Impact of sidewall spacer on gate leakage behavior of nano-scale MOSFETs
Semiconductor devices with a low gate leakage current are preferred for low power application. As the devices are scaled down, sidewall spacer for CMOS transistor in nano-domain becomes increasingly critical and plays an important role in device performance evaluation. In this work, gate tunnelin...
Saved in:
| Date: | 2011 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2011
|
| Series: | Semiconductor Physics Quantum Electronics & Optoelectronics |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/117721 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Impact of sidewall spacer on gate leakage behavior of nano-scale MOSFETs / Ashwani K. Rana, Narottam Chand, Vinod Kapoor // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2011. — Т. 14, № 2. — С. 203-208. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-117721 |
|---|---|
| record_format |
dspace |
| fulltext |
|
| spelling |
nasplib_isofts_kiev_ua-123456789-1177212025-06-03T16:28:46Z Impact of sidewall spacer on gate leakage behavior of nano-scale MOSFETs Rana, A.K. Chand, N. Kapoor, V. Semiconductor devices with a low gate leakage current are preferred for low power application. As the devices are scaled down, sidewall spacer for CMOS transistor in nano-domain becomes increasingly critical and plays an important role in device performance evaluation. In this work, gate tunneling currents have been modeled for a nano-scale MOSFET having different high-k dielectric spacer such as SiO₂, Si₃N₄, Al₂O₃, HfO₂. The proposed model is compared and contrasted with Santaurus simulation results and reported experimental result to verify the accuracy of the model. The agreement found was good, thus validating the developed analytical model. It is observed in the results that gate leakage current decreases with the increase of dielectric constant of the device spacer. Further, it is also reported that the spacer materials impact the threshold voltage, on current, off current, drain induced barrier lowering and subthreshold slope of the device. 2011 Article Impact of sidewall spacer on gate leakage behavior of nano-scale MOSFETs / Ashwani K. Rana, Narottam Chand, Vinod Kapoor // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2011. — Т. 14, № 2. — С. 203-208. — Бібліогр.: 15 назв. — англ. 1560-8034 PACS 85.30.Tv https://nasplib.isofts.kiev.ua/handle/123456789/117721 en Semiconductor Physics Quantum Electronics & Optoelectronics application/pdf Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
Semiconductor devices with a low gate leakage current are preferred for low
power application. As the devices are scaled down, sidewall spacer for CMOS transistor
in nano-domain becomes increasingly critical and plays an important role in device
performance evaluation. In this work, gate tunneling currents have been modeled for a
nano-scale MOSFET having different high-k dielectric spacer such as SiO₂, Si₃N₄,
Al₂O₃, HfO₂. The proposed model is compared and contrasted with Santaurus simulation
results and reported experimental result to verify the accuracy of the model. The
agreement found was good, thus validating the developed analytical model. It is observed
in the results that gate leakage current decreases with the increase of dielectric constant
of the device spacer. Further, it is also reported that the spacer materials impact the
threshold voltage, on current, off current, drain induced barrier lowering and subthreshold
slope of the device. |
| format |
Article |
| author |
Rana, A.K. Chand, N. Kapoor, V. |
| spellingShingle |
Rana, A.K. Chand, N. Kapoor, V. Impact of sidewall spacer on gate leakage behavior of nano-scale MOSFETs Semiconductor Physics Quantum Electronics & Optoelectronics |
| author_facet |
Rana, A.K. Chand, N. Kapoor, V. |
| author_sort |
Rana, A.K. |
| title |
Impact of sidewall spacer on gate leakage behavior of nano-scale MOSFETs |
| title_short |
Impact of sidewall spacer on gate leakage behavior of nano-scale MOSFETs |
| title_full |
Impact of sidewall spacer on gate leakage behavior of nano-scale MOSFETs |
| title_fullStr |
Impact of sidewall spacer on gate leakage behavior of nano-scale MOSFETs |
| title_full_unstemmed |
Impact of sidewall spacer on gate leakage behavior of nano-scale MOSFETs |
| title_sort |
impact of sidewall spacer on gate leakage behavior of nano-scale mosfets |
| publisher |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
| publishDate |
2011 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/117721 |
| citation_txt |
Impact of sidewall spacer on gate leakage behavior of nano-scale MOSFETs / Ashwani K. Rana, Narottam Chand, Vinod Kapoor // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2011. — Т. 14, № 2. — С. 203-208. — Бібліогр.: 15 назв. — англ. |
| series |
Semiconductor Physics Quantum Electronics & Optoelectronics |
| work_keys_str_mv |
AT ranaak impactofsidewallspacerongateleakagebehaviorofnanoscalemosfets AT chandn impactofsidewallspacerongateleakagebehaviorofnanoscalemosfets AT kapoorv impactofsidewallspacerongateleakagebehaviorofnanoscalemosfets |
| first_indexed |
2025-11-26T01:42:45Z |
| last_indexed |
2025-11-26T01:42:45Z |
| _version_ |
1849815324857204736 |