Properties of Modified Riemannian Extensions

Let M be an n-dimensional differentiable manifold with a symmetric connection ∇ and T*M be its cotangent bundle. In this paper, we study some properties of the modified Riemannian extension ğ∇, c on T*M defined by means of a symmetric (0, 2)-tensor field c on M. We get the conditions under which T*M...

Full description

Saved in:
Bibliographic Details
Date:2015
Main Authors: Gezer, A., Bilen, L., Cakmak, A.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2015
Series:Журнал математической физики, анализа, геометрии
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/118024
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Properties of Modified Riemannian Extensions / A. Gezer, L. Bilen, A. Cakmak // Журнал математической физики, анализа, геометрии. — 2015. — Т. 11, № 2. — С. 159-173. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Let M be an n-dimensional differentiable manifold with a symmetric connection ∇ and T*M be its cotangent bundle. In this paper, we study some properties of the modified Riemannian extension ğ∇, c on T*M defined by means of a symmetric (0, 2)-tensor field c on M. We get the conditions under which T*M endowed with the horizontal lift HJ of an almost complex structure J and with the metric ğ∇, c is a Kähler-Norden manifold. Also curvature properties of the Levi-Civita connection of the metric ğ∇, c are presented.