The Singular Limit of the Dissipative Zakharov System
The dissipative Zakharov system which models the propagation of Langmuir waves in plasmas is considered on the interval [0, L]. We are interested in the case of large ion acoustic speed λ. After the formal limiting transition λ → ∞ this system turns into the coupling system of the parabolic and Schr...
Gespeichert in:
| Veröffentlicht in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Datum: | 2015 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2015
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/117985 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The Singular Limit of the Dissipative Zakharov System / A.S. Shcherbina // Журнал математической физики, анализа, геометрии. — 2015. — Т. 11, № 1. — С. 75-99— Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | The dissipative Zakharov system which models the propagation of Langmuir waves in plasmas is considered on the interval [0, L]. We are interested in the case of large ion acoustic speed λ. After the formal limiting transition λ → ∞ this system turns into the coupling system of the parabolic and Schrödinger equations. We prove that this limit system has a solution and generates a dissipative dynamical system possessing a global compact attractor. Our main result is the upper semicontinuity of the attractor as λ → ∞.
Рассмотрена диссипативная система уравнений Захарова на промежутке [0, L], которая моделирует распространение ленгмюровских волн в плазме. Исследован случай большой акустической скорости ионов λ. После формального предельного перехода λ → ∞ система Захарова превращается в новую систему, которая состоит из параболического уравнения и уравнения Шредингера. Доказывается, что полученная система имеет глобальное решение и порождает диссипативную динамическую систему, которая обладает компактным глобальным аттрактором. Основным результатом является доказательство верхней полунепрерывности аттрактора при λ → ∞ .
Розглянуто дисипативну систему рівнянь Захарова на проміжку [0, L], яка моделює розповсгодження ленгмюрівських хвиль у плазмі. Досліджено випадок великої акустичної швидкості іонів λ. Після формального граничного переходу λ → ∞ система Захарова перетворюється у нову систему, яка складається з параболічного рівняння та рівняння Шредінгера. Доведено, що отримана система має глобальний розв'язок та породжує дисипативну динамічну систему, яка має компактний глобальний атрактор. Головним результатом є доведення верхньої напівнеперервності атрактора при λ → ∞.
|
|---|---|
| ISSN: | 1812-9471 |