Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO₂ (0.73 ≤ x ≤ 0.87)
Specific heat measurements in the temperature region from 2 to 50 K in magnetic field up to 10 T, oriented parallel and perpendicularly to the CoO₂ layers were carried out on a series of high-quality single- crystals of NaxCoO₂ (x = 0.73, 0.76, 0.77, 0.78 and 0.87). Surprisingly, sharp lambda type a...
Gespeichert in:
| Datum: | 2009 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2009
|
| Schriftenreihe: | Физика низких температур |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/117413 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO₂ (0.73 ≤ x ≤ 0.87) / A. Baran, M. Botko, A. Zorkovská, M. Kajňaková, J.Šebek, E. Šantavá, J.P. Peng, C.T. Lin, A. Feher // Физика низких температур. — 2009. — Т. 35, № 10. — С. 1030-1033. — Бібліогр.: 29 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-117413 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1174132025-06-03T16:26:44Z Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO₂ (0.73 ≤ x ≤ 0.87) Baran, A. Botko, M. Zorkovská, A. Kajňaková, M. Šebek, J. Šantavá, E. Peng, J.P. Lin, C.T. Feher, A. Низкотемпеpатуpный магнетизм Specific heat measurements in the temperature region from 2 to 50 K in magnetic field up to 10 T, oriented parallel and perpendicularly to the CoO₂ layers were carried out on a series of high-quality single- crystals of NaxCoO₂ (x = 0.73, 0.76, 0.77, 0.78 and 0.87). Surprisingly, sharp lambda type anomaly was observed only for the concentration x = 0.76 at temperature (21.80 ± 0.02) K, for all the remaining doping levels round anomaly in experimental data was visible at temperature ~ 20 K, indicating a smeared magnetic phase transition. While the magnetic field oriented perpendicularly to the CoO₂ layers shifts the temperature of this anomaly to lower values, parallel magnetic field has no influence on it, what indirectly supports the idea of A-type antiferromagnetic ordering in studied systems. This work was supported by the grants of Slovak Research and Development Agency under the contracts No. APVV-VVCE-0058-07 and No. APVV-0006-07, VEGA 1/0159/9, the NSF-0701400 project and the Slovak–Serbian bilateral project SK-SRB-01006 and AVOZ 10100520. 2009 Article Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO₂ (0.73 ≤ x ≤ 0.87) / A. Baran, M. Botko, A. Zorkovská, M. Kajňaková, J.Šebek, E. Šantavá, J.P. Peng, C.T. Lin, A. Feher // Физика низких температур. — 2009. — Т. 35, № 10. — С. 1030-1033. — Бібліогр.: 29 назв. — англ. 0132-6414 PACS: 75.30.Kz, 71.27.+a, 75.40.Cx https://nasplib.isofts.kiev.ua/handle/123456789/117413 en Физика низких температур application/pdf Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Низкотемпеpатуpный магнетизм Низкотемпеpатуpный магнетизм |
| spellingShingle |
Низкотемпеpатуpный магнетизм Низкотемпеpатуpный магнетизм Baran, A. Botko, M. Zorkovská, A. Kajňaková, M. Šebek, J. Šantavá, E. Peng, J.P. Lin, C.T. Feher, A. Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO₂ (0.73 ≤ x ≤ 0.87) Физика низких температур |
| description |
Specific heat measurements in the temperature region from 2 to 50 K in magnetic field up to 10 T, oriented parallel and perpendicularly to the CoO₂ layers were carried out on a series of high-quality single- crystals of NaxCoO₂ (x = 0.73, 0.76, 0.77, 0.78 and 0.87). Surprisingly, sharp lambda type anomaly was observed only for the concentration x = 0.76 at temperature (21.80 ± 0.02) K, for all the remaining doping levels round anomaly in experimental data was visible at temperature ~ 20 K, indicating a smeared magnetic phase transition. While the magnetic field oriented perpendicularly to the CoO₂ layers shifts the temperature of this anomaly to lower values, parallel magnetic field has no influence on it, what indirectly supports the idea of A-type antiferromagnetic ordering in studied systems. |
| format |
Article |
| author |
Baran, A. Botko, M. Zorkovská, A. Kajňaková, M. Šebek, J. Šantavá, E. Peng, J.P. Lin, C.T. Feher, A. |
| author_facet |
Baran, A. Botko, M. Zorkovská, A. Kajňaková, M. Šebek, J. Šantavá, E. Peng, J.P. Lin, C.T. Feher, A. |
| author_sort |
Baran, A. |
| title |
Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO₂ (0.73 ≤ x ≤ 0.87) |
| title_short |
Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO₂ (0.73 ≤ x ≤ 0.87) |
| title_full |
Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO₂ (0.73 ≤ x ≤ 0.87) |
| title_fullStr |
Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO₂ (0.73 ≤ x ≤ 0.87) |
| title_full_unstemmed |
Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO₂ (0.73 ≤ x ≤ 0.87) |
| title_sort |
heat capacity studies of magnetic phase transition in sodium-rich naxcoo₂ (0.73 ≤ x ≤ 0.87) |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| publishDate |
2009 |
| topic_facet |
Низкотемпеpатуpный магнетизм |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/117413 |
| citation_txt |
Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO₂ (0.73 ≤ x ≤ 0.87) / A. Baran, M. Botko, A. Zorkovská, M. Kajňaková, J.Šebek, E. Šantavá, J.P. Peng, C.T. Lin, A. Feher // Физика низких температур. — 2009. — Т. 35, № 10. — С. 1030-1033. — Бібліогр.: 29 назв. — англ. |
| series |
Физика низких температур |
| work_keys_str_mv |
AT barana heatcapacitystudiesofmagneticphasetransitioninsodiumrichnaxcoo2073x087 AT botkom heatcapacitystudiesofmagneticphasetransitioninsodiumrichnaxcoo2073x087 AT zorkovskaa heatcapacitystudiesofmagneticphasetransitioninsodiumrichnaxcoo2073x087 AT kajnakovam heatcapacitystudiesofmagneticphasetransitioninsodiumrichnaxcoo2073x087 AT sebekj heatcapacitystudiesofmagneticphasetransitioninsodiumrichnaxcoo2073x087 AT santavae heatcapacitystudiesofmagneticphasetransitioninsodiumrichnaxcoo2073x087 AT pengjp heatcapacitystudiesofmagneticphasetransitioninsodiumrichnaxcoo2073x087 AT linct heatcapacitystudiesofmagneticphasetransitioninsodiumrichnaxcoo2073x087 AT fehera heatcapacitystudiesofmagneticphasetransitioninsodiumrichnaxcoo2073x087 |
| first_indexed |
2025-11-25T06:38:33Z |
| last_indexed |
2025-11-25T06:38:33Z |
| _version_ |
1849743341274529792 |
| fulltext |
Fizika Nizkikh Temperatur, 2009, v. 35, No. 10, p. 1030–1033
Heat capacity studies of magnetic phase transition
in sodium-rich Na
x
CoO2 (0.73 � x � 0.87)
A. Baran1, M. Botko1, A. Zorkovská1, M. Kajòaková1, J. Šebek2, E. Šantavá2,
J.P. Peng3, C.T. Lin3, and A. Feher1
1 Centre of Low Temperature Physics of the Faculty of Science UPJŠ & Institute of Experimental Physics SAS
9 Park Angelinum, Košice 04154, Slovakia
E-mail: alexander.feher@upjs.sk
2 Institute of Physics AS CR, Prague 18221, Czech Republic
3 Max-Planck-Institute for Solid State Research, 1 Heisenbergstr, Stuttgart D-70569, Germany
Received April 9, 2009
Specific heat measurements in the temperature region from 2 to 50 K in magnetic field up to 10 T, ori-
ented parallel and perpendicularly to the CoO2 layers were carried out on a series of high-quality sin-
gle-crystals of NaxCoO2 (x = 0.73, 0.76, 0.77, 0.78 and 0.87). Surprisingly, sharp lambda type anomaly was
observed only for the concentration x = 0.76 at temperature (21.80 ± 0.02) K, for all the remaining doping
levels round anomaly in experimental data was visible at temperature ~ 20 K, indicating a smeared magnetic
phase transition. While the magnetic field oriented perpendicularly to the CoO2 layers shifts the temperature
of this anomaly to lower values, parallel magnetic field has no influence on it, what indirectly supports the
idea of A-type antiferromagnetic ordering in studied systems.
PACS: 75.30.Kz Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.);
71.27.+a Strongly correlated electron systems; heavy fermions;
75.40.Cx Static properties (order parameter, static susceptibility, heat capacities, critical expo-
nents, etc.).
Keywords: cobaltates, specific heat, magnetic phase transition, A-type antiferromagnetism.
Introduction
Transition metal oxide NaxCoO2 is a subject of intense
study for its unusually high thermoelectric power [1], for
the discovery of superconduct iv i ty in hydrated
Na0.3CoO2 [2] and for very rich phase diagram with vari-
ous electronic and magnetic ground states as a function of
x. It is a paramagnetic metal at x ~ 0.3, a charge-ordered
insulator at x = 0.5 and then a «Curie–Weiss metal» at
x ~ 0.7 [3] with unconvential electronic behavior [4–6].
For x in the range 0.75–0.9 a magnetic transition with TN
between 19 and 27 K was observed [7–10].
Recent neutron scattering studies of Na0.75CoO2,
Na0.82CoO2, and Na0.85CoO2 have established that the
magnetic order and dynamics are consistent with an
A-type antiferromagnetic structure, in which a ferromag-
netic interaction was revealed within the CoO2 layers and
the layers themselves interact antiferromagnetically
[11–13]. Moreover, the latest studies of correlation ef-
fects via cellular clusters by means of the rotationally
invariant slave boson method provide a theoretical sup-
port for intralayer ferromagnetic order in highly doped
NaxCoO2 [14].
Specific heat studies confirm the antiferromagnetic
phase transition at 22 K [8,15,16], and recently a further
ferromagnetic phase transition was observed at 8 K in
Na0.85CoO2 [17]. This transition the authors clearly con-
nect to the rearrangement of sodium ions at around 200 K,
which leads to a phase separation.
Despite a lot of experimental and theoretical work
concerning the study of NaxCoO2, many questions about
the magnetic state of cobaltates are still unresolved, be-
sides the A-type antiferromagnetic ordering [15] also a
spin-density-wave scenario is considered [16,20], or the
coexistence of this two types of magnetically ordered
state is assumed [8].
© A. Baran, M. Botko, A. Zorkovská, M. Kajòaková, J. Šebek, E. Šantavá 2, J.P. Peng3, C.T. Lin3, and A. Feher1, 2009
In the present paper we investigate the specific heat of
sodium-rich NaxCoO2 and the influence of the orientation
of magnetic field on the phase transition. We observed a
round anomaly corresponding to the phase transition for
all samples except the x = 0.76 concentration having a
lambda type anomaly, in this respect the influence of the
cluster character on the phase transition is discussed. The
observed effect of magnetic field oriented parallel and
perpendicularly to the CoO2 planes on the phase transi-
tion is in agreement with the A-type antiferromagnetic or-
dering.
Experimental
High quality single-crystal samples of NaxCoO2 with
x = 0.73, 0.76, 0.77, 0.78 and 0.87 were grown in an opti-
cal floating zone furnace with four 300 W halogen lamps
installed as infrared radiation sources. Starting feed and
seed materials were prepared from Na2Co3 and Co3O4 of
99.9% purity with the nominal composition of NaxCoO2.
To ensure homogeneous and pure phase all the process
procedures were carefully controlled and examined using
x-ray diffraction. The composition of the as-grown crys-
tals were determined by energy dispersive x-ray analysis
(EDX), the sodium composition distribution was homo-
geneous with error less up to 2 at.%. The growth details
are described in Refs. 18, 19.
Specific heat of samples in magnetic field up to 10 T
oriented parallel and perpendicularly to the ab (CoO2)
plane has been measured in the temperature range from 2
to 50 K using the conventional Quantum Design
PPMS-14 equipment. Because the recent experimental
works [17] pointed to possible changes of sample proper-
ties by cooling procedure, we used the same cooling rates
for all samples to ensure the identical conditions for spe-
cific heat measurements.
Results and discussion
The specific heat data for single-crystals in magnetic
field of 0, 9 and 10 T for both orientation of field, i.e., per-
pendicularly and parallel to the ab plane, are shown in
Figs. 1,a and b. As we can see, relatively sharp lambda
type anomaly is visible at (21.80 ± 0.02) K for concentra-
tion x = 0.76, while for other concentrations smeared
anomalies in specific heat can be observed around 20 K.
The differences are better visible on Fig. 2, after subtrac-
tion of the lattice contribution to specific heat, fitted nu-
merically. The lambda type anomaly indicates magnetic
ordering, consistent with previous experimental results,
showing similar phase transition in specific heat at about
22 K [8,16,20]. The origin of the broad anomaly at ~ 20 K
might be attributed to the cluster character of the system,
ordering in the clusters can smear the transition. This is in
agreement with the previous evidence of the intrinsically
Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO2
Fizika Nizkikh Temperatur, 2009, v. 35, No. 10 1031
4.0
3.5
3.0
3.0
2.5
2.5
2.0
2.0
1.5
1.5
1.0
1.0
0.5
17 18
18
19
19
20
20
21
21
22
22
23
23
24
T, K
T, K
C
,J
/(
m
ol
·K
)
C
,J
/(
m
ol
·K
)
9 T, x = 0.73
10 T, x = 0.73
10 T, x = 0.76
10 T, x = 0.78
9 T, x = 0.77
10 T, x = 0.78
10 T, x = 0.87
B ab plane�
B || ab plane
0 T
0 T
0 T
0 T
0 T
0 T
0 T
a
b
Fig. 1. Specific heat of NaxCoO2 for various concentrations x.
Magnetic field oriented perpendicularly to the ab plane (a).
Specific heat of NaxCoO2 for selected concentrations. Mag-
netic field oriented parallel to the ab plane (b).
C
/T
,J
/(
m
ol
·K
2 )
x = 0.73
x = 0.76
x = 0.77
x = 0.78
x = 0.87
0.025
0.020
0.015
0.010
0.005
0
50
70
46
37
35
S , mJ/(mol·K)mag
14 16 18 20 22 24
T, K
Fig. 2. Comparison of the phase transition anomaly and the in-
volved entropy for different Na doping.
inhomogeneous magnetic state related to the Na doping
[21]. Even though there are strong indications (EPR and
NMR measurements [22], neutron scattering results
[23,24] and STM investigations [25]) that this inhomo-
geneity is of mesoscopic scale, the observed coexistence
of two magnetic phases, ordering at different tempera-
tures [17], represents an example when the system is mac-
roscopically phase separated. Thus, the intense debate
about the character of inhomogeneities in cobaltates has
still not come to the end.
The cluster structure originates from several compet-
ing effects in the system, the impact of which changes
upon doping. Geometric frustration of antiferromagnetic
interactions on triangular lattice is gradually lifted by Na
addition, consequently, there must exist a critical doping
at which frustration ceases and the system orders. Recent
Monte Carlo study tracks the smearing influence of geo-
metric frustration on specific heat [26]. On the other
hand, Na doping leads to magnetic dilution of the system,
which can smear the transition again. In terms of the
above reasoning, the concentration x = 0.76 might repre-
sent a critical doping, at which the percolating cluster
structure can develop a long range magnetic order; even-
tually at which the long range Na superstructure forma-
tion, which is observed on 3/4 doped Na0.75CoO2 sam-
ples by high energy x-ray diffraction [27] can promote the
long range magnetic ordering as well. According to
Fig. 2, the entropy involved in the magnetic phase transi-
tion for all samples is very small, it has maximum obvi-
ously at doping x = 0.76, but even in this case it reaches
only ~ 0.07 J/(mol·K). If magnetic phase transition corre-
sponded to the long range magnetic ordering of localized
Co+4 spins, we would expect the entropy associated with
the transition to be of order 0.24R ln 2 ~ 1.38 J /(mol·K).
This value is 20 times larger than entropy found experi-
mentally and supports the idea about unconventional
magnetic ordering, such as spin density wave [16,28].
The magnetic field applied perpendicular to the ab
plane shifts the magnetic phase transition towards lower
temperatures (Fig. 1,a). On the other hand, magnetic field
oriented parallel to the ab planes has no influence on spe-
cific heat, as it can be seen from Fig. 1,b. The fact that the
specific heat anomaly about 20 K is sensitive only to the
magnetic field oriented perpendicularly to the CoO2 lay-
ers is in accordance with the picture, in which the mag-
netic moments within the CoO2 layers point out of layers
and are likely ferromagnetically coupled, while the
interlayer interactions are antiferromagnetic.
Detailed study of the influence of perpendicular mag-
netic field between 0 and 9 T on the specific heat of sin-
gle-crystal Na0.77CoO2 is illustrated in Fig. 3. In mag-
netic fields from 0 to 3 T no significant influence on
specific heat is visible, the dependences are almost identi-
cal. As the magnetic field is increased from 3 to 9 T, the
phase transition critical temperature TN, estimated as a
peak temperature of the anomaly, gradually shifts to
lower values. Similar tendency was observed in specific
heat study under magnetic field up to 14 T applied per-
pendicularly to the ab plane, with metamagnetic phase
transition at 8 T [29]. Inset of Fig. 3 shows the phase dia-
gram of the sample Na0.77CoO2. By extrapolation to zero
temperature we guessed very roughly the saturation mag-
netic field as ~ 133 T ~ 7.7 meV, which gives idea about
the strength of interlayer interactions. These values are
quite reasonable, not far from that estimated by neutron
scattering [15].
Conclusion
We have measured the specific heat of sodium-rich
single crystals of NaxCoO2, with attention to the in-
fluence of Na doping on the magnetic phase transition.
Surprisingly, sharp lambda type anomaly was observ-
ed only for the concentration x = 0.76 at temperature
(21.80 ± 0.02) K, for all the remaining doping levels both
below and above x = 0.76 round anomaly in experimen-
tal data was visible at temperature ~ 20 K, indicating a
smeared magnetic phase transition, likely as a conse-
quence of competing magnetic frustration and dilution ef-
fects. The influence of the cluster character on the phase
transition was discussed. The influence of magnetic field,
applied parallel and perpendicularly to ab plane, indi-
rectly supports the A-type ferromagnetism.
Acknowledgment
This work was supported by the grants of Slovak
Research and Development Agency under the contracts
1032 Fizika Nizkikh Temperatur, 2009, v. 35, No. 10
A. Baran et al.
0 T
1 T
2 T
3 T
4 T
5 T
6 T
7.5 T
9 T
C
,J
/(
m
ol
·K
)
2.7
2.6
2.5
2.4
2.3
2.2
18.5 19.0 19.5 20.0 20.5 21.0
T, K
19.2 19.6 20.0
10
8
6
4
2
0
B
,T
T , KN
Fig. 3. Influence of perpendicular magnetic field up to 9 T on
specific heat of Na0.77CoO2. Inset: Phase diagram for single
crystal Na0.77CoO2 .
No. APVV-VVCE-0058-07 and No. APVV-0006-07,
VEGA 1/0159/9, the NSF-0701400 project and the
Slovak–Serbian bilateral project SK-SRB-01006 and
AVOZ 10100520.
1. Y. Wang, N.S. Rogado, R.J. Cava, and N.P. Ong, Nature
(London) 423, 425 (2003).
2. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izu-
mi, R.A. Dilanian, and T. Sasaki, Nature (London) 422, 53
(2003).
3. M.L. Foo, Y. Wang, S. Watauchi, H.W. Zandbergen, T.
He, R.J. Cava, and N.P. Ong, Phys. Rev. Lett. 92, 247001
(2004).
4. L. Balicas, Y.J. Jo, G.J. Shu, F.C. Chou, and P.A. Lee,
Phys. Rev. Lett. 100, 126405 (2008).
5. M. Brühwiler, B. Batlogg, S.M. Kazakov, Ch. Nieder-
mayer, and J. Karpinski, Physica B378–380, 630 (2006).
6. A. Zorkovská, J. Šebek, E. Šantavá, I. Bradariæ, and A. Fe-
her, Fiz. Nizk. Temp. 33, 1243 (2007) [Low. Temp. Phys.
33, 944 (2007)].
7. J. Sugiyama, H. Itahara, J.H. Brewer, E.J. Ansaldo, T. Mo-
tohashi, M. Karppinen, and H. Yamauchi, Phys. Rev. B67,
214420 (2003).
8. T. Motohashi, R. Ueda, E. Naujalis, T. Tojo, I. Terasaki,
T. Atake, M. Karppinen, and H. Yamauchi, Phys. Rev.
B67, 064406 (2003).
9. P. Mendels, D. Bono, J. Bobroff, G. Collin, D. Colson,
N. Blanchard, H. Alloul, I. Mukhamedshin, F. Bert, A. Ama-
to, and A.D. Hillier, Phys. Rev. Lett. 94, 136403 (2005).
10. J. Sugiyama, J.H. Brewer, E.J. Ansaldo, B. Hitti, M. Mi-
kami, Y. Mori, and T. Sasaki, Phys. Rev. B69, 214423
(2004).
11. A.T. Boothroyd, R. Coldea, D.A. Tennant, D. Prabhakaran,
L.M. Helme, and C.D. Frost, Phys. Rev. Lett. 92, 197201
(2004).
12. L.M. Helme, A.T. Boothroyd, R. Coldea, D. Prabhakaran,
D.A. Tennant, A. Hiess, and J. Kulda, Phys. Rev. Lett. 94,
157206 (2005).
13. S.P. Bayrakci, I. Mirebeau, P. Bourges, Y. Sidis, M. En-
derle, J. Mesot, D.P. Chen, C.T. Lin, and B. Keimer, Phys.
Rev. Lett. 94, 157205 (2005).
14. F. Lechermann, Phys. Rev. Lett. 102, 046403 (2009).
15. S.P. Bayrakci, C. Bernhand, D.P. Chen, B. Keimer, R.K.
Kremer, P. Lemmens, C.T. Lin, C. Niedermayer, and
J. Strempfer, Phys. Rev. B69, 100410(R) (2004).
16. J. Wooldridge, D. Paul, G. Balakrishman, and M. Lees, J.
Phys.: Condens. Matter 17, 707 (2005).
17. T.F. Schulze, P.S. H�fliger, Ch. Niedermayer, K. Matten-
berger, S. Bubenhofer, and B. Batlogg, Phys. Rev. Lett.
100, 026407 (2008).
18. D.P. Chen, H.C. Chen, A. Maljuk, A. Kulakov, H. Zhang,
P. Lemmens, and C.T. Lin, Phys. Rev. B70, 024506 (2004).
19. J.B. Peng and C.T. Lin, J. Crystal Growth 311, 921 (2009).
20. B.C. Sales, R. Jin, K.A. Affholter, P. Khalifah, G.M.
Veith, and D. Mandrus, Phys. Rev. B70, 174419 (2004).
21. C. Bernhard, Ch. Niedermayer, A. Drew, G. Khaliullin,
S. Bayrakci, J. Stempfer, R.K. Kremer, D.P. Chen, C.T.
Lin, and B. Keimer, Europhys. Lett. 80, 27005 (2007).
22. P. Carretta, M. Mariani, C.B. Azzoni and M.C. Mozzati,
I. Bradariæ, I. Saviæ, A. Feher, J. Šebek, Phys. Rev. B70,
024409 (2004).
23. M. Roger, D.J.P. Morris, D.A. Tennant, M.J. Gutmann,
J.P. Goff, J.-U. Hoffmann, R. Feyerherm, E. Dudzik,
D. Prabhakaran, A.T. Boothroyd, N. Shannon, B. Lake,
and P.P. Deen, Nature 445, 631 (2007).
24. D.J.P. Morris, M. Roger, M.J. Gutmann, J.P. Goff,
D.A. Tennant, D. Prabhakaran, A.T. Boothroyd, E. Dud-
zik, R. Feyerherm, J.-U. Hoffmann, and K. Kiefer,
arXiv:0803.1312v2.
25. W.W. Pai, S.H. Huang, Y.S. Meng, Y.C. Chao, C.H. Lin,
H.L. Liu, and F.C. Chou, Phys. Rev. Lett. 100, 206404
(2008).
26. A. Mañka-Krasoñ and K. Kulakowski, cond-mat/0812.1128v1.
27. J. Geck, M. Zimmermann, H. Berger, S.V. Borisenko,
H. Eschrig, K. Koepernik, M. Knupfer, and B. Büchner,
Phys. Rev. Lett. 97, 106403 (2006).
28. B.C. Sales, R. Jin, K.A. Affholter, P. Khalifah, G.M. Veith,
and D. Mandrus, Phys. Rev. B70, 174419 (2004).
29. J.L. Luo, N.L.Wang, G.T. Liu, D.Wu, X.N. Jing, F. Hu,
and T. Xiang, Phys. Rev. Lett. 93, 187203 (2004).
Heat capacity studies of magnetic phase transition in sodium-rich NaxCoO2
Fizika Nizkikh Temperatur, 2009, v. 35, No. 10 1033
|