Radiation spectrum of an electron moving in a spiralin medium

The action of the Doppler effect on the particularities of radiation power spectral distribution of an electron moving in a spiral in a medium has been investigated near the Cherenkov threshold. The fine structure of the electromagnetic radiation spectrum at the Cherenkov threshold and the synchrotr...

Full description

Saved in:
Bibliographic Details
Published in:Condensed Matter Physics
Date:2007
Main Authors: Konstantinovich, A.V., Konstantinovich, I.A.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2007
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/117911
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Radiation spectrum of an electron moving in a spiralin medium / A.V. Konstantinovich, I.A. Konstantinovich // Condensed Matter Physics. — 2007. — Т. 10, № 1(49). — С. 5-9. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-117911
record_format dspace
spelling Konstantinovich, A.V.
Konstantinovich, I.A.
2017-05-27T11:49:11Z
2017-05-27T11:49:11Z
2007
Radiation spectrum of an electron moving in a spiralin medium / A.V. Konstantinovich, I.A. Konstantinovich // Condensed Matter Physics. — 2007. — Т. 10, № 1(49). — С. 5-9. — Бібліогр.: 15 назв. — англ.
1607-324X
DOI:10.5488/CMP.10.1.5
PACS: 41.60.-m, 41.60.Ap, 41.60.Bq, 03.50.-z, 03.50.De
https://nasplib.isofts.kiev.ua/handle/123456789/117911
The action of the Doppler effect on the particularities of radiation power spectral distribution of an electron moving in a spiral in a medium has been investigated near the Cherenkov threshold. The fine structure of the electromagnetic radiation spectrum at the Cherenkov threshold and the synchrotron-Cherenkov radiation spectrum for an electron moving along a spiral with non-relativistic longitudinal component of the velocity (i.e., the component parallel to the magnetic induction vector) in a transparent isotropic medium have been obtained and studied.
Дослiджено вплив ефекту Доплера на особливостi спектрального розподiлу потужностi випромiнювання електрона, що рухається вздовжгвинтової лiнiї у середовищi, поблизу черенковського бар’єру. Отримана i дослiджена тонка структура електромагнiтного спектра на черенковському бар’єрi та спектра синхротронно-черенковського випромiнювання електрона, що рухається вздовж гвинтової лiнiї у прозорому середовищi, з нерелятивiстською поздовжньою компонентою швидкостi (компонентою, що паралельна вектору магнiтної iндукцiї).
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
Radiation spectrum of an electron moving in a spiralin medium
Спектр випромiнювання електрона, що рухається вздовж гвинтової лiнiї у середовищi
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Radiation spectrum of an electron moving in a spiralin medium
spellingShingle Radiation spectrum of an electron moving in a spiralin medium
Konstantinovich, A.V.
Konstantinovich, I.A.
title_short Radiation spectrum of an electron moving in a spiralin medium
title_full Radiation spectrum of an electron moving in a spiralin medium
title_fullStr Radiation spectrum of an electron moving in a spiralin medium
title_full_unstemmed Radiation spectrum of an electron moving in a spiralin medium
title_sort radiation spectrum of an electron moving in a spiralin medium
author Konstantinovich, A.V.
Konstantinovich, I.A.
author_facet Konstantinovich, A.V.
Konstantinovich, I.A.
publishDate 2007
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Спектр випромiнювання електрона, що рухається вздовж гвинтової лiнiї у середовищi
description The action of the Doppler effect on the particularities of radiation power spectral distribution of an electron moving in a spiral in a medium has been investigated near the Cherenkov threshold. The fine structure of the electromagnetic radiation spectrum at the Cherenkov threshold and the synchrotron-Cherenkov radiation spectrum for an electron moving along a spiral with non-relativistic longitudinal component of the velocity (i.e., the component parallel to the magnetic induction vector) in a transparent isotropic medium have been obtained and studied. Дослiджено вплив ефекту Доплера на особливостi спектрального розподiлу потужностi випромiнювання електрона, що рухається вздовжгвинтової лiнiї у середовищi, поблизу черенковського бар’єру. Отримана i дослiджена тонка структура електромагнiтного спектра на черенковському бар’єрi та спектра синхротронно-черенковського випромiнювання електрона, що рухається вздовж гвинтової лiнiї у прозорому середовищi, з нерелятивiстською поздовжньою компонентою швидкостi (компонентою, що паралельна вектору магнiтної iндукцiї).
issn 1607-324X
url https://nasplib.isofts.kiev.ua/handle/123456789/117911
citation_txt Radiation spectrum of an electron moving in a spiralin medium / A.V. Konstantinovich, I.A. Konstantinovich // Condensed Matter Physics. — 2007. — Т. 10, № 1(49). — С. 5-9. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT konstantinovichav radiationspectrumofanelectronmovinginaspiralinmedium
AT konstantinovichia radiationspectrumofanelectronmovinginaspiralinmedium
AT konstantinovichav spektrviprominûvannâelektronaŝoruhaêtʹsâvzdovžgvintovoíliniíuseredoviŝi
AT konstantinovichia spektrviprominûvannâelektronaŝoruhaêtʹsâvzdovžgvintovoíliniíuseredoviŝi
first_indexed 2025-11-25T22:43:37Z
last_indexed 2025-11-25T22:43:37Z
_version_ 1850569969569366016
fulltext Condensed Matter Physics 2007, Vol. 10, No 1(49), pp. 5–9 Radiation spectrum of an electron moving in a spiral in medium A.V.Konstantinovich∗, I.A.Konstantinovich Fedkovych Chernivtsi National University, 2, Kotsyubinsky Str., Chernivtsi, 58012, Ukraine Received September 4, 2006, in final form December 27, 2006 The action of the Doppler effect on the particularities of radiation power spectral distribution of an electron moving in a spiral in a medium has been investigated near the Cherenkov threshold. The fine structure of the electromagnetic radiation spectrum at the Cherenkov threshold and the synchrotron-Cherenkov radiation spectrum for an electron moving along a spiral with non-relativistic longitudinal component of the velocity (i.e., the component parallel to the magnetic induction vector) in a transparent isotropic medium have been obtained and studied. Key words: synchrotron radiation, synchrotron-Cherenkov radiation PACS: 41.60.-m, 41.60.Ap, 41.60.Bq, 03.50.-z, 03.50.De 1. Introduction In case of the charged particles moving in magnetic field, three kinds of radiation are possible in a medium [1–5]: synchrotron, Cherenkov, and synchrotron-Cherenkov. In papers [5–11] the au- thors studied the particularities of the synchrotron-Cherenkov radiation spectrum in a transparent medium with the relativistic longitudinal component of the velocity (the component parallel to the magnetic induction vector). The aim of this paper is to investigate the spectral distribution of the radiation power for an electron moving in magnetic field using the improved Lorentz’s self-interaction method [4,5]. Using the exact integral relationships for the spectral distribution of the radiation power of an electron moving along a spiral in a transparent isotropic medium, the fine structure of the electromagnetic radiation spectrum at the Cherenkov threshold and synchrotron-Cherenkov radiation spectrum was investigated by means of analytical and numerical methods. The action of the Doppler effect on the particularities of radiation spectrum of a single electron at its motion in a spiral in a transparent medium with non-relativistic longitudinal component of the velocity (i.e., the component parallel to the magnetic induction vector) is investigated. 2. Time-averaged radiation power of charged particles The time-averaged radiation power P rad of charged particles moving in a transparent isotropic medium is expressed in [4,5] as P rad = lim T→∞ 1 2T T∫ −T dt ⎧⎨ ⎩ ∫ τ ( �j (�r, t) 1 c ∂ �ADir (�r, t) ∂t − ρ (�r, t) ∂ϕDir (�r, t) ∂t ) d�r ⎫⎬ ⎭ . (1) Here �j (�r, t) is the current density and ρ (�r, t) is the charge density. The integration is over the volume τ . According to the hypothesis of Dirac [12–15], the scalar ϕDir (�r, t) and vector �ADir (�r, t) potentials are defined as a half-difference of the retarded and advanced potentials. ∗E-mail: aconst@ukr.net c© A.V.Konstantinovich, I.A.Konstantinovich 5 A.V.Konstantinovich, I.A.Konstantinovich After substituting the scalar ϕDir (�r, t) and vector �ADir (�r, t) potentials into (1) we obtain the relationship for the average radiation power of charged particles moving in a transparent isotropic medium: P rad = ∞∫ 0 dω W (ω) , (2) where W (ω) = lim T→∞ 1 2T T∫ −T dtW (t, ω) , (3) W (t, ω) = 1 πc2 ∞∫ −∞ d�r ∞∫ −∞ d�r′ ∞∫ −∞ dt′ωμ(ω) sin ( n(ω) c ω|�r − �r′| ) |�r − �r′| × cos {ω (t − t′)} { �j (�r, t)�j ( �r′, t′ ) − c2 n2 (ω) ρ (�r, t) ρ ( �r′, t′ )} . (4) Here W (ω) is a function of the average spectral distribution of radiation power, W (t, ω) is a function of the instantaneous spectral distribution of radiation power, μ (ω) is the magnetic per- meability, n (ω) is the refraction index, ω is the cyclic frequency, and c is the velocity of light in vacuum. 3. Radiation spectrum of an electron moving along a spiral with a low lon- gitudinal component of the velocity The motion law and the velocity of an electron moving in a spiral in a transparent medium are given by the expressions �r (t) = r0 cos(ω0t)�i + r0 sin(ω0t)�j + V‖t�k, �V (t) = d�r (t) dt . (5) Here r0 = V⊥ω−1 0 , ω0 = ceBextẼ−1, Ẽ = c √ p2 + m2 0c 2, the magnetic induction vector �Bext ‖ 0Z, V⊥ and V‖ are the components of the velocity, �p and Ẽ are the momentum and energy of the electron, e and m0 are its charge and rest mass. We obtain the time-averaged radiation power of an electron after substituting (5) into (2) to (4). Then (see [4,5]) P rad = ∞∫ 0 dω W (ω) , (6) W (ω) = 2e2 πc2 ∞∫ 0 dxωμ (ω) sin ( n(ω) c ωη(x) ) η(x) cos (ωx) { V 2 ⊥ cos (ω0x) + V 2 ‖ − c2 n2 (ω) } , (7) where η (x) = √ V 2 ‖ x2 + 4 V 2 ⊥ ω2 0 sin2 (ω0 2 x ) . After some transformations from relationships (6) and (7) for the longitudinal component of the velocity V‖ < c/n (ω) the contributions of separate harmonics to the averaged radiation power of the electron can be expressed as P rad = e2 c3 ∞∑ m=1 ∞∫ 0 dωμ (ω) n (ω) ω2 π∫ 0 sin θdθδ { ω ( 1 − n (ω) c V‖ cos θ ) − mω0 } × { V 2 ⊥ [ m2 q2 J2 m (q) + J ′2 m (q) ] + ( V 2 ‖ − c2 n2 (ω) ) J2 m (q) } , (8) 6 Radiation spectrum of an electron moving in a spiral in medium where q = V⊥ n (ω) c ω ω0 sin θ, Jm (q) and J ′ m (q) are the Bessel function with an integer index and its derivative, respectively. For the velocities V‖ < c/n (ω) each harmonics is a set of the frequencies, which are determined from the solution of the equation ω ( 1 − n (ω) c V‖ cos θ ) − mω0 = 0. (9) 4. Spectral distribution of radiation power of an electron moving along a spiral near the Cherenkov threshold Let us consider some partial case when ε = const and μ = 1, i.e. the low-frequency spectral range is under investigation. The spectral distribution of radiation power W (ω) in transparent isotropic medium at the velocity absolute value Vmed = c/n = 0.2306 ·1011 cm/s at Bext = 1Gs, μ = 1, n = 1.3 is presented in figures 1 and 2. These calculations were carried out by using the relationship (7). Figure 1. Spectral distribution of radiation power of an electron moving in a spiral in a medium at the velocity absolute value Vmed = c/n = 0.2306 · 1011 cm/s at low harmonics at Bext = 1Gs, μ = 1, n = 1.3, V⊥med = 0.2301 · 1011 cm/s, V‖med = 0.15 · 1010 cm/s, r01 = 2048 cm, ω01 = 0.1124 · 108 rad/s, c = 0.2998 · 1011 cm/s, P int med1 = P rad 1 = 0.2629·10−13 erg/s. Figure 2. Spectral distribution of radiation power of an electron moving in a spiral in a medium at the velocity absolute value Vmed = c/n = 0.2306 · 1011 cm/s at high harmonics at Bext = 1Gs, μ = 1, n = 1.3, V⊥med = 0.2301 · 1011 cm/s, V‖med = 0.15 · 1010 cm/s, r02 = 2048 cm, ω02 = 0.1124 · 108 rad/s, c = 0.2998·1011 cm/s, P int med2 = 0.2085·10−12 erg/s. For the case Vmed = c/n = 0.2306 · 1011 cm/s at the Cherenkov’s threshold the overlapping between the harmonics was studied. As one can see in figure 1, the overlapping between the harmonic shifts to the higher harmonics with a decreasing longitudinal component of the velocity. At higher harmonics the maxima in the spectral distribution of the radiation are caused mainly by the overlapping between the neighbouring mth and (m + 1)th harmonics (see figures 1 and 2) as well as by some contributions of other harmonics. The spectral distribution of the synchrotron-Cherenkov radiation power in transparent medium above the Cherenkov threshold (a velocity absolute value Vmed > c/n) at Bext = 1Gs, μ = 1, n = 1.3, is presented in figures 3 and 4. The high-accuracy numerical calculations according to relationships (6) and (7) have shown that the synchrotron-Cherenkov radiation of the electron moving in a spiral in a medium (μ = 1, n = 1.3) is an unified process [3,5] and made it possible to obtain the magnitude of radiation power P int medj = P rad j . 7 A.V.Konstantinovich, I.A.Konstantinovich Figure 3. Spectral distribution of synchrotron- Cherenkov radiation power at the velocity ab- solute value Vmed > c/n at low harmonics at Bext = 1Gs, μ = 1, n = 1.3, V⊥med = 0.24 · 1011 cm/s, V‖med = 0.15 · 1010 cm/s, r03 = 2285 cm, ω03 = 0.1050 · 108 rad/s, P int med3 = 0.3058 · 10−13 erg/s. Figure 4. Spectral distribution of synchrotron- Cherenkov radiation power at the velocity ab- solute value Vmed > c/n at high harmonics at Bext = 1Gs, μ = 1, n = 1.3, V⊥med = 0.24 · 1011 cm/s, V‖med = 0.15 · 1010 cm/s, r04 = 2285 cm, ω04 = 0.1050 · 108 rad/s, P int med4 = 0.3579 · 10−12 erg/s. At higher harmonics, the maxima in the spectral distribution of the synchrotron-Cherenkov radiation are caused mainly by the overlapping between the mth and (m + 1)th harmonics (see figures 3 and 4) as well as by some contributions of other harmonics. As one can see in figures 1 to 4 all the calculated spectral dependencies of the radiation power spectral distribution are of a non-monotonous character near the Cherenkov threshold. 5. Conclusions For a non-relativistic longitudinal component of the electron velocity, the overlapping between the harmonics begins at higher harmonics number with a decreasing longitudinal component of the velocity. At higher harmonics, the maxima in the spectral distribution of the synchrotron-Cherenkov radiation are caused mainly by the overlapping between the mth and (m + 1)th harmonics. The spectral dependence of the radiation power spectral distribution is of a non-monotonous character near the Cherenkov threshold. 8 Radiation spectrum of an electron moving in a spiral in medium References 1. Tsytovich V.N. Bulletin of Moskow State University, 1951, No. 11, 27 (in Russian). 2. Konstantinovich A.V., Nitsovich V.M. Izv. Vuzov. Fizika, 1973, No. 2, 59 (in Russian). 3. Schwinger J., Wu-Yang Tsai, Erber T. Ann. Phys., 1976, 96, 303. 4. Konstantinovich A.V., Melnychuk S.V., Rarenko I.M., Konstantinovich I.A., Zharkoy V.P. J. Physical Studies, 2000, 4, 48 (in Ukrainian). 5. Konstantinovich A.V., Melnychuk S.V., Konstantinovich I.A. Journal of Optoelectronics and Advanced Matterials, 2003, 5, 1423. 6. Konstantinovich A.V., Melnychuk S.V., Konstantinovich I.A. Romanian Journal of Physics, 2003, 48, No. 5–6, 717. 7. Konstantinovich A.V., Melnychuk S.V., Konstantinovich I.A. Proceedings of the Romanian Academy A., 2003, 4, No. 3, 175. 8. Konstantinovich A.V., Konstantinovich I.A. Romanian Journal of Optoelectronics, 2004, 124, No. 3, 13. 9. Konstantinovich A.V., Melnychuk S.V., Konstantinovich I.A. Romanian Journal of Physics, 2005, 50, No. 3–4, 347. 10. Konstantinovich A.V., Konstantinovich I.A. Physics and Chemistry of Solid State, 2005, 6, No. 4, 535 (in Ukrainian). 11. Konstantinovich A.V., Melnychuk S.V., Konstantinovich I.A. Journal of Materials Science: Materials in Electronics, 2006, 17, No. 4, 315. 12. Dirac P.A.M. Proc. Roy. Soc. A, 1938, 167, 148. 13. Sokolov A.A. Bulletin of Moskow State University, 1947, No. 2, 33 (in Russian). 14. Schwinger J. Phys. Rev. 1949, 75, 1912. 15. Konstantinovich A.V., Melnychuk S.V., Konstantinovich I.A. Bulletin of Chernivtsi National Univer- sity, Physics and Electronics, 2001, No. 102, 5 (in Ukrainian). Спектр випромiнювання електрона, що рухається вздовж гвинтової лiнiї у середовищi А.В.Константинович, I.А.Константинович Чернiвецький нацiональний унiверситет iм. Юрiя Федьковича, вул. Коцюбинського 2, 58012, Чернiвцi Отримано 4 вересня 2006 р., в остаточному виглядi – 27 грудня 2006 р. Дослiджено вплив ефекту Доплера на особливостi спектрального розподiлу потужностi випромiню- вання електрона, що рухається вздовж гвинтової лiнiї у середовищi, поблизу черенковського бар’є- ру. Отримана i дослiджена тонка структура електромагнiтного спектра на черенковському бар’єрi та спектра синхротронно-черенковського випромiнювання електрона, що рухається вздовж гвинтової лiнiї у прозорому середовищi, з нерелятивiстською поздовжньою компонентою швидкостi (компо- нентою, що паралельна вектору магнiтної iндукцiї). Ключовi слова: синхротронне випромiнювання, синхротронно-черенковське випромiнювання PACS: 41.60.-m, 41.60.Ap, 41.60.Bq, 03.50.-z, 03.50.De 9 10