Dynamic properties and avalanche noise analysis of 4H-SiC over wz-GaN based IMPATTs at mm-wave window frequency

The mm-wave as well as noise properties of IMPATT diodes for the D-band are efficiently determined, with 4H-SiC and wurtzite type GaN as base materials, using advanced computer simulation techniques developed by the authors. The breakdown voltage (180 V) and efficiency (14.7%) is higher in case of 4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Tripathy, P.R., Mukherjee, M., Pati, S.P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2011
Schriftenreihe:Semiconductor Physics Quantum Electronics & Optoelectronics
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/117715
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Dynamic properties and avalanche noise analysis of 4H-SiC over wz-GaN based IMPATTs at mm-wave window frequency / P.R. Tripathy, M. Mukherjee, S.P. Pati // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2011. — Т. 14, № 2. — С. 137-144. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The mm-wave as well as noise properties of IMPATT diodes for the D-band are efficiently determined, with 4H-SiC and wurtzite type GaN as base materials, using advanced computer simulation techniques developed by the authors. The breakdown voltage (180 V) and efficiency (14.7%) is higher in case of 4H-SiC as compared to wz GaN based diode having the breakdown voltage (153 V) and efficiency (13.7%). The study indicates that 4H-SiC IMPATT diode is capable of generating high RF power density of about 8.383×10¹⁰ W/m² as compared to GaN IMPATT diode that is capable to develop the power density 6.847×10¹⁰ W/m² for the same frequency of operation. It is also observed that wz-GaN exhibits better noise behavior 7.42×10⁻¹⁵ V²·s than SiC (5.16×10⁻¹⁵ V² ·s) for IMPATT operation at 140 GHz. A tradeoff between the power output and noise from the device reveals that wz-GaN would be a suitable base material for high power application of IMPATT diode with moderate noise.