Visualizing intrinsic localized modes with a nonlinear micromechanical array
Micromechanical cantilever arrays provide the opportunity to visualize the nonlinear excitations of a discrete nonlinear system in real time. Both stationary and moving localized nonlinear excitations can be produced either by driving the system at a frequency outside the plane wave spectrum or by...
Gespeichert in:
| Veröffentlicht in: | Физика низких температур |
|---|---|
| Datum: | 2008 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2008
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/117340 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Visualizing intrinsic localized modes with a nonlinear micromechanical array / M. Sato, A.J. Sievers // Физика низких температур. — 2008. — Т. 34, № 7. — С. 687–694. — Бібліогр.: 41 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-117340 |
|---|---|
| record_format |
dspace |
| spelling |
Sato, M. Sievers, A.J. 2017-05-22T14:42:51Z 2017-05-22T14:42:51Z 2008 Visualizing intrinsic localized modes with a nonlinear micromechanical array / M. Sato, A.J. Sievers // Физика низких температур. — 2008. — Т. 34, № 7. — С. 687–694. — Бібліогр.: 41 назв. — англ. 0132-6414 PACS: 05.45.–a;63.20.Pw;63.20.Ry;85.85.+j https://nasplib.isofts.kiev.ua/handle/123456789/117340 Micromechanical cantilever arrays provide the opportunity to visualize the nonlinear excitations of a discrete nonlinear system in real time. Both stationary and moving localized nonlinear excitations can be produced either by driving the system at a frequency outside the plane wave spectrum or by driving the system at a frequency within the small amplitude dispersion curve range. To see these modes the tips of the cantilevers are imaged on a 1D CCD camera. The brightness of the image depends on the oscillation amplitude of the cantilever so that a distribution of amplitudes in the array can be recorded as a function of position and time. Both the stationary and traveling excitations have been successfully simulated using a nonlinear lumped element lattice model. The former ILM can appear in any size lattice while the latter requires a low density of modes for the formation of smoothly running excitation. The authors appreciated the insightful comments of A.M. Kosevich at the 2003 NATO meeting on ILMs at Erice. His suggestion that the ILM spatial oscillations observed in Figs. 8(b,c) of Ref. 23 may be due to Bloch oscillations remains intriguing. We also dedicate this paper to the memory of Shozo Takeno, who pioneered in the ILM field. This work was supported by DOE DE-FG02-04ER46154 and JSPS-Grant-in-Aid for Scientific Research (B)18340086. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Физика низких температур Низкоразмерные и неупорядоченные системы Visualizing intrinsic localized modes with a nonlinear micromechanical array Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Visualizing intrinsic localized modes with a nonlinear micromechanical array |
| spellingShingle |
Visualizing intrinsic localized modes with a nonlinear micromechanical array Sato, M. Sievers, A.J. Низкоразмерные и неупорядоченные системы |
| title_short |
Visualizing intrinsic localized modes with a nonlinear micromechanical array |
| title_full |
Visualizing intrinsic localized modes with a nonlinear micromechanical array |
| title_fullStr |
Visualizing intrinsic localized modes with a nonlinear micromechanical array |
| title_full_unstemmed |
Visualizing intrinsic localized modes with a nonlinear micromechanical array |
| title_sort |
visualizing intrinsic localized modes with a nonlinear micromechanical array |
| author |
Sato, M. Sievers, A.J. |
| author_facet |
Sato, M. Sievers, A.J. |
| topic |
Низкоразмерные и неупорядоченные системы |
| topic_facet |
Низкоразмерные и неупорядоченные системы |
| publishDate |
2008 |
| language |
English |
| container_title |
Физика низких температур |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
Micromechanical cantilever arrays provide the opportunity to visualize the nonlinear excitations of
a discrete nonlinear system in real time. Both stationary and moving localized nonlinear excitations can be
produced either by driving the system at a frequency outside the plane wave spectrum or by driving the system
at a frequency within the small amplitude dispersion curve range. To see these modes the tips of the cantilevers
are imaged on a 1D CCD camera. The brightness of the image depends on the oscillation amplitude
of the cantilever so that a distribution of amplitudes in the array can be recorded as a function of position and
time. Both the stationary and traveling excitations have been successfully simulated using a nonlinear
lumped element lattice model. The former ILM can appear in any size lattice while the latter requires a low
density of modes for the formation of smoothly running excitation.
|
| issn |
0132-6414 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/117340 |
| citation_txt |
Visualizing intrinsic localized modes with a nonlinear micromechanical array / M. Sato, A.J. Sievers // Физика низких температур. — 2008. — Т. 34, № 7. — С. 687–694. — Бібліогр.: 41 назв. — англ. |
| work_keys_str_mv |
AT satom visualizingintrinsiclocalizedmodeswithanonlinearmicromechanicalarray AT sieversaj visualizingintrinsiclocalizedmodeswithanonlinearmicromechanicalarray |
| first_indexed |
2025-11-30T21:55:08Z |
| last_indexed |
2025-11-30T21:55:08Z |
| _version_ |
1850858588554133504 |