Visualizing intrinsic localized modes with a nonlinear micromechanical array
Micromechanical cantilever arrays provide the opportunity to visualize the nonlinear excitations of a discrete nonlinear system in real time. Both stationary and moving localized nonlinear excitations can be produced either by driving the system at a frequency outside the plane wave spectrum or by...
Gespeichert in:
| Veröffentlicht in: | Физика низких температур |
|---|---|
| Datum: | 2008 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2008
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/117340 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Visualizing intrinsic localized modes with a nonlinear micromechanical array / M. Sato, A.J. Sievers // Физика низких температур. — 2008. — Т. 34, № 7. — С. 687–694. — Бібліогр.: 41 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Micromechanical cantilever arrays provide the opportunity to visualize the nonlinear excitations of
a discrete nonlinear system in real time. Both stationary and moving localized nonlinear excitations can be
produced either by driving the system at a frequency outside the plane wave spectrum or by driving the system
at a frequency within the small amplitude dispersion curve range. To see these modes the tips of the cantilevers
are imaged on a 1D CCD camera. The brightness of the image depends on the oscillation amplitude
of the cantilever so that a distribution of amplitudes in the array can be recorded as a function of position and
time. Both the stationary and traveling excitations have been successfully simulated using a nonlinear
lumped element lattice model. The former ILM can appear in any size lattice while the latter requires a low
density of modes for the formation of smoothly running excitation.
|
|---|---|
| ISSN: | 0132-6414 |