Electrically active magnetic excitations in antiferromagnets (Review Article)

The magnetic resonance operation by electric field is highly nontrivial but the most demanding function in the future spin-electronics. Recently observed in a variety of multiferroics materials named the collective electrically active magnetic excitations, frequently referred to as “electromagnons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
1. Verfasser: Krivoruchko, V.N.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2012
Schriftenreihe:Физика низких температур
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/117467
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Electrically active magnetic excitations in antiferromagnets (Review Article) / V.N. Krivoruchko // Физика низких температур. — 2012. — Т. 38, № 9. — С. 1018-1031. — Бібліогр.: 97 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The magnetic resonance operation by electric field is highly nontrivial but the most demanding function in the future spin-electronics. Recently observed in a variety of multiferroics materials named the collective electrically active magnetic excitations, frequently referred to as “electromagnons”, reveal a possible way to implement such a function. Experimental advances in terahertz spectroscopy of electromagnons in multiferroics as well as related theoretical models are reviewed. The earlier theoretical works, where the existence of electric-dipole active magnetic excitations in antiferro- and ferrimagnets with collinear spin structure has been predicted, are also discussed. Multi-sublattice magnets with electrically active magnetic excitations at room temperature give a direct possibility to transform one type of excitation into another in a terahertz time-domain. This is of crucial importance for the magnon-based spintronics as only the short-wavelength exchange magnons allow the signal processing on the nanoscale distance.