Visualizing intrinsic localized modes with a nonlinear micromechanical array

Micromechanical cantilever arrays provide the opportunity to visualize the nonlinear excitations of a discrete nonlinear system in real time. Both stationary and moving localized nonlinear excitations can be produced either by driving the system at a frequency outside the plane wave spectrum or by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Физика низких температур
Datum:2008
Hauptverfasser: Sato, M., Sievers, A.J.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2008
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/117340
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Visualizing intrinsic localized modes with a nonlinear micromechanical array / M. Sato, A.J. Sievers // Физика низких температур. — 2008. — Т. 34, № 7. — С. 687–694. — Бібліогр.: 41 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Micromechanical cantilever arrays provide the opportunity to visualize the nonlinear excitations of a discrete nonlinear system in real time. Both stationary and moving localized nonlinear excitations can be produced either by driving the system at a frequency outside the plane wave spectrum or by driving the system at a frequency within the small amplitude dispersion curve range. To see these modes the tips of the cantilevers are imaged on a 1D CCD camera. The brightness of the image depends on the oscillation amplitude of the cantilever so that a distribution of amplitudes in the array can be recorded as a function of position and time. Both the stationary and traveling excitations have been successfully simulated using a nonlinear lumped element lattice model. The former ILM can appear in any size lattice while the latter requires a low density of modes for the formation of smoothly running excitation.
ISSN:0132-6414