авторегресійної моделі, що залежить від параметрів авторегресійної моделі та обсягів вибірок. For modelling in a class of autoregression equations, the criterion of regularity of the GMDH with dividing of observations on training and testing subsamples in conditions of quasirepeated observations is offered. It is proved, that the optimum set of regressors exists. The condition of a reduction of the optimum autoregression model is obtained. This condition depends on parameters of autoregression model and volumes of samples.
ISSN:1561-5359